
Automatic offensive language detection from
Twitter data using machine learning and feature

selection of metadata
1st Gabriel Araújo De Souza

Federal University of Rio Grande do Norte (UFRN)
Natal, Brazil

gabriel feg@hotmail.com

2nd Márjory Da Costa-Abreu
Sheffield Hallam University, Sheffield, UK

m.da-costa-abreu@shu.ac.uk
https://orcid.org/0000-0001-7461-7570

Abstract—The popularity of social networks has only increased
in recent years. In theory, the use of social media was proposed
so we could share our views online, keep in contact with loved
ones or share good moments of life. However, the reality is
not so perfect, so you have people sharing hate speech-related
messages, or using it to bully specific individuals, for instance,
or even creating robots where their only goal is to target specific
situations or people. Identifying who wrote such text is not easy
and there are several possible ways of doing it, such as using
natural language processing or machine learning algorithms
that can investigate and perform predictions using the meta-
data associated with it. In this work, we present an initial
investigation of which are the best machine learning techniques
to detect offensive language in tweets. After an analysis of the
current trend in the literature about the recent text classification
techniques, we have selected Linear SVM and Naive Bayes
algorithms for our initial tests. For the preprocessing of data,
we have used different techniques for attribute selection that
will be justified in the literature section. After our experiments,
we have obtained 92% of accuracy and 95% of recall to detect
offensive language with Naive Bayes and 90% of accuracy and
92% of recall with Linear SVM. From our understanding, these
results overcome our related literature and are a good indicator
of the importance of the data description approach we have used.

Index Terms—Offensive Language Detection, Naive Bayes,
Linear SVM, Attribute Selection, Twitter

I. INTRODUCTION

In the face of popularisation of social media such as
Facebook, Twitter, Instagram and Tik Tok, the communica-
tion between people has become faster and easier. In these
communication mechanisms, people can express their feelings,
criticism, opinions, achievements, etc. However, many times
these networks are used to publicise hate speech though
offensive words. The types of the offense can be directed to
most diverse aspects including Ethnicity, Sexism, Economic
status, Religion, Sexual Orientation, and so on. Thus, the big
problem with this relies on the fact that the offense is presented
to individuals or groups and this can be potentially harmful to
them [1], [2].

The challenge in automated detection of offensive language
lies in the fact that, in social networks, the used language
contains a specific format that belongs to the environment. In

this context, several word abbreviations are used and various
forms of expression intensification and word modification,
such as several letters repetitions (e.g.: loooooved, gooood)
and excessive use of punctuation (e.g.: i loved!!!!, what????).
Thus, the original text must be modified through a very
important preprocessing stage to get a form that keeps the
original sense and can somehow coincide with other similar
posts [3].

For this, a software that is able to detect this type of offenses
in a social network is a very important advancement to ensure
the security and mental health of users [4]. Another considered
application is detecting users that commonly perform cyber-
bully acts and aggression. From this, measures must be taken
to punish and block aggressive users [5].

Thus, this paper proposes an investigation to detect offensive
language in twitter data. After a review of the literature, two
techniques were chosen for this task: Linear SVM and Naive
Bayes. The main objective is to improve these algorithms when
compared with similar experiments found in the literature.
For this, some results already published are presented and a
comparison of implemented techniques will be discussed.

This work is organised as: Section II presents a review of the
literature with the recent works about automatic detection of
offensive language or similar. Section III presents the database
structure and the process of data normalisation. Section IV
introduces the concepts of chosen machine learning algorithms
to describe the formulas and steps of the algorithm. Section V
shows and explains the results obtained in our experiments and
Section VI reports the conclusions obtained from the work.

II. RELATED WORKS

The investigation of hate speech in social media is a
relatively new research area, but, despite that, it has created
a lot of attention and have already whole events dedicated to
the subject as well as an increase of related publications. This
session will present and discuss some of the main findings of
the most recent and relevant publications.

As an example, the International Workshop on Semantic
Evaluation SemEval-20191 [6] presented tasks that focused on

1http://alt.qcri.org/semeval2019

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

detection and categorising of offensive language in social me-
dia. The three main sub-task were: offensive language identi-
fication, automatic categorisation of offense types, and offense
target identification. For the first sub-task, the messages were
classified as offensive or not offensive. A twitter post was label
as offensive if it contained any offensive or profane language.
The Deep Learning BERT [7] presented better results for this
task [8]. In the second sub-task, the goal was to predict the
type of offense, and for this, two classes were used: Insult and
Untargeted. A twitter post was classified as ’Insult’ when it
contained an insult to an individual or group; and, a twitter
post was labeled as ’Untargeted’ when that the post contained
non-acceptable language (swearing). The best solution found
for this problem used a rule-based approach with a keyword
filter, such as hashtags, signs, emoticons, and other features
[9]. The last sub-task focused on the target of offenses. The
used classes were ’Individual’ for an offense to a unique user,
’Group’ for an offense to a group of people, and ’Other’ for
an offense to an organisation, a situation, an event, or an
issue. The team with better results also used BERT for this
problem [10]. This Deep Learning model also was used to
detect offensive language in German texts [11].

In [12], a similar application was explored, where the
authors created a new dataset using the Twitter API for
twitter data classification as hate speech, offensive language
or neither. In their dataset, they collected a set of 85.4 million
twitter samples from about 33 thousand Twitter users. From
there, they built a set of 24k labeled twitter samples with
features, such as bigram, unigram, and trigram, which were
weighted by their TF-IDF and were used for the classification
task. Other features included binary and count indicators
for hashtags, mentions, retweets, and URLs. They tested a
large number of classifiers: logistic regression, Naive Bayes,
decision trees, random forests, and linear SVMs (Support
Vector Machine). Through their experiments, it was found that
Logistic Regression and Linear SVM tended to perform better
results. The best model obtained an overall precision of 0.91,
recall of 0.90, and F1-score of 0.9. However, the classifier did
not present good results to detect hate speech, for this class,
the precision and recall were 0.44 and 0.61, respectively.

A Deep Learning model for classification of messages in
social media was proposed in [13], with the labels considered
were racism, sexism or neutral. For their experiments, they
joined various Long Short-Term Memory (LSTM) models, and
in their classification, the features defined a user’s tendency
towards posting messages in any used classes, the set of
messages posted by a user, and subsets that contained labeled
messages. The method used was independent of the language
and obtained better results to detect sexists messages (around
0.99 of precision and F1-Score). Neutral messages also pre-
sented good results (0.94 for precision), but racist messages
obtained inferior results of about 0.75 and 0.70 of precision
and F1-Score respectively. The best value obtained a average
accuracy and precision around of 93% to all classes.

The problem of detecting hate speech was expanded in
[14] for vulnerable community identification. The features

extracted from the messages was performed using techniques
such as convert words to vector and n-grams. For the process
of hate speech detection, they used the Gated Recurrent Unit
(GRU) and a variety of RNNs. These classifiers provided
an accuracy of about 0.92, and thus, a Convolutional Neural
Networks (CNN) was proposed in [15] for classifying offen-
sive tweets written in English. The labels used in this work
were offensive, abusive or hate-inducing, and the best results
obtained an accuracy of 0.83 and a precision of 0.80.

In [16], the models SVM, bidirectional Long Short-Term-
Memory (BiLSTM), and CNN were used to classify messages
as offensive or not offensive. In the experiments, the BiLSTM
obtained a better precision to detect offensive messages (0.81).
For detection of not offensive language, the precision was 0.83,
and, SVM and CNN model obtained a precision of 0.66 and
0.78 respectively to detect offensive messages and 0.80 and
0.87 to detect not offensive messages.

Table I presented a summary of all the relevant works
for this paper and based on it, we have identified a lack
of investigation regarding the type of features used in order
to investigate offensive language. Also, a better fine tuning
approach to the standard classical classification techniques was
not fully explored, which can lead to poorer results. Thus, we
reinstate that our main goal with this work is to investigate the
quality of used features for this problem as well as the fine
tuning approach of classical classification techniques.

III. HATE SPEECH ON TWITTER POSTS: DATABASE

Since we have spotted a gap in the research area to explore
fine tuning and feature selection, in order to validate our
proposed ideas, we needed to, preferably, select a public
dataset, so we would be able to compare our results with the
state of the art. Thus, the used dataset was collected by [12]
and contains 24783 tweets. From these, 1430 are classified as
hate speech, 19190 as offensive language, and 4163 as normal
language. Due to the low amount of messages classified as
hate speech in comparison with the other labels and the low
performance to detect hate speech with this dataset describe
in [12], for this work, we have chosen to use only the labels
of offensive and normal language.

The first reason for the choice of this dataset is due to the
variety of examples of offensive twitters. The organisation of
data in this dataset was another important reason for your
choice because it facilitated data processing and manipulation.
The good results obtained with machine learning algorithms
present in [12] for offensive language detection was the final
reason for us to decide to use it.

In order to select a larger number of messages tagged as
an offensive language than normal, it is necessary to balance
the dataset [19]. For this, we have chosen randomly a subset
of messages marked as offensive with the same size as the
set of normal messages. Thus, we selected a set of 4163
normal and 4163 offensive tweets, creating a dataset with
a total size of 8326 messages. We have selected randomly
offensive messages to provide more diversity in the dataset and
a variety of seeds that will be used to test different datasets

TABLE I
RESUME OF RELATED WORKS

Reference Database Objective Feature Extraction Classification Results
[8] Offensive Language

Identification Dataset
(OLID)

Categorisation of of-
fensive language in
social media

Emoji substitution,
HashTag
segmentation and
convert all the text
into lowercase (Misc)

Logistic Regression
(LR), LSTM and
BERT

LR: 72% Acc
LSTM: 76% Acc
BERT: 84% Acc

[9] Offensive Language
Identification Dataset
(OLID)

Automatic categorisa-
tion of offense types

Rule-based approach
with a keyword fil-
ter based on a Twitter
language

Modified sentence
offensiveness
calculation (MSOC)
and RNN

RNN: 86% Acc
MSOC: 92% Acc

[10] Offensive Language
Identification Dataset
(OLID)

Offense target identi-
fication

Pre-processing and
pre-trained word
embedding based on
GloVe.

BERT-Base,
Multilayer Perceptron
Network (MLP) and
Soft Voting Classifier
(SVC)

BERT-Base: 72% Acc
MLP: 68% Acc
SVC: 69% Acc

[11] Dataset of German-
language tweets pro-
vided in context of
the GermEval Shared
Task 2 (2019)

Offensive language
identification for
German-language
texts

Replace all user men-
tions to a token Name

BERT 76% F1-Score

[12] They created their
own dataset described
in [12]

Automatic hate-
speech detection on
social media is the
separation of hate
speech from other
instances of offensive
language.

Lower case, create bi-
gram, unigram, and
trigram features, TF-
iDF and others

LR e SVM Precision of 0.91 and
Recall of 0.90 for of-
fensive language de-
tection and precision
of 0.44 and recall for
hate speech

[13] A dataset of approxi-
mately 16k short mes-
sages from Twitter,
that was made avail-
able by [17]

Detecting Offensive
Language

Define the three fea-
tures representing a
user’s tendency to-
wards posting Neu-
tral, Racist and Sexist
content

An ensemble of Re-
current Neural Net-
work (RNN) classi-
fiers

Precision: 93% and
Recall: 93%

[14] Public hate speech
datasets available in
[18]

Vulnerable
community
identification using
hate speech detection
on social media

Convert words to vec-
tor and n-grams

Gated Recurrent Unit
(GRU) and a variety
of RNNs

RNN-GRU: 92% Acc
GBT: 92% Acc
RNN-LSTM: 91%
Acc

[15] Hinglish dataset
HEOT and [12]

Detecting Offensive
Tweets in Hindi-
English

Removal of punctua-
tions, URLs and user
mentions; lower case;
remove stop words
and others

CNN Accuracy of 83% and
recall of 71%

[16] Offensive Language
Identi-fication Dataset
(OLID)

Predicting the Type
and Target of Offen-
sive Posts in Social
Media

Pre-processing of text SVM, bidirectional
Long Short-Term-
Memory (BiLSTM),
and CNN

SVM: 76% precision
and 78% recall
BiLSTM: 82% preci-
sion and 82% recall
CNN: 82% precision
and 82% recall

configurations. Based on related work [8], [13], [15], [16], we
have decided to divide the dataset with more messages in the
training dataset. Thus, we have allocated 60% of data to train
and 40% to test, where the choice of training and test dataset
was made at random as well and both sets contained the same
number of offensive and normal messages.

A. Data processing
A tweet contains a diversity of elements that can confuse a

text classifier, for example, user names, hashtags, URLs and
emojis. This occurs because there exists a variety of different

shapes in these texts which can be very complex to find
patterns. Grammar errors and excessive use of repeat letters
are other problems because these end up generating several
different forms of the same term or word. Thus, before the
data can be analysed by any model, it is necessary to perform
a preprocessing in the text to remove or reduce the mentioned
problems without losing the semantic meaning of the message.
It is possible to find in the literature techniques to perform
normalisation [10], [15], convert to lower case [10], [15] and
removal of stop words [10], [15] with the propose to generate

a new text with the same sense, but in a way that provides
better performance to the text classification algorithms.

1) Data Normalisation: This process consists of mapping
divergent text that belongs to the same class in a label. In
this work, we have converted all the hashtags, user names,
emojis, URLs and retweets to a tag that represents each
information. Thus, every time that a hashtag is found in the
text, it is replaced to tag < hashtag >, emojis are replaced
to < emojis > and so on [10]. Other important point in the
normalisation processing is the removal of all text punctuation.
This is a very common process and contributed for a clean text
with focus in the words [10], [15].

For an algorithm, the word ”Car” is different from ”car”. In
a tweet, the words can be written with different uses of upper
case and lower case, the words can also be written completely
in lower case or completely in upper case or even contain
upper and lower case occurrences simultaneously. For reducing
this divergence, we have converted all text to lower case.

In a text, words such as articles, pronouns, connectors, etc
are considered irrelevant to the process of classification [20].
This type of text appears frequently and so can hamper the
training process. Thus, these words are known as stop words.
A common method in a preprocessing of text stands is to
remove all stop words to create a clean text with just what is
relevant. For this work, we have created a list of words that
are considered stop words, and we have removed all the words
in a tweet that were present in the list.

Two forms of preprocessing were used, the first, considering
the tags in a process of data normalisation which we called
’Data Type A’. The second form which removed all the
hashtags, emojis, URLs, Retweets, User names and stop words
leaving a very clean text, which we called ’Data Type B’. All
forms will be used in each proposed technique. And in the
next section, we will present the techniques and methods that
were used in our experiments.

IV. METHODOLOGY

After a review of the literature, we have found many tech-
niques to detect and classify offensive language. Deep learning
and neural networks have been used for this purpose and
each paper presented different results regarding performance.
The SVM-based solution has not appeared, nevertheless, the
authors of the used dataset obtained good results [12], [16].
The Naive Bayes classifier was also not mentioned in the
recent literature, but it has presented good results with similar
problems [21]. These classifiers are easy to implement and
have a low computational cost, mainly the Naive Bayes. Based
on that, these classifiers can present a cheaper, faster and better
alternative to use in automatic language classification and as
alternative to Neural Network and Deep Learning models. Due
to this, we have decided to implement these techniques and
evaluate their results. A brief description of these techniques
will be presented in Sections IV-A and IV-B.

A. Naive Bayes Classifier
In this classifier, a table of words occurrences, also named

bag of words, is created in the training process. This table

contains words and a number of occurrences for this word
in each class. Another information expressed in the table is
the total of words for each class and the total words on the
training set. The stop words are not considered [21].

After the training step, the mentioned table is ready to
be used by the classifier. For this, the classifier receives a
preprocessing twitter and a list of words is created, thus, for
each class is calculated a score for this message that informs
how pertinent this message is for this class. The class that
obtained the biggest score is returned by the classifier. The
score is calculated by the following equation: score(yi,W) =

log
yt
i

t +
∑n

i=1 log
w

yi
i +mp

yt
i+m

, where, yi is the ith class represents
in the model, W is a set of words, yti is a total of words
classified as yi class in the training data, t is the total of
words in the training data, wy

i is the amount of times that the
ith word in the W set is classified as yi class in the training
data, and m and p are parameters: p = 0.5 and m = 1

The formula score(yi,W) measures the score of a tweet W
to the class yi, and thus, W is a set of words resulting from the
tweet prior processing and yi is one of the classes (relevant or
irrelevant). In this formula, for each word in W is calculated
a value that represents the significance of this word in class
yi through on the parameters p and m. The value of all words
is summed and the result is added with the logarithm of the
total of words tagged as the class yi divided by the total of
words. The classifier calculates the score of W to all classes
and the class with a better score is returned by the classifier.

B. Support Vector Machine

The objective of this classifier is to find a hyper-plane in
a space with n dimensions, where n is a number of features
that distinctly classifies the data points. In the training process,
the principal goal is to find limitation points that can separate
objects of distinct classes. In order to maximise the margin of
the classifier, support vectors are used. These are data points
that are closer to the hyper-plane and influence the orientation
of the hyper-plane [22].

The first step to run the SVM is to prepare the data by
transforming each message in a numerical feature vector. A
common technique in the literature is to use TF-IDF (Term
Frequency - Inverse Document Frequency) [23]. These metrics
inform how interesting a word is for a type of document.
However, in our experiments, we noticed a better result using
the technique ’bag of words’, also used for the Naive Bayes
classifier and described in Section IV-A. After a construction
of table with examples of offensive and normal texts, each
phase is associate with a score for a offensive message and
other score to normal language, thus, each phase receive two
features demarcating how much belongs to the set of offensive
language and the set of normal language respectively.

With the data, a default gradient for each class is generated
and in the process of the train they are updated for each wrong
classification or correct classification by the equations: ω =
ω − α · (2λω) when a correct classification is realised and
ω = ω+α · (yi · xi − 2λω) when an incorrect classification is
realised.

The ω is a gradient, α is the learning rate and λ is
a regularisation parameter defined as 1/epochs. After the
training process, the product is to have the weights w1 and
w2 and these are used in the classification process. For this
step, the same process of converting text into two numeric
features is executed. By applying the weights in the values
the next step, we can verify if the result is great than one (1),
so the text is classified as offensive, otherwise, it is normal.

V. RESULTS

In this section, we will present the results of our experi-
ments. The two algorithms (Linear Support Vector Machine
and Naive Bayes) presented previously were fully imple-
mented by the authors. For each algorithm, we tested the two
configurations of data describes in section III-A: Data Type A
and Data Type B.

For the Data Type A, the Naive Bayes achieved a gain
of performance of around 1.5% when compared with Data
Type B. For the Data Type A, the Linear SVM demonstrated
a greater difficulty in parameter setting to find satisfactory
results. We tested to change the configuration of the alpha
parameter with the values 0.1, 0.01 and 0.001 besides con-
figuring the max epochs to 100 and 500, but in all possible
combinations of theses parameters, the algorithm always clas-
sified any text as offensive. However, with the Data Type B,
it was possible to find good results configuring the parameter
values to alpha equals 0.01 and epochs equals 100.

Regarding the dataset, it was previously mentioned that the
number of examples of offensive messages is greater than the
number of normal messages and that to create the dataset,
we have selected randomly a subset of offensive messages
with the same size as the set of normal messages. For the
Linear SVM, this process was generated a unique time because
another process of randomisation is performed to define the
order of messages evaluation in the training process. However,
due to the process of classification with Naive Bayes being
simpler, we tested different seeds to the process of selecting
the set of offensive messages. In the LSVM classifier, we also
tested different seeds for randomising the evaluation order of
messages. Thus, we have tested 50 seeds ranging from 0 to
49 to each random describe process.

Table II shows the results to tests using Linear SVM
Classifier. During each of 50 seeds, we have collected values
of accuracy, precision, recall, and F1-Score. Three values are
calculated to each mentioned metric based on all executions:
The best value found to all executions that can be visualised
in the second column, the average value of executions (third
column), and the standard derivation of executions (fourth
column). The seed with the best value of accuracy and
precision simultaneously is highlighted soon after.

The seed with the best result went to the seed 6 and the
results for this are 90% of accuracy, 88% of precision, 92%
of recall and an F1-score of 90%.

Table III presents the results to the tests using the Naive
Bayes classifier. Such as the Linear SVM classifier, we have
presented the best and average values of accuracy, precision,

TABLE II
RESULTS OF LINEAR SVM CLASSIFIER WITH AVERAGE (AV) AND

STANDARD DEVIATIONS (SD)

Metric Best Value AV SD
Accuracy 0.900 0.523 0.136
Precision 0.883 0.272 0.260

Recall 1.0 0.300 0.442
F1-Score 0.902 0.242 0.345

TABLE III
RESULTS OF NAIVE BAYES CLASSIFIER WITH AVERAGE (AV) AND

STANDARD DEVIATIONS (SD)

Metric Best Value AV SD
Accuracy 0.922 0.912 0.004
Precision 0.899 0.882 0.006

Recall 0.964 0.950 0.005
F1-Score 0.924 0.915 0.004

recall, and F1-Score to all executions, besides the standard
derivation. The table distribution is similar to the SVM table,
and the seed with the best result went to the 8 and the values
are 92% of accuracy, 89% of precision, 95% of recall and an
F1-score of 92%.

We also performed a statistic test (t-test) to decide if the
generated values for each algorithm have had a significant
statistical difference between them. For each metric, we would
use all the generated values by both algorithms and apply the
t-test with the one-tailed hypothesis and a significance level
of 0.05.

Based on the results, all calculated metrics have values
with significant statistical differences between the algorithms.
Therefore, it is concluded that the Naive Bayes classifier has
a better performance to detect offensive language with an
accuracy of 92% and a recall of 95% for the best dataset
configuration.

Comparing the Naive Bayes performance with the re-
searched literature, our results are better than or equal to
all works except an RNN configuration presented in [13]
that obtained 93% of precision and recall to detect offensive
language. It is interesting to note that the developed Naive
Bayes performed better than Deep Learning BERT in two
different datasets.

In the dataset OLID, the BERT performed with an accuracy
of 84% [8] and accuracy of 72% in [10]. For German language
tweets, the performance of BERT is an F1-Score of 71% [11].
In both uses of BERT, the authors also using feature ex-
tractions such as emoji substitution, lowercase, change names
token format, and others (for more details see Table I).

Our classifier also presented better results than CNN mod-
els. In [15], the dataset used was the same as the one we
used and the CNN model showed lower performance than our
with an accuracy of 83% and recall of 71%. Another model
of CNN for a different dataset (OLID) [16] presented lower
performance than Naive Bayes with a precision of 82% and a
recall of 82%. In both CNN usage, a text preprocessing with
similar to our feature extractions are mentioned.

In the RNN presented by [13], the authors used a different
dataset of ours. The dataset contains short tweets classified
as racism, sexism, and neutral while the dataset used by us
contains the neutral, offensive and hate speech classes. The
authors use features such as remove punctuation, name token
format, and tags in all tweets to express the user tendency.
This last is expressed through three features that represent the
tendency to post neutral, racist and sexist tweets. Each tweet
can contain a combination of these tags. The authors tested
many models and in the best model, the performance to detect
racist tweets stayed around 75% to precision and 66% to recall,
but on average the precision and recall were 93%. The RNN
precision is bigger than Naive Bayes precision, but the recall
is not. Although the datasets are different, they contain the
same data type (offensive language in tweets). Therefore, it
can be said that Naive Bayes is a viable alternative to RNN.

Thus, we have a simpler and cheaper implementation of
Linear SVM and Naive Bayes that obtained better results than
a related work to the same goal.

VI. CONCLUSION

In this work, we have explored the use of Linear SVM
and Naive Bayes classifiers to detect the offensive language
in tweets. During our test phase, we have noted that the Linear
SVM is very sensitive to data type used in the training process.
It was also detected that the data normalisation with tags made
it difficult for the process of parameter regulation. The tests
also showed that the evaluation order of messages strongly
influences the final result of the classifier, this is noted due
to the high standard derivation for the tests with different
seeds. This is a normal process because if big sequences of
messages with the same label are given as input, for example,
the weight regulation and the learning coefficient (alpha) make
the learning arranged by the other inputs causing an imbalance
of the weights. Thus, the Linear SVM needed a balanced input
to obtain good results. The setting of the parameters for this
algorithm proved to be a bit tricky task.

In contrast, the Naive Bayes classifier proved to be a good
text classifier. One of your positive points is its simplicity
and easiness of implementation that made this algorithm very
fast. This algorithm showed to be better of many techniques
demonstrated in the literature.

For future works, we aim to implement other text classifi-
cation algorithms and evaluate the performance in comparison
with our Linear SVM and Naive Bayes. An architecture to
real-time tweet classification can be developed with these
algorithms, mainly the Naive Bayes which obtained good
results and is very fast as well as it has the simplicity of
probabilistic-based analysis for classification. And finally, we
are already planning to explore the use of these algorithms for
classifying other types of text.

REFERENCES

[1] F. Del-Vigna, A. Cimino, F. Dell-Orletta, M. Petrocchi, and M. Tesconi,
“Hate me, hate me not: Hate speech detection on facebook,” in First
Italian Conference on Cybersecurity, 2017.

[2] J. Jacobs and K. Potter, Hate crimes: Criminal law & identity politics.
Oxford University Press on Demand, 1998.

[3] M. Bouazizi and T. Ohtsuki, “Multi-class sentiment analysis on twit-
ter: Classification performance and challenges,” Big Data Mining and
Analytics, vol. 2, no. 3, pp. 181–194, Sep. 2019.

[4] G. Jalaja and C. Kavitha, Sentiment Analysis for Text Extracted from
Twitter. Singapore: Springer Singapore, 2019, pp. 693–700.

[5] S. Sharma and A. Jain, “Cyber social media analytics and issues:
A pragmatic approach for twitter sentiment analysis,” in Advances in
Computer Communication and Computational Sciences, S. K. Bhatia,
S. Tiwari, K. K. Mishra, and M. C. Trivedi, Eds. Singapore: Springer
Singapore, 2019, pp. 473–484.

[6] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Identifying and categorizing offensive language in social
media (offenseval),” arXiv preprint arXiv:1903.08983, 2019.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[8] P. Liu, W. Li, and L. Zou, “Transfer learning for offensive language
detection using bidirectional transformers,” in Proceedings of the 13th
International Workshop on Semantic Evaluation, 2019, pp. 87–91.

[9] J. Han, S. Wu, and X. Liu, “Identifying and categorizing offensive
language in social media,” in Proceedings of the 13th International
Workshop on Semantic Evaluation, 2019, pp. 652–656.

[10] A. Nikolov and V. Radivchev, “Offensive tweet classification with bert
and ensembles,” in Proceedings of the 13th International Workshop on
Semantic Evaluation, 2019, pp. 691–695.

[11] J. Risch, A. Stoll, M. Ziegele, and R. Krestel, “hpidedis at germeval
2019: Offensive language identification using a german bert model,” in
Preliminary proceedings of the 15th Conference on Natural Language
Processing (KONVENS 2019). Erlangen, Germany: German Society for
Computational Linguistics & Language Technology, 2019, pp. 403–408.

[12] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the 11th International AAAI Conference on Weblogs and Social
Media, ser. ICWSM ’17, 2017.

[13] G. Pitsilis, H. Ramampiaro, and H. Langseth, “Detecting offensive lan-
guage in tweets using deep learning,” arXiv preprint arXiv:1801.04433,
2018.

[14] Z. Mossie and J.-H. Wang, “Vulnerable community identification using
hate speech detection on social media,” Information Processing &
Management, p. 102087, 2019.

[15] P. Mathur, R. Shah, R. Sawhney, and D. Mahata, “Detecting offensive
tweets in hindi-english code-switched language,” in Proceedings of
the Sixth International Workshop on Natural Language Processing for
Social Media, 2018, pp. 18–26.

[16] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Predicting the type and target of offensive posts in social
media,” arXiv preprint arXiv:1902.09666, 2019.

[17] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive
features for hate speech detection on twitter,” in Proceedings of the
NAACL student research workshop, 2016, pp. 88–93.

[18] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on twitter:
A pragmatic approach to collect hateful and offensive expressions and
perform hate speech detection,” IEEE Access, vol. 6, pp. 13 825–13 835,
2018.

[19] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced
datasets: A review,” GESTS International Transactions on Computer
Science and Engineering, vol. 30, no. 1, pp. 25–36, 2006.

[20] J. Wilbur and K. Sirotkin, “The automatic identification of stop words,”
Journal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[21] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001
workshop on empirical methods in artificial intelligence, vol. 3, no. 22,
2001, pp. 41–46.

[22] Y.-W. Chang and C.-J. Lin, “Feature ranking using linear svm,” in
Causation and Prediction Challenge, 2008, pp. 53–64.

[23] G. Forman, “Bns feature scaling: an improved representation over tf-idf
for svm text classification,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 2008, pp. 263–270.

