
Randomizing the Self-Adjusting Memory for
Enhanced Handling of Concept Drift

Viktor Losing∗, Barbara Hammer†, Heiko Wersing∗ and Albert Bifet‡
∗HONDA Research Institute Europe, Carl-Legien-Str. 30, 63073 Offenbach am Main

†Bielefeld University, Universitätsstr. 25, 33615 Bielefeld
‡LTCI, Telecom ParisTech, Universite Paris-Saclay

Abstract—Real-time learning from data streams in non-
stationary environments gains ever more relevance due to the
exponentially increasing amounts of generated data. Recently,
the Self-Adjusting Memory (SAM) was proposed, an algorithm
able to robustly handle heterogeneous types on the basis of
two dedicated memories for the current and former concepts
that continuously preserve consistency with explicit filtering. Yet,
since the algorithm is restricted to one memory architecture,
the variety of possible alternatives is limited by design in favor
of an overall model consistency. Moreover, it does not actively
detect drift, thus adapting with a relatively high delay in case of
abrupt changes. We propose a dynamic ensemble on the basis
of the SAM algorithm, which is triggered by both, the inherent
passive adaptation of SAM and active drift detection. Further,
since SAM is based on the stable k-Nearest-Neighbor algorithm,
we investigate multiple approaches to obtain a high diversity
in the ensemble, resulting in an effective overall strategy. The
increased computational demand is countered on the basis of a
parallel implementation. We extensively evaluate the method on
numerous benchmarks, where it consistently achieves superior
results in comparison to state-of-the-art methods.

Index Terms—concept drift, incremental learning, ensembles,
data streams

I. INTRODUCTION

An ever growing field of real-world applications generates
data in streaming fashion at increasing rate, requiring large-
scale and real-time processing. Streaming data is prevalent
in domains such as health monitoring, traffic management,
financial transactions, social networks [1] and is the foundation
of the Internet of Things [2] technology. At the same time,
a stronger focus on personalized services and products [3]
requires the adaptation to single user behavior, habits and
environments which naturally change over time. As these
developments are inevitable merging, the demand for robust
learning algorithms in the particularly challenging domain
of data stream learning in non-stationary environments is
increasing. Here, algorithms are facing a wide variety of
possible patterns and scales of drift under strict limitations
in terms of processing time and memory consumption.
Currently, many drift-learners are designed to handle certain
types of change such as abrupt, incremental or reoccurring
one, but often fail for others.
In real-world applications, unpredictable changes of different
types are even concurrently occurring at various rates. Losing
et al. proposed the Self-Adjusting Memory (SAM) in [4],
an algorithm able to robustly handle heterogeneous types of

concept drift without the requirement of prior assumptions
about the task at hand. It creates dedicated k Nearest-Neighbor
(kNN) [5] models for the current and former concepts and
ensures consistency by a cleaning operation. However, the
focus on consistency within one single architecture prevents
SAM to store diverse, possibly partially contradicting concepts
which can occur over time. Moreover, SAM solely adapts
locally, whereas a global model adaptation can be particularly
effective in case of abrupt drift.
Machine learning algorithms based on Bootstrap Aggregating
(Bagging) such as the popular Random Forests [6] are one of
the most powerful state-of-the-art learning methods [7], [8],
and they are often used for learning under drift as well [9],
[10]. By aggregating weak learners, ensembles can drastically
improve on their single performance. In the field of non-
stationary stream learning, ensembles offer an efficient way to
handle concept drift because of their flexibility to selectively
add and remove learners.
In this paper, we propose the SAM Ensemble (SAM-E)
algorithm and combine the advantages of Bagging-ensembles
with the SAM algorithm to boost the performance further.
Thereby, the novel contributions of our work are as follows:

(i) Bagging requires a diverse ensemble, i.e. unstable base
learners [11]. We investigate different ways to randomize SAM
as it is based on the stable kNN algorithm.

(ii) An ensemble of SAMs deals with concept drift implic-
itly by means of the local adaptation of its base models. We
also integrate a global adaptation by utilizing a drift detection
to trigger the replacement of unsuitable base learners. This
addition does not only increase the adaptation speed of the
overall model, but also selectively preserves learners with a
suitable parameterization.

(iii) We provide an open-source parallel implementation to
facilitate the comparison for other researchers 1.

(iv) An extensive evaluation on artificial and real-world
benchmarks is performed, covering various types and rates
of concept drift. All benchmarks are publicly available, pro-
viding transparent and easily reproducible results. First, we
analyze the effects of each proposed algorithmic building
block. Subsequently, we compare our approach with state-of-
the-art methods.

1The source code is available at https://github.com/vlosing/SAM-E.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. FRAMEWORK

Our focus is on data stream classification under supervised
learning, i.e., given a feature vector x ∈ Rn, predict the
target variable y ∈ {1, . . . , c}. Data-stream learning is of-
ten evaluated in the following setting: a potentially infinite
sequence S = (s1, s2, . . . , st . . .) of tuples si = (xi, yi)
arrives one after another. As t represents the current time
stamp, the learning objective is to predict the corresponding
label yt for a given input xt by the previously learned
model ht−1, resulting in ŷt = ht−1(xt). Afterward, the true
label is revealed and a loss determined. A new model ht
is generated on the basis of the current tuple st and the
previous model ht−1, before proceeding with the next sample:
ht = train(ht−1, st). The interleaved test-train error (up to
time t) is given by E(S) = 1

t

∑t
i=1 1(hi−1(xi) 6= yi). Hence,

algorithms face the challenges of anytime model adaption, one
pass learning, and restrictions due to a fixed ordering of the
samples, often violating the assumption of independent and
identically distributed data.

A. Concept Drift

Concept drift [12] occurs when the distribution Pt(x, y)
changes for at least two time steps t0 and t1:

∃x : Pt0(x, y) 6= Pt1(x, y),

The joint distribution can also be written as Pt(x, y) =
Pt(x)Pt(y|x), where Pt(x) is the distribution of the features
and Pt(y|x) the posterior probability of the classes. The term
real drift specifies that the relation between observation and
targets Pt(y|x) changes over time. Virtual drift, also named
covariate shift, refers to a change of the feature distribution
Pt(x) that does not affect the posterior of the classes. The
pattern in which drift is taking place is often categorized either
as abrupt, resulting in a severe shift within the distribution,
e.g. caused by a malfunctioning sensor, or incremental, an
evolving change over time, e.g. evoked by a slowly degrading
sensor. Repeating patterns of change are termed as reoccurring
concept drift.

III. RELATED WORK

Many approaches for stream learning with concept drift are
either continuously growing incremental models [13]–[15] or
utilize a sliding window to store a predefined number of recent
examples [4], [16]. Algorithms of the first category often rely
on incremental decision trees such as the Very Fast Decision
Tree (VFDT) [17]. On the other hand, sliding windows are
usually combined with instance-based learners such as kNN
allowing to remove single examples in a straight-forward way.
A common technique to handle concept drift is to utilize a
drift detection mechanism, which explicitly determines the
time of change: ADaptive sliding WINdowing (ADWIN) [18]
efficiently monitors the binary error history in a window start-
ing from the last detected change. The window is repeatedly
partitioned into two sub-windows of various size. Whenever
the difference of their average error exceeds a threshold,
depending on the size of the sub-windows and a confidence

parameter, a change is detected and the older window dropped.
Sliding window approaches often dynamically adapt the win-
dow size on basis of a drift detection. One example is the
Probabilistic Adaptive Windowing (PAW) [19] which relies on
the kNN classifier and ADWIN as drift detector. Furthermore,
examples are randomly removed from the window to obtain
a mix of recent and older instances. Incremental models that
do not explicitly store examples typically reset their model
as soon as a drift is detected. As such an approach erases
all collected information until the detected time, the methods
often rely on ensemble techniques to selectively reset only
a few members, which preserves at least some information.
Moreover, ensemble methods rank among the most powerful
learning approaches [7]. Most ensembles are based on the
online adaptation of Bagging proposed in [20]. Bifet et al.
propose Leveraging Bagging (LVGB) [13], which utilizes
higher instance weights to mitigate the slow learning of the
VFDT. ADWIN is used as change detector for every tree,
leading to the replacement of the worst classifier in case of
drift. Gomes et al. proposed the Adaptive Random Forest
(ARF) in [14], an ensemble of VFDTs, which uses ADWIN as
change detector for every tree, leading to the replacement of
the classifier in case of detected drift. Furthermore, it detects
drift by means of two different sensitivity levels.
Methods which solely rely on drift detection are able to react
quickly to abrupt drift, however, they struggle with incremental
change, which may be not significant enough and remains
undetected. Another weakness is that knowledge either slowly
fades out of the model or is explicitly discarded. In cases where
older data carries crucial information, such methods have to
relearn these concepts from scratch.
The SAM algorithm realizes the idea of combining stable
and reactive learners [21], [22] in a novel way leading to a
robust handling of incremental and abrupt drift. Moreover, it
explicitly preserves past information that is consistent with
the present concept and, therefore, is able to handle reoc-
curring drift as well. Yet, due to a fixed data representation
and smoothness of the underlying kNN model its intrinsic
variability is limited. In particular, its definition of consistency
strongly depends on the k parameter and controls the propor-
tion of removed examples. In the following, we address this
issue by proposing how to extend SAM to an ensemble which
can naturally integrate different data representations (as given
by different feature subsets) and smoothness of the classifier,
as well as an active drift detection, to increase the adaptation
speed of the overall method. Learning under concept drift was
also considered in combination for imbalanced class distribu-
tions [23]–[25]. In our contribution, we do not explicitly tackle
this challenge, however, various benchmarks that are evaluated
in the experiments have skewed class distributions, providing
a glimpse in the capabilities of the methods regarding this
particular problem.

IV. PROPOSED ALGORITHM

Before we describe the novel algorithm SAM-E, we briefly
summarize the SAM algorithm, a complete and formal de-

scription is given in [4].

A. Self-Adjusting Memory (SAM)

SAM combines dedicated models for the current concept
Pt(x, y) and all former ones Pt−1(x, y), . . . , P1(x, y) in such
a way that the prediction accuracy is maximized. Two different
memories are constructed: The Short-Term Memory (STM)
summarizes data of the current concept and the Long-Term
Memory (LTM) maintains knowledge of past concepts. Mem-
ories are represented by sets MST, MLT, MC := MST ∪MLT.
Each memory is a subset in Rn×{1, . . . , c} of varying length,
inducing a distance-weighted kNN classifier kNN : Rn 7→
{1, . . . , c}, referred to as kNNMST , kNNMLT , kNNMC , where
usually the Euclidean distance is used.

The prediction of SAM relies on the sub-model with the
highest weight (wST, wLT, wC) and is defined for a given point
x as:

SAM : x 7→

kNNMST(x) if wST ≥ max(wLT, wC)

kNNMLT(x) if wLT ≥ max(wST, wC)

kNNMC(x) if wC ≥ max(wST, wLT).

(1)

This model is incrementally adapted for every time t. Thereby,
the adapted parameters are the size of the STM, the samples
of the LTM, and the weights of the memories.

STM: The STM represents the current concept in a sliding
window, which contains the most recent m examples. The
length m is adapted by (i) adding the most recent example,
and (ii) decreasing the length such that the resulting interleaved
test-train error is minimized.

LTM: The LTM preserves all information which is not
contained in the STM but may still be valuable in particular
for reoccuring drift. Starting from the empty set, the samples
points are obtained by two procedures: (i) Cleaning and
transfer: Whenever the STM is reduced in size, information
contradicting the current concept is filtered and the remaining
information is transferred to the LTM. Filtering removes
instances that are spatially close to those in the STM but
have different labels. (ii) Compression: As soon as the size
limit of the LTM is reached, information is condensed to a
sparse knowledge representation via clustering, enabling the
conservation of information for a long time period.

Weights: The weights wST, wLT, wC are representing the
accuracy of the corresponding model on the recent data, where
”recent“ is defined by the size of the STM.

B. Self-Adjusting Memory Ensemble (SAM-E)

We describe the novel algorithm by breaking down all
modifications that lead from a simple Bagging ensemble of
SAM to the final algorithm SAM-E, that includes various
randomization techniques and an active drift detection.
Typically, the success of Bagging mainly depends on accurate
and diverse learners hi, which are trained on bootstrap samples
of the data, and averaged with a weighting according to its ac-
curacy. Following the approach as introduced in [11], Bagging
SAM refers to N independently trained SAM models SAMi,
i = 1 . . . N , which are trained separately with bootstrap

samples chosen from the original training data. Every model
is assigned a weight via wi := max(wiST, w

i
LT, w

i
C). Then the

overall prediction function is given as the average

ŷt = argmax
ĉ ∈{1,...,c}

N∑
i=1

wi · 1(SAMi(xt) = ĉ), (2)

where SAMi is the prediction function of the ith submodel.
1) Online Bagging SAM – SAM-ENone: We use the online

bagging approach as proposed in [20]. Concretely, a Poisson
distribution is used as limit distribution of the multinomial
distribution of Bagging, to determine the weight of each
instance for each learner. In other words, at time step t, the
ith learner, hit, is adapted to the training sample (xt, yt) which
is weighted with p, where p is distributed according to a
Poisson distribution with parameter λ. In particular, the sample
is dropped if p = 0. For kNN, we include the data point
(xt, yt) whenever p > 0.
On average, 67% of the data are used by every learner if λ
is set to 1. LVGB and ARF choose λ = 6, i.e. each learner
uses 97% of the data. Even though this should lead to a lower
diversity because all learners see more similar traning sets, it
mitigates the slow learning speed of the VFDT, and outweighs
any disadvantage. We also use λ = 6. In our setting, however,
we do not use it to improve the learning speed of kNN,
since instance-based models have naturally a high learning
speed. Instead we target a high adaption speed to drift. In
our method, the learners mostly handle drift themselves and
a low λ leads to slower adaptation, since each of them has
effectively less samples to react. An insightful analysis of the
impact of diversity based on variations of λ is given in [26]. In
contrast to the unstable decision tree algorithm, where Bagging
alone creates enough diversity, kNN (and therefore SAM) is
a stable method where additional diversity has to be induced.
Hence, we propose further modifications that are essential for
a performance gain as we will see in the experiments.

2) Varying the smoothness of kNN – SAM-Ek: The perfor-
mance of kNN depends on the selected hyperparameter k [27]
as it defines the smoothness of the classification prescription.
For SAM, k plays an additional role: data in the LTM is kept
consistent to the STM. Thereby, the consistency is established
within an area of the feature space whose size depends on the
neighborhood size k. Hence, large values k have the conse-
quence that more data are checked for consistency leading to
less preserved data in the LTM as compared to a smaller k
value. We propose to increase diversity of the models SAMi

by initializing every new learner SAM i with a randomized
parameters k which is drawn as natural number from a uniform
discrete distribution, k ∼ U(a, b).

3) Varying the data representation – SAM-Ek,f: Another
crucial role plays the applied metric. Dedicated metric learning
schemes typically yield a significant computational burden
[28]. Therefore, we rely on the simpler Random Subspace
Method as introduced in [29]. Features are randomly selected
to represent the data. Formally, a dimensionality n̂ = dβ · ne
with β ≤ 1 is fixed. Then, n̂ coefficients (i1, . . . , in̂) are

Algorithm 1 The SAM-E algorithm
Inputs:
S : data stream
N : ensemble size
a, b : bounds for randomization of k
β : relative size of the randomized subspace
r : proportion of replaced learners in case of detect drift
δ : drift detection sensitivity threshold
STMmax, LTMmax : maximum bounds for the STM and LTM of
SAM

Initialize:
C ← CreateSAMs(a, b, β, STMmax, LTMmax, N)
W ← {1/N, . . . , 1/N}

while S.hasNext() do
(x, y)← S.next()
ŷ ← weightedPrediction(x,C,W) (Equation 2)
if driftDetected(δ, ŷ, y) then
C ← replaceWorstClassifiers(C,W, r)

W ← updateWeights(C, y)
for all i ∈ {1, . . . , N} do
p←Poisson(λ = 6)
if p > 0 then
Ci.train(x, y)

sampled with replacement from {1, . . . , n}. Data are repre-
sented based on these coefficients only, i.e. input data have
the form x̂ = (xi1 , . . . , xin) where x comes from the data
stream . . . (xt, yt) . . .
By varying the subspace, the data representation changes
significantly, since some coefficients are no longer regarded
as relevant while others (if included as coefficients more
than once) are emphasized. This variation also affects the
consistency check of SAM because different examples are
dubbed consistent, enabling the storage of different types of
concepts.

4) Adding active drift detection – SAM-Ek,f,d: Even though
each sub model is able to handle drift by its own, adaptation
to abrupt drift faces some delay, and models cannot account
for possibly changed representations or a varying noise level.
We tackle these issues by adding an explicit drift detection
mechanism on top of the ensemble. As soon as drift is
detected on the performance of the ensemble, we replace the
classifier with the highest STM classification error with a new
one that starts learning from scratch and has a randomized
configuration with respect to the model parameters k and n̂.
This has two benefits. First, it mitigates the inert adaptation
to concept drift, a natural consequence of model aggregation.
Second, it creates a competition within the ensemble where
only members with a suitable parameterization for the current
situation are lasting. This process is a form of adaptive
hyperparameter selection.
In our experiments, we use ADWIN [18] as a proven drift
detector. However, other drift detectors such as the Page
Hinkley test [30] could be used as well. Each time a drift
is detected we replace drNe learners, where 0 < r < 1 is a
hyperparameter controlling the number of replacements. The
pseudo code of the method is given in Algorithm 1.

V. EXPERIMENTS

For a comparison of different configurations of SAM-E, we
vary the degree of randomization to investigate its effects on
the classification performance and diversity. Afterward, we

TABLE I
CHARACTERISTICS OF THE CONSIDERED DATA SETS. ART=ARTIFICIAL,

RW=REAL-WORLD, A=ABRUPT, I=INCREMENTAL, R=REAL,
V=VIRTUAL. AS SUGGESTED IN [13], WE SORT THE INSTANCES OF THE

Poker DATASET BY RANK AND SUIT TO GENERATE VIRTUAL DRIFT.

Data set #Samples #Feat. #Class Type Drift type

SEA Concepts 50K 3 2 ART A-R
Rot. Hyperplane 200K 10 2 ART I-R
Moving RBF 200K 10 5 ART I-R
Inter. RBF 200K 20 15 ART A-R
Moving Squares 200K 2 4 ART I-R
Transient Chessb. 200K 2 8 ART A-V
Random Tree 200K 200 25 ART None
LED-Drift 200K 24 10 ART A-R
Mixed Drift 600K 2 8 ART various
Poker 829.2K 10 10 ART A-V

Outdoor 4K 21 40 RW ?
Spam 9.3K 40K 2 RW ?
Weather 18.1K 8 2 RW ?
Electricity 45.3K 5 2 RW ?
Rialto 82.2K 27 10 RW ?
Airline 539.3K 7 2 RW ?
Cover Type 581K 54 7 RW ?
PAMAP 2.7M 52 18 RW ?
KDD99 4.9M 41 23 RW ?

evaluate the parallel versus the sequential implementation in
terms of run time and Ram-hours. Finally, we compare SAM-
E with state-of-the-art methods.
To test for significant differences, we rely on the approach sug-
gested in [31]. Concretely, we use the non-parametric, rank-
based Friedman test with α = 0.05. If the null hypothesis is
rejected, we proceed with the Nemenyi post-hoc test to identify
the algorithms with significant differences. All experiments
are executed within MOA. We use a cluster consisting of 24
Intel Xeon 2.60GHz cores with 32 GB RAM to perform the
experiments.

A. Datasets

We use an exhaustive set of benchmarks for evaluation.
These consist of artificial datasets with known types of drift
and real-world data where such characteristics are unknown.
Table I gives further information regarding the varying number
of dimensions, classes and instances. Due to lack of space we
omit a detailed description and refer the interested reader to
[4], [14].

B. Evaluation of variants of SAM-E

First, we analyze the effects of the suggested randomizations
as well as the top-level drift detection on the classification
performance. Table II lists all compared variants and the
corresponding error rates are given in Table III. A single
SAM classifier achieves on the datasets an average error
rate of 15.38. As it can be seen Bagging alone, which
only randomizes over the presented data points, only slightly
improves the performance with an average rate of 14.77.
This confirms that additional randomization is required for
kNN-based ensembles. In our experiments, the performance
improves with more randomized components. However, obvi-
ously the randomization of each component, such as the size
of the random subspace, can be adjusted as well. In general,

TABLE II
THE COMPARED VARIATIONS OF THE ALGORITHM WITH DIFFERENT

DEGREE OF RANDOMIZATION AS WELL AS WITH DRIFT DETECTION AND
WITHOUT.

Abbr. Randomizing K Random subspace Drift detection

SAM-ENone 7 7 7

SAM-Ek 3 7 7

SAM-Ek,f 3 3 7

SAM-Ek,f,d 3 3 3

TABLE III
INTERLEAVED TEST-TRAIN ERROR RATES OF DIFFERENT VARIATIONS OF
SAM-E WITH AN ENSEMBLE SIZE OF N = 10. THE EXPERIMENTS WERE

REPEATED 30 TIMES. THE BEST RESULTS ARE MARKED IN BOLD.

Data set SAM-ENone SAM-Ek SAM-Ek,f SAM-Ek,f,d

SEA Concepts 12.61±0.03 12.31±0.22 12.28±0.09 12.28±0.07
Rot. Hyperplane 13.12±0.00 13.49±1.06 12.41±0.21 12.49±0.71
Moving RBF 12.02±0.00 11.47±0.08 11.98±0.11 11.86±0.09
Inter. RBF 3.32±0.01 3.08±0.03 3.37±0.01 3.30±0.01
Moving Squares 2.41±0.00 3.12±0.58 2.47±0.97 2.47±0.25
Transient Chessb. 10.92±0.01 10.5±0.26 10.08±0.14 10.30±0.09
Random Tree 35.36±0.01 34.47±0.05 32.72±1.19 32.72±0.77
LED-Drift 43.22±0.05 43.46±1.63 37.52±2.81 35.48±2.61
Mixed Drift 11.98±0.01 11.58±0.03 11.6±0.15 11.58±0.02
Poker 15.82±0.00 12.59±0.34 15.03±4.14 8.79±0.44

Artificial ∅ 16.11 15.94 14.94 14.13
Outdoor 11.02±0.08 8.48±0.32 8.98±0.26 9.25±0.29
Weather 21.91±0.04 21.6±0.07 21.81±0.08 21.41±0.16
Electricity 17.41±0.02 15.36±0.25 16.66±0.23 16.36±0.19
Rialto 18.06±0.01 15.65±0.22 16.64±0.36 15.80±0.16
Airline 39.12±0.03 38.88±0.13 37.53±0.73 35.51±0.16
Cover Type 5.66±0.01 3.78±0.40 8.1±0.24 4.69±0.36
PAMAP 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00
SPAM 6.67±0.09 5.37±0.24 5.38±0.31 5.61±0.23
KDD99 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00

Real world ∅ 13.57 12.17 13.02 12.07
Overall ∅ 14.77 13.96 13.93 13.15
Overall ∅ rank 3.47 2.13 2.45 1.95

Nemenyi significance: {SAM-Ek, SAM-Ek,f,d} � SAM-ENone

the trade-off between the degree of randomization and the
performance of the overall classifier mainly depends on the
size of the ensemble, where large ensembles are able to exploit
a higher degree of randomness, as well as the specific dataset.
Most of the dimensions (17 out of 24) of LED-Drift are
random noise. The comparably low error rate of SAM-E vari-
ants incorporating random subspaces for this dataset suggests
that random projection mitigates the susceptibility to noisy
dimensions, one major weakness of kNN models. The compar-
ison of SAM-Ek,f,d and SAM-Ek,f allows the evaluation of the
drift detection on top of the ensemble. Active drift detection
turns out nearly always beneficial. One reason is the increased
variability of the algorithm in case of drift, enabling a faster
adaptation to the current concept. The versions SAM-Ek,f,d and
SAM-Ek deliver results that are significantly better than simple
Bagging (SAM-ENone).
Figure 1 depicts on the left the temporal course of the error rate
for some data sets. Interestingly, in the most cases, the advan-
tage of SAM-Ek,f,d compared to the other variations increases

0 50000 100000 150000 200000
#Samples

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
rr

or
ra

te

LED-Drift

SAM-Ek

SAM-Ek,f

SAM-ENone

SAM-Ek,f,d

0.2 0.4 0.6 0.8
Pairwise kappa statistic

0.45

0.50

0.55

0.60

0.65

E
rr

or
ra

te

LED-Drift

SAM-Ek

SAM-Ek,f

SAM-ENone

SAM-Ek,f,d

0 200000 400000 600000 800000
#Samples

0.08

0.10

0.12

0.14

0.16

0.18

E
rr

or
ra

te

Poker

0.5 0.6 0.7 0.8 0.9
Pairwise kappa statistic

0.10

0.15

0.20

0.25

0.30

E
rr

or
ra

te

Poker

Fig. 1. The temporal course of the error rate as well as corresponding kappa-
error diagrams. High diversity (low kappa statistic) coupled with a low error
rate result in the best classification performance.

over time. Corresponding kappa-error diagrams [32] are shown
on the right of Figure 1. These diagrams are commonly used to
inspect the diversity of ensembles. The pairwise kappa-statistic
is plotted against the average classification performance of
both learners. Highly diverse learners (low pairwise kappa-
statistic) with a low error rate lead to the best classification
performance of the ensemble. Most of the time SAM-Ek,f,d
is able to achieve the best compromise. The relatively high
kappa-statistics of SAM-ENone attest a low diversity, which
limits the leeway to reduce the error rate beyond those of the
single classifiers. It clearly shows that Bagging alone is not
enough to create diversity among kNN based classifiers. One
example is the LED-Drift data set where its single learners
have the lowest error rate, but the classification error of the
ensemble is comparatively high.
The replacement of the worst learners, triggered by the drift-
detection, decreases the error further which is especially
pronounced in the task Poker. Due to the overall superiority
of SAM-Ek,f,d, further experiments are solely based on it and
we refer to this variant as SAM-E in the following.

1) Speedup of the parallel implementation: As Bagging
yields completely independent learners, we provide a parallel
implementation to speed-up the method. We measure the used
resources by the sequential and parallel implementation in
terms of average run-time and RAM-hours for all data sets.
One RAM-hour equals one GB of RAM deployed for one
hour. We provide results for different ensemble sizes. The
interleaved test-train processing enforces the aggregation after
each example and especially a completed training of the
previous instance. Therefore, threads are very short and create
a large overhead. However, this scheme is only necessary for
the evaluation. In real-world application, it is often tolerable
to buffer instances to small chunks and process them at once,
leading to a reduced overhead. We also consider such a scheme

10 20 50 100
Ensemble size

0

20000

40000

60000

A
vg

.
C

P
U

ti
m

e
(s

)

40
53

.6
4

81
68

.3
9 20

76
5.

95

42
65

0.
52

19
13

.4
2

37
09

.8
6

75
12

.7
8

13
66

8.
69

17
00

.8
9

20
81

.0
5

34
06

.3
8

66
21

.3
1

CPU-Time

sequential

parallel

parallel-buffered

10 20 50 100
Ensemble size

0

5

10

15

20

25

A
vg

.
R

A
M

-H
ou

rs
(G

B
-H

ou
rs

)

0.
22 0.
87

5.
42

21
.7

0

0.
20 0.
76

3.
81

13
.8

5

0.
18

0.
43 1.

74

6.
63

RAM-Hours

Fig. 2. Comparison of the parallel and sequential implementation in terms of
average run-time and RAM-hours. Relaxing the test-train scheme to buffering
100 instances clearly increases the gain further.

and buffer chunks of 100 instances. Figure 2 depicts the
results. The parallel implementation halves the run-time for an
ensemble size of 10 and achieves a speedup of 3 for the largest
tested ensembles with N = 100. The buffering mechanism is
effective and doubles the gained speed-up. It can be seen that
the processing time is significantly increased with additional
classifiers. Hence, the parallel implementation is only partially
able to counteract the increased computational demands of the
ensemble.

C. Comparison with state-of-the-art methods

We compare SAM-E to other ensemble methods specialized
for data stream learning with concept drift and also include
single classifiers such as SAM itself and VFDT. Table IV
lists all algorithms as well as relevant hyperparameter settings.
The SAM algorithm as well as each classifier in SAM-E were
allowed to store 1000 samples but never more than 10% of
the whole data set.
Learning under concept drift requires the highest degree
of robustness. The temporal dependency of the data for-
bids a straight-forward optimization of the algorithmic meta-
parameters on a separate validation set. Optimizing those in
hindsight on the whole data would lead to overfitting and has
very limited practical relevance. Hence, it is common practice
to evaluate the methods out-of-the-box in their default configu-
ration, chosen by the original author, without dataset-specific
adaptation. We performed the experiments according to this
practice. SAM-E default configuration for all experiments is
as follows:
• k is uniformly drawn from the range [1, . . . , 7].
• The random subspace of each learner X̂ ∈ Rd̂ is set to

use 70% of the original number of features, i.e. d̂ = 0.7·d.
• Each time ADWIN fires, 10% (r = 0.1) of the worst

performing learners are replaced, where the ensemble size
is 10 or 100, respectively.

These parameters were set on basis of preliminary experiments
on the artificial datasets 4CRE-V1, FG-2C-2D published in
[33].

1) Classification performance: The error rates are listed in
Table V. SAM-E achieves the best classification performance
on average. The fact that the single SAM algorithm delivers
the second best results highlights its effectiveness for concept

TABLE IV
THE COMPARED ALGORITHMS AND THEIR HYPERPARAMETER.

ENSEMBLES WERE EVALUATED WITH 10 AND 100 MEMBERS. WE USED A
WINDOW OF 1000 SAMPLES AND k WAS SET TO 5 FOR KNN-BASED

METHODS. IN CASE OF SLIDING WINDOW APPROACHES, THE MAXIMUM
WINDOW SIZE SHOULD BE SET AS HIGH AS IT IS ACCEPTABLE IN REGARD

TO MEMORY AND PROCESSING-TIME DEMANDS. WE DISCUSS THE
EFFECTS OF DIFFERENT WINDOW-SIZE PARAMETERS EXTENSIVELY IN [4].

Abbr. Classifier Parameter

VFDT Hoeffding Tree (VFDT) -
SAM Self-Adjusting Memory with kNN w = 1000

LVGB Leveraging Bagging with VFDT n = {10, 100}
ARF Adaptive Random Forest with VFDT n = {10, 100}

SAM-E Self-Adjusting Memory Ensemble n = {10, 100}
w = 1000

TABLE V
INTERLEAVED TEST-TRAIN ERROR RATES ACHIEVED BY SINGLE

CLASSIFIERS AND ENSEMBLE MODELS. ENSEMBLES CONSISTED OF
N = 10 MEMBERS. WE REPEATED THE EXPERIMENTS 30 TIMES FOR

NON-DETERMINISTIC APPROACHES.

Data set VFDT SAM ARF LVGB SAM-E

SEA Concepts 15.16 13.22 11.68±0.06 11.68±0.07 12.28±0.07
Rot. Hyperplane 15.02 15.22 17.35±0.15 12.73±0.02 12.49±0.71
Moving RBF 66.27 12.10 34.02±0.17 45.62±0.15 11.86±0.09
Inter. RBF 74.71 3.27 2.68±0.04 10.08±0.94 3.30±0.01
Moving Squares 66.73 2.64 36.84±1.49 11.74±0.03 2.47±0.25
Transient Chessb. 45.24 11.26 26.30±0.17 14.69±6.22 10.30±0.09
Random Tree 10.36 37.05 8.71±1.49 3.93±0.09 32.72±0.77
LED-Drift 26.30 45.99 27.39±0.33 26.13±0.02 35.48±2.61
Mixed Drift 55.42 12.27 19.87±0.06 25.97±0.10 11.58±0.02
Poker 25.88 16.86 19.23±0.17 17.93±0.40 8.79±0.44

Artificial ∅ 40.11 16.99 20.41 18.05 14.13
Outdoor 42.68 11.58 29.70±2.03 39.28±0.25 9.25±0.29
Weather 26.49 22.31 21.87±0.46 22.18±0.08 21.41±0.16
Electricity 29.00 17.58 21.13±0.50 17.58±0.18 16.36±0.19
Rialto 76.19 18.27 24.08±0.10 40.46±0.07 15.80±0.16
Airline 34.94 39.84 34.20±0.11 36.89±0.02 35.51±0.16
Cover Type 21.85 5.76 8.33±0.03 8.54±0.06 4.69±0.36
PAMAP 1.22 0.02 0.03±0.00 0.11±0.01 0.02±0.00
SPAM 19.09 7.00 8.18±0.42 7.35±0.31 5.61±0.23
KDD99 0.10 0.01 0.03±0.00 0.03±0.00 0.01±0.00

Real world ∅ 27.95 13.60 16.39 19.16 12.07
Overall ∅ 34.35 15.38 18.51 18.57 13.15
Overall ∅ rank 4.47 2.76 3.00 3.08 1.68

Nemenyi significance: SAM-E � VFDT

drift. SAM-E outperforms the single SAM algorithm in case
of the datasets Random Tree, LED-Drift, Outdoor, and Poker
quite distinctly. The two comparably poor performances of
SAM-E in the tasks Random Tree and LED-Drift are due to
the susceptibility of kNN based approaches in regard to noisy
dimensions. However, the random subspaces enable SAM-E
to mitigate the problem in comparison to the single SAM
algorithm.
Both tree ensembles ARF and LVGB deliver clearly worse
results, mostly due to their comparably slow learning speed
(Outdoor) or limited adaptation ability in case of fast in-
cremental drift (Moving Squares). Furthermore, they struggle
with reoccurring drift as shown by the results for Transient
Chessboard and Rialto. They are dominating at the Random

Tree task, which is designed for tree-based methods, as the
task is to learn a tree-based model.
Figure 3 depicts the temporal course of the classification
performance for some data set as well as corresponding
kappa-error diagrams. SAM-E is able to outperform the other

0 1000 2000 3000 4000
#Samples

0.0

0.2

0.4

0.6

0.8

E
rr

or
ra

te

Outdoor

SAM

SAM-Ek,f,d

ARF

LVGB

0.6 0.7 0.8 0.9
Pairwise kappa statistic

0.2

0.4

0.6

E
rr

or
ra

te

Outdoor

SAM-Ek,f,d

ARF

LVGB

0 200000 400000
#Samples

0.30

0.35

0.40

0.45

E
rr

or
ra

te

Airline

0.30 0.35 0.40 0.45 0.50
Pairwise kappa statistic

0.38

0.39

0.40

E
rr

or
ra

te

Airline

0 200000 400000 600000 800000
#Samples

0.10

0.15

0.20

0.25

E
rr

or
ra

te

Poker

0.4 0.6 0.8
Pairwise kappa statistic

0.10

0.15

0.20

0.25

0.30

E
rr

or
ra

te

Poker

Fig. 3. The temporal error rate (on the left) as well as corresponding kappa-
error diagrams (on the right). For the sake of clarity, only the four best methods
are depicted.

methods due to the higher accuracy of its base classifiers. Its
diversity is comparable to those of the tree ensembles, creating
enough leeway for model aggregation to improve on the single
learner performance.
The influence of some metaparameters are depicted in Fig-
ure 4. Naturally, the importance of the values depend on the
particular dataset. Nonetheless, our default setting (β = 0.7,
b = 7) that has been determined in preliminary experiments
appears to be a reasonable choice accross different datasets.

2) Run time: The measured run time is given in Table VI.
Tree-based methods are most of the times clearly faster than
those relying on kNN. Particularly, in case of data sets with
high dimensions such as SPAM, the evaluation complexity
O(log n) of the decision tree versus O(n) of kNN leads to
a distinct difference. Furthermore, the learning complexity
of incremental decision trees depends on the classification
performance, whereas those of NN-methods is constant. A
decision tree is only growing in case of ambiguous labels
within the leaves, therefore tasks with a high classification
performance such as PAMAP or KDD cause a very slow
growth and quick processing. However, large and noisy data

0.2 0.4 0.6 0.8 1.0
Proportion of used features

16

18

20

E
rr

or
ra

te

Electricity

SAM-E

0.2 0.4 0.6 0.8 1.0
Proportion of features

40

50

60

70

E
rr

or
ra

te

LED-Drift

SAM-E

2 4 6 8 10
Maximum k value

21.5

22.0

22.5

23.0

23.5

E
rr

or
ra

te

Weather

SAM-E

2 4 6 8 10
Maximum k value

8.5

9.0

9.5

10.0

E
rr

or
ra

te

Outdoor

SAM-E

20 40 60 80 100
Number of classifier

10

12

14

E
rr

or
ra

te

Outdoor

SAM-E

20 40 60 80 100
Number of classifier

16

18

20

22

E
rr

or
ra

te

Rialto

SAM-E

Fig. 4. The influence of the metaparameters on the results. Next to the number
of classifiers, the varied parameters are the size of the random subspace (β)
and the maximum k value (k ∼ U(1, b)).

TABLE VI
THE RUN TIMES (S) OF THE EXPERIMENTS. ENSEMBLES CONSISTED OF

N = 10 MEMBERS. THE BEST RESULTS ARE MARKED IN BOLD.

Data set VFDT SAM ARF LVGB SAM-E

SEA Concepts 1.0 4.7 8.0 3.9 20.6
Rot. Hyperplane 3.8 23.1 45.6 26.6 85.3
Moving RBF 4.7 35.0 37.6 41.6 135.8
Inter. RBF 13.7 42.2 58.8 171.8 149.1
Moving Squares 2.0 11.7 44.1 20.2 59.2
Transient Chessb. 2.4 16.5 31.8 15.7 75.3
Random Tree 4.8 17.5 25.2 30.5 77.8
LED-Drift 3.9 59.9 26.3 32.3 190.8
Mixed Drift 6.5 69.4 102.5 62.4 463.3
Poker 10.6 91.1 204.8 86.7 502.0

Outdoor 0.9 0.7 3.4 8.7 1.8
Weather 0.5 2.5 4.1 2.9 9.1
Electricity 1.1 4.4 11.2 5.7 19.2
Rialto 4.4 17.4 27.8 42.7 68.3
Airline 8.6 37.0 322.3 598.3 235.8
Cover Type 18.8 201.9 148.2 191.6 1195.7
PAMAP 144.8 1223.3 288.0 390.9 8506.9
SPAM 266.8 2142.9 2737.0 1510.3 15651.0
KDD99 119.0 1520.6 456.5 511.8 8908.3

Overall
∑

618.1 5521.8 4583.1 3754.5 36355.0

sets lead to continuously growing trees, which eventually
become slow and inefficient.
On average, SAM-E requires distinctly more processing time
than the tree-based ensembles, which was expected consider-
ing the run time of the VFDT and the single SAM algorithm.
In case of tasks with high-dimensional data and a high priority

TABLE VII
INTERLEAVED TEST-TRAIN ERROR RATES OF THE ENSEMBLES USING
N = 100 LEARNERS. ONLY THE AVERAGED PERFORMANCE ARE

REPORTED DUE TO THE LACK OF SPACE.

ARF LVGB SAM-E

Overall ∅ 16.83 19.56 12.92
Overall ∅ rank 2.11 2.42 1.47

on a low processing time, kNN-based ensembles such as SAM-
E may not be a viable option.

D. Scalability

The results achieved with 100 learners are given in Ta-
ble VII. Increasing the number of members improves the
performance of SAM-E only slightly. Noteworthy, LVGB per-
forms worse with the larger ensemble because it only replaces
one learner at a time in case of detected drift, which has a
decreasing effect when the number of learners is increased.
ARF profits the most from the increased number of classifiers.
In contrast to LVGB, it replaces each learner for which a drift
has been detected. Furthermore, it has a hgigher diversity due
to the random subspace. However, increasing the size even
further is not beneficial2.

VI. CONCLUSION

In this paper, we presented our approach SAM-E which
combines the robust drift-handling algorithm SAM with the
advantages of a highly diversified ensemble. The diversity
is ensured by randomizing the underlying kNN-search as
well as the feature space of each learner. Additionally, a
drift detection, monitoring the performance of the ensemble,
enables a faster adaptation in case of drift and explicitly
filters learners with improper parameterization for the current
situation. As SAM itself, our method is easy to use in practice,
since the few hyperparameters can be robustly set in general
without the necessity of data set specific tuning. We provide a
parallel implementation which is open-source, facilitating the
comparison for other researchers. We compared SAM-E with
state-of-the-art methods where it most of the times delivered
the lowest error rates and overall a high robustness.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw. and
Appl., vol. 19, no. 2, 2014.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] H. Yu, C. Miao, C. Leung, and T. J. White, “Towards ai-powered
personalization in mooc learning,” Science of Learning, vol. 2, no. 1,
p. 15, 2017.

[4] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self
adjusting memory for heterogeneous concept drift,” in International
Conference on Data Mining (ICDM), Dec 2016, pp. 291–300.

[5] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” Trans-
actions on Systems, Man and Cybernetics, no. 4, pp. 325–327, 1976.

[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

2We repeated the experiments for ARF with n = 250, resulting in an
average error rate of 16.81.

[7] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
Journal of Machine Learning Research, vol. 15, pp. 3133–3181, 2014.

[8] V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A
review and comparison of state of the art algorithms,” Neurocomputing,
vol. 275, 2018.

[9] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Computing
Surveys, vol. 50, no. 2, pp. 23:1–23:36, Mar. 2017.

[10] P. Almeida, L. Soares de Oliveira, A. de Souza Britto Jr, and R. Sabourin,
“Adapting the dynamic classifier selection for concept drift scenarios,”
Expert Systems with Applications, vol. 104, pp. 67–85, 08 2018.

[11] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, Aug 1996.

[12] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[13] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Machine learning and knowledge discovery
in databases, 2010, pp. 135–150.

[14] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, vol. 106,
no. 9, pp. 1469–1495, Oct 2017.

[15] S.-T. Chen, H.-T. Lin, and C.-J. Lu, “An online boosting algorithm
with theoretical justifications,” in International Conference on Machine
Learning (ICML), USA, 2012, pp. 1873–1880.

[16] R. Klinkenberg and T. Joachims, “Detecting concept drift with support
vector machines.” in International Conference on Machine Learning
(ICML), 2000, pp. 487–494.

[17] P. Domingos and G. Hulten, “Mining high-speed data streams,” in KDD,
2000, pp. 71–80.

[18] A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing.” in International conference on data mining (SDM),
vol. 7, 2007, p. 2007.

[19] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream
classification via probabilistic adaptive windows,” in Symposium on
Applied Computing, 2013, pp. 801–806.

[20] N. C. Oza, “Online bagging and boosting,” in International conference
on Systems, man and cybernetics, vol. 3, 2005, pp. 2340–2345.

[21] S. H. Bach and M. A. Maloof, “Paired learners for concept drift,” in
ICDM. IEEE, 2008, pp. 23–32.

[22] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers for
recurrent concepts,” TNNLS, vol. 24, no. 4, pp. 620–634, 2013.

[23] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE transactions on knowledge and data
engineering, vol. 25, no. 10, pp. 2283–2301, 2012.

[24] B. Mirza, Z. Lin, and N. Liu, “Ensemble of subset online sequential
extreme learning machine for class imbalance and concept drift,” Neu-
rocomputing, vol. 149, pp. 316–329, 2015.

[25] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 10, pp. 4802–4821, 2018.

[26] L. L. Minku, A. P. White, and X. Yao, “The impact of diversity on online
ensemble learning in the presence of concept drift,” IEEE Transactions
on knowledge and Data Engineering, vol. 22, no. 5, pp. 730–742, 2009.

[27] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, New York, NY, USA, 2001.

[28] A. Bellet, A. Habrard, and M. Sebban, “A survey on metric learning for
feature vectors and structured data,” Computing Research Repository,
vol. abs/1306.6709, 2013.

[29] T. K. Ho, “The random subspace method for constructing decision
forests,” Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, Aug. 1998.

[30] E. S. Page, “Continuous inspection schemes,” Biometrika, pp. 100–115,
1954.

[31] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, Dec. 2006.

[32] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,”
in ICML, vol. 97, 1997, pp. 211–218.

[33] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista, “Data
stream classification guided by clustering on nonstationary environments
and extreme verification latency,” in Proceedings of SIAM International
Conference on Data Mining (SDM), 2015, pp. 873–881.

