
Neural Reasoning, Fast and Slow, for Video
Question Answering

Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran
Applied Artificial Intelligence Institute, Deakin University, Australia

{lethao,vuong.le,svetha.venkatesh,truyen.tran}@deakin.edu.au

Abstract—What does it take to design a machine that learns to
answer natural questions about a video? A Video QA system must
simultaneously understand language, represent visual content
over space-time, and iteratively transform these representations
in response to lingual content in the query, and finally arriving
at a sensible answer. While recent advances in lingual and visual
question answering have enabled sophisticated representations
and neural reasoning mechanisms, major challenges in Video
QA remain on dynamic grounding of concepts, relations and
actions to support the reasoning process. Inspired by the dual-
process account of human reasoning, we design a dual process
neural architecture, which is composed of a question-guided video
processing module (System 1, fast and reactive) followed by
a generic reasoning module (System 2, slow and deliberative).
System 1 is a hierarchical model that encodes visual patterns
about objects, actions and relations in space-time given the
textual cues from the question. The encoded representation is a
set of high-level visual features, which are then passed to System
2. Here multi-step inference follows to iteratively chain visual
elements as instructed by the textual elements. The system is
evaluated on the SVQA (synthetic) and TGIF-QA datasets (real),
demonstrating competitive results, with a large margin in the
case of multi-step reasoning.

I. INTRODUCTION

A long standing goal in AI is to design a learning machine
capable of reasoning about dynamic scenes it sees. A powerful
demonstration of such a capability is answering unseen natural
questions about a video. Video QA systems must be able to
learn, acquire and manipulate visual knowledge distributed
through space-time conditioned on the compositional linguistic
cues. Recent successes in image QA [1], [11], [12], [30] pave
possible roads, but Video QA is largely under-explored [27],
[21]. Compared to static images, video poses new challenges,
primarily due to the inherent dynamic nature of visual content
over time [7], [29]. At the lowest level, we have correlated
motion and appearance [7]. At higher levels, we have objects
that are persistent over time, actions that are local in time, and
the relations that can span over an extended length.

Searching for an answer from a video facilitates solving
interwoven sub-tasks in both the visual and lingual spaces,
probably in an iterative and compositional fashion. In the
visual space, the sub-tasks at each step involve extracting
and attending to objects, actions, and relations in time and
space. In the textual space, the tasks involve extracting and
attending to concepts in the context of sentence semantics. A
plausible approach to Video QA is to prepare video content
to accommodate the retrieval of information specified in the
question [14], [19], [32]. But this has not yet offered a more

complex reasoning capability that involves multi-step inference
and handling of compositionality. More recent works have
attempted to add limited reasoning capability into the system
through memory and attention mechanisms that are tightly
entangled with visual representation [7], [21]. These systems
are thus non-modular, and less comprehensible as a result.

Our approach to Video QA is to disentangle the processes
of visual pattern recognition and compositional reasoning
[30]. This division of labor realizes a dual process cognitive
view that the two processes are qualitatively different: visual
cognition can be reactive and domain-specific but reasoning
is usually deliberative and domain-general [3], [16]. In our
system, pattern recognition precedes and makes its output
accessible to the reasoning process. More specifically, at the
visual understanding level, we derive a hierarchical model over
time, dubbed Clip-based Relational Network (CRN), that can
accommodate objects, actions, and relations in space-time. This
is followed by a generic differentiable reasoning module, known
as Memory-Attention-Composition (MAC) network [13], which
iteratively manipulates a set of objects in the knowledge base
given a set of cues in the query, one step at a time. In our
setting, MAC takes prepared visual content as a knowledge
base, and iteratively co-attends to the textual concepts and
the visual concepts/relations to extract the answer. The overall
dual-process system is modular and fully differentiable, making
it easy to compose modules and train.

We validate our dual process model on two large public
datasets, the TGIF-QA and the SVQA. The TGIF-QA is a
real dataset, and is relatively well-studied [7], [14], [21]. See
Fig. 1, last two rows for example frames and question types.
The SVQA is a new synthetic dataset designed to mitigate the
inherent biases in the real datasets and to promote multi-step
reasoning [27]. Several cases of complex, multi-part questions
are shown in Fig. 1, first row. On both datasets, the proposed
model (CRN+MAC) achieves new records, and the margin on
the SVQA is qualitatively different from the best known results.
Some example responses are displayed in Fig. 1, demonstrating
how our proposed method works in different scenarios.

Our contributions are 1) Introducing a modular neural
architecture for learning to reason in Video QA. The system
implements dual process theory by disentangling reactive
visual cognition and language understanding from deliberative
reasoning. 2) Proposing a hierarchical model for preparing
video representation taking into account of query-driven frame
selectivity within a clip and temporal relations between clips.
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Repetition Count (TGIF-QA)

Question: How many times does the man kick his legs?
Preds: (GT) 6       (ST-TP) 4       (Ours) 6

Repeating Action (TGIF-QA)

Question: What does the man do 5 times?
Preds: (GT) shake finger    (ST-TP) turn    (Ours) shake finger

State Transition  (TGIF-QA)

Question: What does the man do after squat?
Preds: (GT) stretch hand out   (ST-TP) inhale   (Ours) stretch hand out

Frame QA (TGIF-QA)

Question: what is having its head rubbed ?
Preds: (GT) bird        (ST-TP) dog         (Ours) bird

Question: There is a cylinder moving right that is ends action 
after the small ball, what size is it?
Preds: (GT) small       (TRN) big       (Ours) small

Question: There is a big black object that is in front of the 
yellow object and on the right side of the gray cylinder at start, 
what action type is it?

Preds: (GT) rotate       (TRN) translation       (Ours) rotate

Query Size (SVQA) Query Action (SVQA)

Figure 1. Examples of SVQA and TGIF-QA dataset. GT: ground truth; TRN: our baseline utilizing TRN [33]; ST-TP: method introduced in [14]. Best viewed
in color.

II. RELATED WORK

Video representation in Video QA: Available methods
for Video QA typically relied on recurrent networks or 3D
convolutions to extract video features. Variations of LSTM
were used in [19] with a bidirectional LSTM, [32] in the form
of a two-staged LSTM. Likewise, [7], [21] used two levels of
GRU, the first one for extracting “facts” and the second one
in each iteration of the memory based reasoning. In another
direction, convolutional networks were used to integrate visual
information with either 2D or 3D kernels [14], [21].

Different from these two traditional trends, in this work we
propose CRN, a query-driven hierarchical relational feature
extraction strategy, which supports strong modeling for both
near-term and far-term spatio-temporal relations. CRN supports
multiple levels of granularity in the temporal scale. This
development is necessary to address the nondeterministic
queries in Video QA tasks.

Neural reasoning for Video QA: The work in [19], [32]
both utilized memory network as a platform to retrieve the
information in the video features related to the question
embedding. More recent Video QA methods started interleaving
simple reasoning mechanisms into the pattern matching network
operations. In [14], Jang et al. calculated the attention weights
on the video LSTM features queried by the question. In an
effort toward deeper reasoning, Gao et al. [7] proposed to parse
the two-stream video features through a dynamic co-memory
module which iteratively refines the episodic memory. Lately
[21] used self-attention mechanisms to internally contemplate
about video and question first, then put them through a co-

attention block to match the information contained in the
two sources of data. For complex structured videos with
multimodal features, recent method leveraged memories [4],
[19], [23] to store multimodal features into episodic memory
for later retrieval of related information to the question. More
sophisticated reasoning mechanisms are also developed with
hierarchical attention [22], multi-head attention [18] or multi-
step progressive attention memory [17] to jointly reason on
video/audio/text concurrent signals.

The current trend set by these works pushes the sophistication
of the reasoning processes on finding the correlation between
data pattern and the query. Pattern recognition and reasoning
are tightly entangled, and reasoning tends to be specific to
visual/textual patterns as a result. Compared to the previous
works, our framework steps toward disentangling these two
processes.

Dual process systems: Reasoning systems that exhibit
behaviors consistent with dual process theories are typically
neural-symbolic hybrids (e.g., see [8] for an overview). In
[30], visual pattern recognition modules form elements of a
symbolic program whose execution would find answers for
image question answering. Different from [30], we rely on
implicit reasoning capability in a fully differentiable neural
system [2], [13].

III. METHOD

In this section, we present our main contribution to ad-
dressing the challenges posed in Video QA. In particular, we
propose a modular end-to-end neural architecture, as illustrated
in Fig. 2.
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Figure 2. Overview of Network Architecture for Video QA. The model is viewed as a dual process system of hierarchical video representation with Clip-based
Relation Network (CRN) and high-level multi-step reasoning with MAC cells, in which the two processes are guided by textual cues. Inputs of CRN are the
aggregated features of equal-size clips obtained by a temporal attention mechanism. The high-level reasoning module iteratively co-attends to the contextual
words of a given question and the visual concepts/relations prepared by the CRN unit to extract relevant visual information to the answer. At the end of the
network, an answer decoder taking as input the joint representation of the question feature and the retrieved visual information is used for prediction.

A. Dual Process System View

Our architecture is partly inspired by the dual process
theory dictating that there are two loosely coupled cognitive
processes serving separate purposes in reasoning: the lower
pattern recognition that tends to be associative, and the higher-
order reasoning faculty that tends to be deliberative [3], [16].
Translated into our Video QA scenarios, we have the pattern
recognition process for extracting visual features, representing
objects and relations, and making the representation accessible
to the higher reasoning process. The interesting and challenging
aspects come from two sources. First, video spans over both
space and time, and hence calling for methods to deal with
object persistence, action span and repetition, and long-range
relations. Second, Video QA aims to respond to the textual
query, hence the two processes should be conditional, that is,
the textual cues will guide both the video representation and
reasoning.

For language coding, we make use of the standard bi-LSTM
with GloVe word embeddings. Let S be a given question’s
length, we subsequently obtain two sets of linguistic clues:
contextual words

{
ws|ws ∈ Rd

}S
s=1

which are the output
states of the LSTM at each step, and the question vector
q = [←−w1;

−→wS ], q ∈ Rd which is the joint representation of the
final hidden states from forward and backward LSTM passes.

We treat a video as a composition of video clips, in which
each clip can be viewed as an activity. While previous studies
have explored the importance of hierarchical representation

of video [34], we hypothesize that it is also vital to model
the relationships between clips. Inspired by [26] and a recent
work [33] on action recognition, known as Temporal Relation
Network (TRN), we propose a Clip-based Relation Network
(CRN) for video representation, where clip features are
selectively query-dependent. It is expected that CRN is more
effective in terms of modeling a temporal sequence than the
simplistic TRN which comes with a certain number of sampled
frames. The CRN represents the video as a tensor for the use
in the reasoning stage.

The reasoning process, due to its deliberative nature, involves
multiple steps in an iterative fashion. We utilize Memory-
Attention-Composition (MAC) cells [13] for the task due to its
generality and modularity. More specially, the MAC cells are
called repeatedly conditioned on the textual cues to manipulate
information from given video representations as a knowledge
base. Finally, information prepared by the MAC, combined
with the textual cues is presented to a decoder to produce an
answer.

In short, our system consists of three components where
the outputs of one component are the inputs to another: (1)
temporal relational pattern recognition, (2) multi-step reasoning
with MAC cells and (3) answer decoders. We detail these
components in what follows.

B. Temporal Relational Pattern Recognition
Given a video of continuous frames, we begin with dividing

the video into L equal-length clips C = (C1, ..., Cl, ..., CL).
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Figure 3. Illustration of Clip-based Relation Network (CRN). Aggregated
features of equal size clips are fed into k-clip relation modules. Inputs to
relation modules are selected on a random basis whilst keeping their temporal
order unchanged. In this figure, our CRN represents a video as aggregated
features of five video clips using 2-clip relation, 3-clip relation, and 4-clip
relation modules. This results in the final feature of the same shape as one
clip feature.

Each clip Cl of T frames is represented by Cl = {Vl,t |
Vl,t ∈ RW×H×D}Tt=1, where Vl,t is frame features extracted
by ResNet-101 [10] of the t-th frame in clip Cl; W,H,D are
dimensions of the extracted features. Frame-level features are
subsequently projected to a d dimensional space via linear
transformations, resulting Cl = {V ′l,t | V ′l,t ∈ RW×H×d}Tt=1.

As consecutive frames are redundant or irrelevant to the
question, it is crucial to selectively attend to frames. In addition,
this would greatly reduce the computational cost. We thus
utilize a temporal attention mechanism conditioned on the
question vector q to compute the aggregated clip feature Ĉl of
the corresponding clip Cl:

V pool
l,t =

1

W ×H

W∑
w=1

H∑
h=1

V ′l,t,w,h;V
pool
l,t ∈ Rd, (1)

sl,t =W
(
(W qq + bq)�

(
W vV pool

l,t + bv
))

, (2)

Ĉl =
T∑
t=1

V ′l,t · softmax(sl,t), (3)

where, W,W q,W v, bq and bv are learnable weights, and � is
element-wise multiplication.

To account for relations between clips, we borrow the
strategy of TRN described in [33] which adapts and generalizes
the proposal in [26] to temporal domain. Different from [33],
our relational network operates at the clip level instead of frame
level. More specifically, the k-order relational representation
of video is given as

R(k) (C) = hΦ

( ∑
l1<l2...<lk

gθ

(
Ĉl1 , Ĉl2 , ..., Ĉlk

))
, (4)

for k = 2, 3, ..,K, where hφ and gθ are any aggregation
function with parameters φ and θ, respectively. We term this
resulted model as Clip-based Relation Network (CRN). Fig. 3
illustrates our procedure for our CRN.

a) Remark: The CRN subsumes TRN as a special case
when T → 1. However, by computing the relations at the clip
level, we can better model the hierarchical structure of video
and avoid computational complexity inherent in TRN. For
example, we neither need to apply sparse sampling of frames
nor use the multi-resolution trick as in TRN. Consider a lengthy
video sequence, in TRN, the chance of having pairs of distantly
related frames is high, hence, their relations are less important
than those of near-term frames. In the worst case scenario,
those pairs can become noise to the feature representation
and damage the reasoning process in later stages. In contrast,
not only our clips representation can preserve such near-term
relations but also the far-term relations between short snippets
of a video can be guaranteed with the CRN.

C. Multi-step Centralized Reasoning
Higher-order reasoning on the rich relational temporal

patterns is the key for reliably answering questions. Our
approach is to disentangle the slow, deliberative reasoning
steps out of fast, automatic feature extraction and temporal
relation modeling. This “slow-thinking” reasoning is done with
a dedicated module that iteratively distills and purifies the key
relational information contained in the CRN features.

In our experiments, we use the MAC network [13] as the
option for the reasoning module. At the core of MAC network
are the recurrent cells called control units, collaborating with
read units and write units to iteratively make reasoning
operations on a knowledge base using a sequence of clues
extracted from the query. Compared to mixed-up feature
extraction/reasoning mechanisms, the control units give the
MAC network distinctive features of a centralized reasoning
module that can make a well-informed decision on attention
and memory reads/writes. MAC is also powered by the flexible
retrieving/processing/reference mechanism while processing
the query and looking up in the knowledge base. These
characteristics are well suited to explore the rich, condensed
relational information in CRN features. The iterative reasoning
process of MAC supports a level of error self-correcting ability
that also helps to deal with the possible remaining redundancy
and distraction.

In our setup, the knowledge base B used in MAC network
is gathered from the CRN features from all available orders:

B =

K∑
k=2

R(k) (C) , (5)

where, R(k) (C) are the k-order CRN representations calculated
as in Eq. (4).

For each reasoning step i, the relevant aspects of question
to this step are estimated from q:

qi =W q
i q + bqi , (6)

where, W q
i and bqi are network weights.

Let [; ] denote the concatenation operator of two tensors.
Based on the pair of clues contextual words and step-aware
question vector ({ws}Ss=1, qi), recall that S is a given question’s
length, and the control state of the previous reasoning step



ci−1, the control unit calculates a soft self-attention weight
αcontrol
i,s over words in the question:

Fi =W c1
i [W c0

i ci−1; qi], (7)

αcontrol
i,s = softmax(Wα

i (Fi � ws) + bα), (8)

and infers the control state at this step:

ci =

S∑
s=1

αcontrol
i,s ws. (9)

The read unit uses this control signal and the prior memory
mi−1 to calculate the read attention weights αread

i,x,y for each
location x, y in the knowledge base B and retrieves the related
information:

ri =
∑
x,y

αread
i,x,yBx,y, (10)

where,

Ii,x,y = [mi−1 �Bx,y;Bx,y], (11)

I ′i,x,y =W I
i Ii,x,y, (12)

αread
i,x,y = softmax(Wα

i (ci � I ′i,x,y) + bα). (13)

To finish each reasoning iteration, the write unit calculates the
intermediate reasoning result mi by updating previous record
mi−1 with the new information derived from the retrieved
knowledge ri , say mi = f(mi−1, ri). In our experiments, the
function f is simply a linear transformation on top of a vector
concatenation operator.

At the end of the process of P steps (P MAC cells), the
final memory state mP emerges as the output of the reasoning
module used by the answer decoders in the next stage.

D. Answer Decoders
Following [14], [27], we adopt different answer decoders

depending on the tasks. These include open-ended words, open-
ended number, and multi-choice question.

For open-ended words (e.g. those in Frame QA in TGIF-QA
dataset and all QA pairs in SVQA dataset – see Sec. IV-A),
we treat them as multi-label classification problems of V labels
defined in an answer space A. Hence, we employ a classifier
which composes 2-fully connected layers, and the following
softmax, and takes as of input the combination of the memory
state mP and the question representation q:

p = softmax(W o2(W o1[mp;W
qq + bq] + bo1) + bo2), (14)

where, p ∈ RV is a confidence vector of probabilities of labels.
The cross-entropy is used as the loss function of the network
in this case.

Similarly, we also use a linear regression function to predict
real-value numbers (repetition count) directly from the joint
representation of mP and q. We further pass the regression
output through a rounding function for prediction:

s = bW o2(W o1[mp;W
qq + bq] + bo1) + bo2c. (15)

Mean Squared Error (MSE) is used as the loss function during
the training process in this case.

Regarding the multi-choice question type, which includes
repeating action and state transition in TGIF-QA dataset in later
experiments, we treat each answer candidate of a short sentence
in the same way as with questions. In particular, we reuse one
MAC network for both questions and answer candidates in
which network parameters are shared. As a result, there are two
types of memory output, one derived by question mq,P , and
the other one conditions on answer candidates ma,P . Inputs
to a classifier are from four sources, including mq,P , ma,P ,
question representation q and answer candidates a:

y = [mq,P ;ma,P ;W
qq + bq;W aa+ ba], (16)

y′ = σ(W yy + by);σ = ELU(.), (17)

Finally, a linear regression is used to output an answer index:

s =W y′y′ + by
′
. (18)

The model in this case is trained with hinge loss of pairwise
comparisons, max (0, 1 + sn − sp), between scores for incor-
rect sn and correct answers sp.

IV. EXPERIMENTS

A. Datasets

We evaluate our proposed method on two recent public
datasets: Synthetic Video Question Answering (SVQA) [27]
and TGIF-QA [14].

a) SVQA: This dataset is a benchmark for multi-step
reasoning. Resembling the CLEVR dataset [15] for traditional
visual question answering task, SVQA provides long questions
with logical structures along with spatial and temporal interac-
tions between objects. SVQA was designed to mitigate several
drawbacks of current Video QA datasets including language
bias and the shortage of compositional logical structure in
questions. It contains 120K QA pairs generated from 12K
videos that cover a number of question types such as count,
exist, object attributes comparison and query.

b) TGIF-QA: This is currently the largest dataset for
Video QA, containing 165K QA pairs collected from 72K
animated GIFs. This dataset covers four sub-tasks mostly to
address the unique properties of video including repetition
count, repeating action, state transition and frame QA. Of
the four tasks, the first three require strong spatio-temporal
reasoning abilities. Repetition Count: This is one of the most
challenging tasks in Video QA where machines are asked count
the repetitions of an action. For example, one has to answer
questions like “How many times does the woman shake hips?”.
This is defined as an open-ended task with 11 possible answers
in total ranging from 0 to 10+. Repeating Action: This is a
multiple choice task of five answer candidates corresponding to
one question. The task is to identify the action that is repeated
for a given number of times in the video (e.g. “what does the
dog do 4 times?”). State Transition: This is also a multiple



Table I
ABLATION STUDIES. (*) FOR COUNT, THE LOWER THE BETTER.

Model SVQA TGIF-QA (*)
Action Trans. Frame Count

Linguistic only 42.6 51.5 52.8 46.0 4.77
Ling.+S.Frame 44.6 51.3 53.4 50.4 4.63
S.Frame+MAC 58.1 67.8 76.1 57.1 4.41
Avg.Pool+MAC 67.4 70.1 77.7 58.0 4.31
TRN+MAC 70.8 69.0 78.4 58.7 4.33
CRN+MLP 49.3 51.5 53.0 53.5 4.53
CRN+MAC 75.8 71.3 78.7 59.2 4.23

choice task asking machines to perceive the transition between
two states/events. There are certain states characterized in the
dataset including facial expressions, actions, places and object
properties. Questions like “What does the woman do before
turn to the right side?” and “What does the woman do after
look left side?” aim at identifying previous state and next state,
respectively. Frame QA: This task is akin to the traditional
visual QA where the answer to a question can be found in
one of the frames in a video. None of temporal relations is
necessary to answer questions.

B. Implementation Details

Each video is segmented into five equal clips, each of which
has eight consecutive frames. The middle frame of each clip
is determined based on the length of the video. We take conv4
output features from ResNet-101 [10] pretrained on ImageNet
as the visual features of each video frame. Each frame feature
has dimensions of 14 × 14 × 1024. Each word in questions
and answer candidates in case of multiple choice question is
embedded into a vector of dimension 300 and initialized by
pre-trained GloVe embeddings [24]. Unless otherwise stated,
we use P = 12 MAC cells for multi-step reasoning in our
network, similar to what described in [13], while all hidden
state sizes are set to 512 for both CRN and MAC cells.

Our network is trained using Adam, with a learning rate
of 5 × 10−5 for repetition count and 10−4 for other tasks,
and a batch size of 16. The SVQA is split into three parts
with proportions of 70-10-20% for training, cross-validation,
and testing set, accordingly. As for TGIF-QA dataset, we take
10% of training videos in each sub-task as the validation sets.
Reported results are at the epochs giving best of performance
on the validation sets.

a) Evaluation Metrics: For the TGIF-QA, to be consistent
with prior works [14], [7], [21], we use accuracy as the
evaluation metric for all tasks except the repetition count task
whose evaluation metric is Mean Square Error (MSE). For
the SVQA, we report accuracy for all sub-tasks, which are
considered as multi-label classification problems.

C. Results

1) Ablation Studies: To demonstrate the effectiveness of
each component on the overall performance of the proposed
network, we first conduct a series of ablation studies on both
the SVQA and TGIF-QA datasets. The ablation results are
presented in Table I, II showing progressive improvements,

Table II
ABLATION STUDIES WITH DIFFERENT REASONING ITERATIONS. (*) FOR

COUNT, THE LOWER THE BETTER.

Reasoning iterations TGIF-QA (*)
Action Trans. Frame Count

4 69.9 77.6 58.5 4.30
8 70.8 78.8 58.6 4.29

12 71.3 78.7 59.2 4.23

which justify the added complexity. We explain below the
baselines.

Linguistic only: With this baseline, we aim to assess how
much linguistic information affects overall performance. From
Table I, it is clear that TGIF-QA is highly linguistically biased
while the problem is mitigated with SVQA dataset to some
extent.

Ling.+S.Frame: This is a very basic model of VQA that
combines the encoded question vector with CNN features of
a random frame taken from a given video. As expected, this
baseline gives modest improvements over the model using only
linguistic features.

S.Frame+MAC: To demonstrate the significance of multi-
step reasoning in Video QA, we randomly select one video
frame and then use its CNN feature maps as the knowledge
base of MAC. As the SVQA dataset contains questions with
compositional sequences, it greatly benefits from performing
reasoning process in a multi-step manner.

Avg.Pool+MAC: A baseline to assess the significance of
temporal information in the simplest form of average temporal
pooling comparing to ones using a single frame. We follow
[33] to sparely sample 8 frames which are the middle frames
of the equal size segments from a given video. As can be
seen, this model is able to achieve significant improvements
comparing to the previous baselines on both datasets. Due to
the linguistic bias, the contribution of visual information to
the overall performance on the TGIF-QA is much modest than
that on the SVQA.

TRN+MAC: This baseline is a special case of ours where
we flatten the hierarchy, and the relation network is applied
at the frame level, similar to what proposed in [33]. The
model mitigates the limit of feature engineering process for
video representation of a single frame as well as simply
temporal average pooling. Apparently, using a single frame
loses crucial temporal information of the video and is likely to
fail when strong temporal reasoning capability plays a crucial
role, particularly in state transition and counting. We use visual
features processed in the Avg.Pool+MAC experiment to feed
into a TRN module for fair comparisons. TRN improves by
more than 12% of overall performance from the one using
a single video frame on the SVQA, while the increase for
state transition task of the TGIF-QA is more than 2%, around
1.5% for both repeating action and frame QA, and 0.08 MSE
in case of repetition count. Although this baseline produces
great increments on the SVQA comparing to the experiment
Avg.Pool+MAC, the improvement on the TGIF-QA is minimal.

CRN+MLP: In order to evaluate how the reasoning module



affects the overall performance, we conduct this experiment by
using a feed-forward network as the reasoning module with
the proposed visual representation CRN.

CRN+MAC: This is our proposed method in which we
opt the outputs of CRN for the knowledge base of MAC.
We witness significant improvements on all sub-tasks in the
SVQA over the simplistic TRN whilst results on the TGIF-QA
dataset are less noticeable. The results reveal the strong CRN’s
capability as well as a better suit of video representation for
reasoning over the TRN, especially in case of compositional
reasoning. The results also prove our earlier argument that
sparsely sampled frames from the video are insufficient to
embrace fast-pace actions/events such as repeating action and
repetition count.

2) Benchmarking against SOTAs: We also compare our
proposed model with other state-of-the-art methods on both
datasets, as shown in Table III (SVQA) and Table IV (TGIF-
QA). As the TGIF-QA is older, much effort has been spent
on benchmarking it and significant progress has been made in
recent years. The SVQA is new, and hence published results
are not very indicative of the latest advance in modeling.

For the SVQA, Table I and Table III reveal that the
contributions of visual information to the overall performance
of the best known results are very little. This means their system
is largely suffered from the linguistic bias of the dataset for the
decision making process. In contrast, our proposed methods
do not seem to suffer from this problem. We establish new
qualitatively different SOTAs on all sub-tasks and a massive
jump from 44.9% accuracy to 75.8% accuracy overall.

For the TGIF-QA dataset, Jang et al. [14] extended winner
models of the VQA 2016 challenge to evaluate on Video QA
task, namely VIS+LSTM [25] and VQA-MCB [6]. Early fusion
and late fusion are applied to both two approaches. We also
list here some other methods provided by [14] including those
proposed in [6] and [31]. Interestingly, none of the previous
works reported ablation studies of utilizing only textual cues as
the input to assess the linguistic bias of the dataset, and the fact
that some of the reported methods produced worse performance
than this baseline. We suspect that the improper integrating of
visual information caused confusion to the systems giving such
low performance. In Table IV, SP indicates spatial attention,
ST presents temporal attention while “R”, “C” and “F” indicate
ResNet, C3D and optical-flow features, respectively. Later, Gao
et al. [7] greatly advanced the performance on this dataset with
a co-memory mechanism on two video feature streams. Li
et al. [21] recently achieved respected performance on TGIF-
QA with only ResNet features by using a novel self-attention
mechanism. Our method, which is also relied on ResNet
features only, could achieve new state-of-the-art performance
on the state transition task and the frame QA task with a big
gap comparing to prior works on the frame QA task. It appears
that methods using both appearance features (RestNet features)
and motion features (C3D or optical-flow features) perform
bad on the frame QA task, suggesting the need for an adaptive
feature selection mechanism. For action and counting tasks,
although we have not outperformed [7], [4], it is not directly

comparable since they utilized motion in addition to appearance
features. Our method, on the other hand, models the temporal
relationships without explicitly using motion features and thus
the action boundaries are not clearly detected. We hypothesize
that counting task needs a specific network, as evident in recent
work [20], [28].

3) Qualitative Results: Fig. 1 shows example frames and
associated question types in the TGIF-QA and SVQA datasets.
The figure also presents corresponding responses by our
proposed method, and those by ST-TP [14] (on the TGIF-
QA) and TRN+MAC (our own special case of flat video
representation, on the SVQA) for reference. The questions
clearly demonstrate challenges that video QA systems must
face such as visual ambiguity, subtlety, compositional language
understanding as well as concepts grounding. The questions
in the SVQA were designed for multi-step reasoning, and the
dual process system of CRN+MAC Net proves to be effective
in these cases.

V. DISCUSSION

We have proposed a new differentiable architecture for
learning to reason in video question answering. The architecture
is founded on the premise that Video QA tasks necessitate a
conditional dual process of associative video cognition and
deliberative multi-step reasoning, given textual cues. The two
processes are ordered in that the former process prepares query-
specific representation of video to support the latter reasoning
process. With that in mind, we designed a hierarchical relational
model for query-guided video representation named Clip-based
Relational Network (CRN) and integrated it with a generic
neural reasoning module (MAC Net) to infer an answer. The
system is fully differentiable and hence amenable to end-to-end
training. Compared to existing state-of-the-arts in Video QA,
the new system is more modular, and thus open to accommodate
a wide range of low-level visual processing and high-level
reasoning capabilities. Tested on SVQA (synthetic) and TGIF-
QA (real) datasets, the proposed system demonstrates a new
state-of-the-art performance in a majority of cases. The gained
margin is strongly evident in the case where the system is
defined for – multi-step reasoning.

The proposed layered neural architecture is in line with
proposals in [5], [9], where reactive perception (System 1)
precedes and is accessible to deliberative reasoning (System 2).
Better perception capabilities will definitely make it easier
for visual reasoning. For example, action counting might
benefit from accurate explicit region proposals for objects
and duration proposals for action, rather than the implicit
detection as currently implemented. We also observed that
the generic reasoning scheme of MAC net is surprisingly
powerful for the domain of Video QA, especially for the
problems that demand multi-step inference (e.g., on the SVQA
dataset). This suggests that it is worthy to spend effort to
advance reasoning functionalities for both general cases and in
spatio-temporal settings. Finally, although we have presented
a seamless feedforward integration of System 1 and System 2,
it is still open on how the two systems interact.



Table III
COMPARISON WITH THE SOTA METHODS ON SVQA.

Exist Count
Integer Comparison Attribute Comparison Query

All
More Equal Less Color Size Type Dir Shape Color Size Type Dir Shape

SA(S) [27] 51.7 36.3 72.7 54.8 58.6 52.2 53.6 52.7 53.0 52.3 29.0 54.0 55.7 38.1 46.3 43.1
TA-GRU(T) [27] 54.6 36.6 73.0 57.3 57.7 53.8 53.4 54.8 55.1 52.4 22.0 54.8 55.5 41.7 42.9 44.2
SA+TA-GRU [27] 52.0 38.2 74.3 57.7 61.6 56.0 55.9 53.4 57.5 53.0 23.4 63.3 62.9 43.2 41.7 44.9
CRN+MAC 72.8 56.7 84.5 71.7 75.9 70.5 76.2 90.7 75.9 57.2 76.1 92.8 91.0 87.4 85.4 75.8

Table IV
COMPARISON WITH THE SOTA METHODS ON TGIF-QA. FOR COUNT, THE
LOWER THE BETTER. R: RESNET, C: C3D FEATURES, F: FLOW FEATURES.

Model Action Trans. Frame Count
VIS+LSTM (aggr)[25] 46.8 56.9 34.6 5.09
VIS+LSTM (avg)[25] 48.8 34.8 35.0 4.80
VQA-MCB (aggr)[6] 58.9 24.3 25.7 5.17
VQA-MCB (avg)[6] 29.1 33.0 15.5 5.54
Yu et al.[31] 56.1 64.0 39.6 5.13
ST(R+C)[14] 60.1 65.7 48.2 4.38
ST-SP(R+C)[14] 57.3 63.7 45.5 4.28
ST-SP-TP(R+C)[14] 57.0 59.6 47.8 4.56
ST-TP(R+C)[14] 60.8 67.1 49.3 4.40
ST-TP(R+F)[14] 62.9 69.4 49.5 4.32
Co-memory(R+F)[7] 68.2 74.3 51.5 4.10
PSAC(R)[21] 70.4 76.9 55.7 4.27
HME(R+C)[4] 73.9 77.8 53.8 4.02
CRN+MAC(R) 71.3 78.7 59.2 4.23
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