
Proximal Stochastic AUC Maximization
Majdi Khalid

Computer Science Department
Umm Al-Qura University

Makkah, KSA
mknfiai@uqu.edu.sa

Hamidreza Chitsaz
Computer Science Department

Colorado State University
Fort Collins, USA

chitsaz@chitsazlab.org

Indrakshi Ray
Computer Science Department

Colorado State University
Fort Collins, USA

Indrakshi.Ray@colostate.edu

Abstract—This work considers a stochastic optimization prob-
lem for maximizing the AUC (area under the ROC curve).
The AUC metric has proven to be a reliable performance
measure for evaluating a model learned on imbalanced data.
The batch pairwise learning methods (e.g., rankSVM) can
achieve a quadratic convergence to the optimal solution. How-
ever, the batch learning paradigm hinders the scalability of
these methods. Recently different online and stochastic AUC
maximization algorithms are developed. While these can scale
well for large-scale data, they either cannot generalize as good
as the batch AUC methods or suffer from slow convergence,
which minimizes their scalability. A recent stochastic pairwise
learning algorithm for AUC maximization suggests to schedule
both the regularization and the averaging steps to improve the
generalization capability and the convergence speed. Building
on this algorithm, we develop a simple proximal stochastic
AUC maximization algorithm. The proposed algorithm uses a
proximal operator of the pairwise hinge loss function, which
encourages small update steps. Averaging these adjacent weights
has a significant improvement on the converges rate of the final
model. Experiments on several benchmark data sets show that
the proposed algorithm can achieve AUC classification accuracy
on par with that of the batch method while being considerably
efficient. The proposed algorithm also outperforms state-of-the-
art online and stochastic algorithms in terms of generalization
performance and convergence rate.

Index Terms—AUC maximization, Imbalanced learning,
stochastic gradient

I. INTRODUCTION

The area under the ROC Curve (AUC) [12] is a measure of
interest in a wide range of machine learning and data mining
applications such as information retrieval, bioinformatics, and
anomaly detection [1], [19], [22], [24], [27]. The interest
in using the AUC as an evaluation measure stems from
its reliability in evaluating a classifier trained on a heavily
imbalanced dataset [7]. Unlike accuracy, the AUC measures
the classification capacity of a classifier over all possible
thresholds. What an AUC score denotes is the probability of
scoring a random positive instance higher than a randomly
drawn negative instance.

The objective function for maximizing the AUC optimizes
a sum of pairwise loss functions. Therefore, any bipartite
ranking algorithm can be utilized to optimize the AUC mea-
sure directly. The batch ranking algorithms [6], [17] have a
powerful generalization capability as they are able to reach the
optimal solution. However, the computational complexity of
each iteration of the batch algorithms is linear in the data size

O(nd) at best, where n is the number of instances and d is the
dimension of the data. Though the number of iterations could
be small due to the quadratic convergence, the complexity
of each iteration compromises the scalability of the batch
algorithms when applied to sizable datasets.

Online learning [4], [8] and Stochastic gradient methods
[3], [23], [25] are appealing learning paradigm for large-
scale setting. However, the first-order online and stochastic
methods suffer from suboptimal convergence, while second-
order methods have an expensive updating step, which hinders
their applicability for high dimensional data.

For AUC maximization, several first and second-order on-
line and stochastic algorithms are devised to optimize the
AUC objective functions [11], [28], [30]. However, these AUC
maximization algorithms are either prone to a suboptimal
solution or require a large number of iterations to yield a high
AUC classification accuracy.

Recently, a few methods [14], [18], [20] are designed to
improve the convergence rate of some of the precedent AUC
maximization algorithms. The confidence-weighted AUC max-
imization method [14] attempts to improve the convergence of
the first-order method by exploiting the second-order informa-
tion. The work [20] applies a proximal operator to the gradient
of the primal variable to improve the rate of convergence of the
original algorithm [28]. An adaptive variant of [28] is proposed
by [18] to achieve a faster convergence rate. However, the
faster convergence rate obtained by these algorithms either is
at the expense of the per iteration complexity, or it does not
enhance the generalization capability of the original algorithm.
Therefore, the development of a scalable algorithm for AUC
maximization that is able to achieve a better generalization
and a faster convergence rate is still a challenging problem.

In this work, we propose a proximal stochastic AUC max-
imization algorithm, which we abbreviate to PSAM, to pro-
mote the convergence rate of the accelerated stochastic AUC
maximization (ASAM) [15]. The proposed algorithm PSAM
borrows the acceleration techniques of ASAM and applying
it to the weight vector updated by the proximal operator of a
pairwise hinge loss function. In a nutshell, the contributions of
our work are (I) We design a proximal stochastic algorithm for
AUC maximization. (II) We experiment on several data sets
to prove the superiority of the proposed algorithm PSAM over
the state-of-the-art stochastic AUC maximization algorithms.
(III) We also evaluate the proposed algorithms on approximate

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

nonlinear space computed via k-means Nyström methods,
which improve the generalization capability of almost any
learning algorithm. The results show that PSAM achieves
comparable generalization capability if not better than the
batch AUC maximization method while its training time is
significantly faster than that of the batch method. Besides, the
proposed algorithm PSAM is able to converge faster than the
other competing methods from the first epoch, where each
epoch consists of n iterations.

II. RELATED WORK

In AUC maximization literature, different learning approaches
have been considered to optimize the AUC objective function
efficiently. In what follow, we divide the AUC maximization
methods based on their learning paradigm (i.e., batch, online,
stochastic) and briefly review most recent works in each
category.

Batch Methods. Most ranking algorithms can be employed
to solve the AUC maximization problem. Several linear and
nonlinear RankSVM methods have been developed to speed
up the training time of optimizing a pairwise loss function [2],
[5], [6], [13], [16], [17]. However, these methods cannot scale
well for large-scale datasets.

Online and Stochastic Methods. Unlike batch methods,
online AUC maxmization methods [14], [30] makes a single
pass over the training instances while using a buffering scheme
(i.e., reservoir sampling or first-in-first-out) to deal with the
pairwise nature of the loss function. The first-order online
AUC maximization algorithm [30] has per iteration complexity
of O(Bd), while the second-order [14] has per iteration
complexity of O(Bd2), where d is the dimension of the data
and B is the size of the buffer. To circumvent the need for
storing some historical instances when updating the model,
the work [11] maintains covariance matrices for storing the
second-order information of each class, which require O(d2)
operation for updating the model. Recently, the work [28]
proposes a stochastic online AUC maximization algorithm that
optimizes a pairwise least square loss function as a min-max
saddle point problem. While the AUC algorithm suggested by
[28] has a pure online complexity O(d), it suffer from slow
rate of convergence. Based on the saddle point formulation
for the AUC maximization, the work [20] proposes a proximal
stochastic AUC maximization algorithm, which can be applied
to a non-smooth regularizer. An adaptive variant of the saddle
point formulation for AUC maximization is suggested by [18]
to improve the convergence rate. The authors of the two
precedent algorithms [18], [20] claim a convergence rate of
O(1n) up to a logarithmic factor, where n is the number
of training instances. Based on classical stochastic learming,
Khalid et al., [15] propose an accelerated stochastic method for
AUC maximization and achieve a better rate of convergence
and generalization capability compared to previous methods.
However, existing online and stochastic AUC maximization
algorithms experience suboptimal generalization capability
compared to batch methods.

III. PROPOSED ALGORITHM

A. Preliminaries

Given a sequence of training instances (x1, y1), . . . , (xn, yn)
independently drawn from unknown distribution D on Z =
X × Y , where x ∈ X ⊆ Rd represents an instance with d
dimensional features and y ∈ {1,−1} represents the label.
Let h(x) = (wTx) denotes a linear classifier, then the AUC
score is defined as:

AUC(w) = Pr(h(x+) ≥ h(x−)) = E[Ih(x+)≥h(x−)],

where I(·) is an indicator function. In practice, the indicator
function, which is discontinuous, is replaced by a convex
surrogate loss function. In our algorithm, we define the AUC
loss function using the hinge loss, which has the form `(w) =
max{0, 1 − wT z}, where z = (x+ − x−). The derivative of
the hinge loss can be written as: `′(w)z, where the subgradient
`′ is defined as follows:

`′(w) =

−1 1− wT z ≥ 1

0 1− wT z ≤ 0

wT z − 1 otherwise

.

The optimization problem for maximizing the AUC objective
function is defined as:

min
w∈Rd

F (w) ,
1

n+n−

n+∑
i=1

n−∑
j=1

f(w) + λψ(w), (1)

where f(w) is a convex differentiable function and ψ(w) is
a convex regularizer, which could be non-differentiable. The
popular and scalable approach to solve such an optimization
problem is stochastic gradient descent (SGD) [23], which en-
joys a low per-iteration complexity. However, the convergence
rate of the vanilla SGD is slower than that of the gradi-
ent method. The accelerated stochastic AUC maximization
algorithm [15] improves the convergence rate by combining
both the scheduled regularization and the scheduled iterate
averaging techniques.

In some cases with complex datasets, this accelerated al-
gorithm [15] turns out to be inefficient in terms of iteration
complexity, meaning a large number of iterations is required
to achieve an AUC performance comparable to the batch AUC
method. How to make a first-order SGD converges to the
optimal solution from the first few iterations is a challenging
problem.

B. Proximal AUC Maximization

In this work we promote the convergence rate of the accel-
erated stochastic AUC maximization [15] using the proximal
mapping of the hinge loss function. The minimization of
the proximal variant of the objective function 1 using a
stochastic algorithm comprises of drawing a random positive
and negative instance at each iteration and compute the model
as,

wt+1 = wt −
1

(t+ t0)
M proxλt(wt),

where the rescaling matrix M is defined as M = λ−1I
when updating the weight vector using only the first-order
information. The proposed algorithm is detailed in Algorithm
1. The main step in our algorithm is the use of the proximal
mapping of the pairwise hinge loss function. The operator of
the proximal mapping of f(wt) is defined as:

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
. (2)

The solution of the proximal operator 2 can be derived
analytically using its optimality condition. The derivation steps
are detailed in Appendix A. The proposed proximal algorithm
applies the scheduled regularization and averaging steps [15]
to the weights of the model to speed up the convergence. These
two steps are regulated to be performed each rskip and askip
iterations respectively as follows,

wt+1 = wt+1 − rskip(t+ t0)
−1wt+1

w̃q+1 =
qw̃q + wt+1

q + 1
,

where w̃ is the averaged solution after q iterations with respect
to the askip.

To show the difference between the proximal stochastic and
the standard stochastic gradient methods for AUC maximiza-
tion, we can rewrite the update step of our proximal algorithm
as:

wt+1 = wt −
1

λ(t+ t0)
g(wt+1),

whereas the update step of the vanilla stochastic algorithm
is written as:

wt+1 = wt −
1

λ(t+ t0)
g(wt).

We can see that the proximal stochastic algorithm can
evaluate the hinge loss function at wt+1 instead of wt without
making an actual iteration. Moreover, the proximal operator
makes small update steps during training iterations. In con-
trast to the accelerated stochastic method [15], our proximal
algorithm averages a set of adjacent weights. The averaging
of such weights yields an improvement in accelerating the
convergence rate.

C. Comparison to Other Proximal Methods

Among several proximal stochastic methods [9], [20], [21],
[26], the proposed algorithm PSAM is similar to the prox-
imal stochastic AUC maximization (SPAM) [20] in terms
of employing the proximal operator for AUC maximization.
However, the proximal operator used in [20] is applied to the
regularization term, while we apply the proximal operator to
the hinge loss function. Also, our proposed method invites

Algorithm 1: Proximal Stochastic AUC Maximization
Input: training dataset X , γ,t0,T , rskip, askip
Set rcount = rskip, acount = askip, q = 0
Initialize w1 = 0 ∈ Rd and w̃0 = 0 ∈ Rd

for t = 1, . . . , T do
Randomly pick a pair it ∈ 1, . . . , n+, jt ∈ 1, . . . , n−

xt = xit − xjt
λt =

1
γ(t+t0)

wt+1 = proxλtft
(wt)

rcount = rcount− 1
if rcount ≤ 0 then
wt+1 = wt+1 − rskip (t+ t0)

−1 wt+1

rcount = rskip
end if
acount = acount− 1
if acount ≤ 0 then
w̃q+1 =

qw̃q+wt+1

q + 1
q = q + 1
acount = askip

end if
end for
set w = w̃q
return w

comparison with Point-SAGA [9]. However, Point-SAGA is
designed to maximize accuracy, whereas our algorithm is
devised to maximize AUC measure. Besides, Point-SAGA
uses the proximal operator of the hinge loss within a variance
reduction framework, while we employ this proximal operator
in a different acceleration framework, which comprises of
scheduling the regularization and averaging steps. Notice that
our method can easily be used for maximizing the accuracy
as well. The comparison with Point-SAGA in terms of accel-
erating the rate of convergence for maximizing the accuracy
metric is beyond the scope of this work.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed method on several benchmark datasets. We compare
our proximal stochastic AUC maximization algorithm with
the state-of-the-art online and stochastic AUC maximization
algorithms. The experiments are implemented in MATLAB,
while the learning algorithms are written in C++ language via
MEX files. The experiments were performed on a computer
equipped with an Intel 4GHz processor with 32G RAM.

A. Benchmark Datasets

We use several datasets described in Table I. The datasets
can be downloaded from LibSVM website1 and UCI2. For
datasets that are not split into training and test sets, we
partition them into 80% for training and 20% for testing. The
multi-class data are transformed into imbalanced binary data

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://archive.ics.uci.edu/ml/index.php

by grouping roughly half of the classes into a label and the
rest of classes into a different label.

TABLE I
BENCHMARK DATASETS

Data #training #test #feat
spambase 3,680 921 57
a9a 26,048 6,513 123
ijcnn1 49,990 91,701 22
connect-4 54,045 13,512 126
mnist 60,000 10,000 784
acoustic 78,823 19,705 50
aloi 86,400 21,600 128
webspam 280,000 70,000 254
cod-rna 331,152 157,413 8
epsilon 400,000 100,000 2000
covtype 464,809 116,203 54
susy 4,500,000 500,000 18
farm-ads 3,314 829 54,877
sector 6,412 3,207 55,197
news20 12,748 3,187 62,061

B. Compared Methods and Model Selection

1) OAMseq and OAMgra [30]: The sequential and gradient
variants of online AUC maximization. The hyperparam-
eters are chosen as suggested by [30] via 3-fold cross
validation. The number of positive and negative buffers
is set to 100.

2) CBRFIFO [14]: The confidence-weighted bipartite rank-
ing algorithms with the First-In-First-Out buffer updat-
ing policy. The size of the positive and negative buffers
is fixed at 50. The hyperparameter η is set to 0.7, and
the penalty hyperparameter C is tuned by 3-fold cross
validation by searching in 2[−10:10]. We use the diagonal
variant when experimenting on the high dimensional
datasets.

3) SOLAM [28]: This is the stochastic online AUC maxi-
mization. The hyperparameters of the algorithm (i.e., the
learning rate and the bound on the weight vector) are
selected via 3-fold cross validation by searching in the
grids {1 : 9 : 100} and {10−1, . . . , 105}, respectively.
The number of iterations is set to 15.

4) BAM [6]: This is the batch AUC maximization al-
gorithm. This algorithm optimizes the squared hinge
loss function using truncated Newton. The best regu-
larization hyper-parameter C is chosen from the grid
{2−15, . . . , 210} via 3-fold cross validation.

5) ASAM [15]: This is the accelerated stochastic AUC
maximization algorithm. The hyper-parameter λ is cho-
sen from the grid {10−10, . . . , 10−7} via 3-fold cross
validation. For the experiment with high dimensional
data, we tune λ using 3-fold cross validation by search-
ing in the grid {1 : 9 : 100}.

6) PSAM: This is the proposed proximal stochastic AUC
maximization algorithm. The hyper-parameter λ is cho-
sen from the grid {10−10, . . . , 10−7} via 3-fold cross
validation. For the experiment with high dimensional
data, we tune λ using 3-fold cross validation by search-
ing in the grid {1 : 9 : 100}.

C. Results and Discussion

Results for Linear AUC Maximization Methods
The comparison in terms of AUC performance and training
time on the benchmark datasets is shown in Table II. The
reported AUC results is the average of 5 runs.

We observe that our algorithm PSAM outperforms the other
online and stochastic methods in terms of AUC classification
accuracy. Further, we see that the AUC performance of PSAM
is comparable to the batch method, whereas the training of
PSAM is faster than the batch method. PSAM is also able
to achieve better AUC classification accuracy compared to
its non-proximal counterpart ASAM, while its training time
is on par with that of ASAM. CBRFIFO achieves a robust
AUC performance on most datasets. However, its training
is significantly slower than the other stochastic and online
algorithms on most datasets, especially for datasets with a
large number of features.
Results for Nonlinear AUC Maximization Methods
We compare the performance of the nonlinear variant of
our proximal method with the other nonlinear batch and
stochastic AUC maximization algorithms on six datasets (i.e.,
acoustic, aloi, cod-rna, webspam, covtype, and susy). The
results comparing the performance are shown in Table III.
We use the k-means Nyström method [29] to approximate
the Gaussian kernel matrix. The bandwidth of the Gaussian
function is set to the average square distance between the first
80k instances and the mean, which is computed over these
instances. We set the number of landmark points to be 1600
for acoustic, aloi, cod-rna, webspam, and covtype, while susy
has landmark points set to 400. The results of the stochastic
methods are averaged over 3 runs.

We can see that our method NPSAM achieves a robust
performance compared to NSOLAM and NASAM, while its
AUC performance is on par with that of the batch method
NBAM. However, the training time of our method NPSAM is
significantly faster than NBAM. Among the stochastic algo-
rithms, NSOLAM performs poorly compared to our method.
The robust performance and the fast training of our proximal
algorithm make it appealing for large-scale applications.

D. Study on the Convergence Rate

We study the convergence of PSAM with respect to the
number of epochs. We also compare it with the other stochastic
AUC maximization methods ASAM and SOLAM. The AUC
results of these stochastic methods upon varying the number
of epochs are depicted in Figure 1. We vary the number
of epochs according to the grid {1, 2, 3, 4, 5, 10, 30, 60}, and
run the stochastic algorithms using the same setup described
in the preceding subsection. One epoch means n number of
iterations, where n is the number of instances. For PSAM and
ASAM, we pick a positive and negative instance at random
in each iteration. In all subfigures, the x-axis represents the
number of epochs, while the y-axis is the AUC classification
accuracy averaged over 3 runs on the test set.

We observe that PSAM and its nonlinear variant NPSAM
are able to reach the optimal solution from the first epoch in

most datasets. We attribute this superior performance of our
algorithms to the formulation of the proximal operator with
scheduling both the regularization and the averaging steps. We
also note that increasing the number of epochs improve the
AUC performance of PSAM and NPSAM on some datasets.
Notice that the number of iterations in the first epoch is much
smaller than the number of pairs. This suggests that studying
different sampling strategies is a possible research direction to
boost the rate of convergence.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed scalable batch and stochas-
tic nonlinear AUC maximization algorithms. The proposed
algorithms optimize linear classifiers on a finite-dimensional
feature space constructed via the k-means Nyström approx-
imation. We solve the proposed batch AUC maximization
algorithm using truncated Newton optimization, which mini-
mizes the pairwise squared hinge loss function. The proposed
stochastic AUC maximization algorithm is solved using a
first-order gradient descent that implements scheduled regu-
larization update and scheduled averaging to accelerate the
convergence of the classifier. We show via experiments on sev-
eral benchmark datasets that the proposed AUC maximization
algorithms are more efficient than the nonlinear kernel AUC
machines, while their AUC performances are comparable or
even better than the nonlinear kernel AUC machines. More-
over, we show experimentally that the proposed stochastic
AUC maximization algorithm outperforms the state-of-the-
art online AUC maximization methods in terms of AUC
classification accuracy with a marginal increase in the training
time for some datasets. We demonstrate empirically that the
proposed stochastic AUC algorithm converges to the optimal
solution in a few epochs, while other online AUC maximiza-
tion algorithms are susceptible to suboptimal convergence. In
the future, we plan to use the proposed algorithms in solving
large-scale multiple-instance learning. Also, we will study the
application of the proposed algorithm to solving non-convex
cost function.

APPENDIX

The Proximal Operator of the Hinge Loss: Proximal op-
erators for most loss functions have efficient or closed form
solutions. In what follows, we derive the analytical solution
for the proximal operator of the pairwise hinge loss function,
which is similar to the solution presented in [10]. Let x+i
and x−j represent a random positive and negative instance,
respectively. We assume that x ∈ X , where X ⊆ Rd and R is
a Euclidean space, meaning that the magnitude of any vector
in R is obtained by l2-norm. Let xt = (xi − xj) denotes the
difference vector at the t-th iteration. The pairwise hinge loss
function is defined as:

f(wt) = max{0, 1− wTt xt}.

The proximal mapping of f(wt) is achieved by the optimal-
ity condition that implies the following minimization problem:

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
.

The precedent expression is a minimization problem that
approximates to the vector v while taking into account the
cost of this approximation f(v). A closed form solution of
this minimization problem can be attained by the optimality
condition of the proximal operator. Recall that the gradient
of the hinge loss function is defined as f

′
(wt)xt, where f

′

is the subgradient of f , and the evaluation of the gradient is
determined based on the projection onto the hyperplane or
half-spaces. Consequently, the proximal operator of the hinge
loss function can be redefined as an orthogonal projection [?]

proxλt(w) = argmin
v∈Rd

{
λft(v) +

1

2
||v − w||2

}
= PλH(w),

where H = {v ∈ Rd : vTx = 1}. We can derive an explicit
form for the problem of finding PH(w) as follows:

argmin
v∈Rd

||v − w||2

s.t. vTx = 1 .

The precedent constrained minimization problem can be
solved using its optimality condition (i.e., KKT conditions),
which yields the following solution:

PH(w) = w − wTx− 1

||x||2
x.

Therefore, the proximal operator of the hinge loss has the
following closed-form solution,

prox(w) = w − λgxt,

where:

z =
1− wTxt
λ||xt||2

.

g =

 0 z ≤ 0
−1 z ≥ 1
−z 0 < z < 1

.

REFERENCES

[1] S. AGARWAL, T. GRAEPEL, R. HERBRICH, S. HAR-PELED, AND
D. ROTH, Generalization bounds for the area under the roc curve,
Journal of Machine Learning Research, 6 (2005), pp. 393–425.

[2] A. AIROLA, T. PAHIKKALA, AND T. SALAKOSKI, Training linear rank-
ing svms in linearithmic time using red–black trees, Pattern Recognition
Letters, 32 (2011), pp. 1328–1336.

[3] A. BORDES, L. BOTTOU, AND P. GALLINARI, Sgd-qn: Careful quasi-
newton stochastic gradient descent, Journal of Machine Learning Re-
search, 10 (2009), pp. 1737–1754.

[4] L. BOTTOU AND Y. L. CUN, Large scale online learning, in Advances
in neural information processing systems, 2004, pp. 217–224.

[5] T. CALDERS AND S. JAROSZEWICZ, Efficient auc optimization for
classification, in European Conference on Principles of Data Mining
and Knowledge Discovery, Springer, 2007, pp. 42–53.

[6] O. CHAPELLE AND S. S. KEERTHI, Efficient algorithms for ranking
with svms, Information Retrieval, 13 (2010), pp. 201–215.

TABLE II
AUC CLASSIFICATION ACCURACY (%) AND TRAINING TIME (IN SECONDS) FOR DIFFERENT AUC MAXIMIZATION ALGORITHMS.

Algorithm spambase ijcnn1 a9a

AUC Training
time AUC Training

time AUC Training
time

OAMseq 96.236 ± 0.473 0.018 87.498 ± 1.282 0.113 81.565 ± 0.869 0.286
OAMgra 95.995 ± 0.913 0.017 86.617 ± 1.850 0.113 81.456 ± 1.878 0.282
CBRFIFO 97.573 ± 0.093 0.533 91.591 ± 0.048 2.224 89.900 ± 0.013 17.25
SOLAM 94.204 ± 0.143 0.017 90.527 ± 0.087 0.071 89.540 ± 0.047 0.225
ASAM 97.356 ± 0.100 0.011 91.503 ± 0.197 0.116 89.637 ± 0.104 0.287
PSAM 97.508 ± 0.143 0.015 92.218 ± 0.024 0.188 90.111 ± 0.011 0.367
BAM 97.72 0.110 91.56 0.570 90.43 1.7459
Algorithm connect-4 mnist acoustic

AUC Training
time AUC Training

time AUC Training
time

OAMseq 79.737 ± 0.179 0.618 92.176 ± 0.748 3.928 82.116 ± 2.264 0.368
OAMgra 78.501 ± 1.504 0.602 92.097 ± 0.656 3.950 78.000 ± 8.433 0.354
CBRFIFO 88.151 ± 0.029 37.75 95.753 ± 0.119 17.24 88.573 ± 0.076 11.251
SOLAM 87.491 ± 0.062 0.433 94.866 ± 0.046 3.024 87.083 ± 0.177 0.250
ASAM 87.771 ± 0.057 0.701 95.911 ± 0.047 2.164 88.393 ± 0.024 0.543
PSAM 88.200 ± 0.005 0.851 96.051 ± 0.018 2.768 88.557 ± 0.010 0.672
BAM 88.20 3.429 96.05 27.74 87.38 1.880
Algorithm webspam cod-rna epsilon

AUC Training
time AUC Training

time AUC Training
time

OAMseq 95.432 ± 0.399 6.571 94.956 ± 3.567 0.343 88.201 ± 0.412 67.44
OAMgra 95.331 ± 0.334 6.356 97.632 ± 0.121 0.332 87.375 ± 0.614 68.19
CBRFIFO 97.234 ± 0.024 37.75 98.893 ± 0.003 5.913 95.591 ± 0.074 689.4
SOLAM 96.615 ± 0.025 4.536 98.770 ± 0.006 0.250 95.961 ± 0.006 53.50
ASAM 97.197 ± 0.026 4.870 98.900 ± 0.012 0.896 95.814 ± 0.031 37.46
PSAM 97.250 ± 0.004 6.289 98.687 ± 0.002 1.203 95.964 ± 0.001 50.35
BAM 97.37 17.56 98.86 2.046 95.97 837.8
Algorithm covtype susy aloi

AUC Training
time AUC Training

time AUC Training
time

OAMseq 78.683 ± 1.952 2.378 71.957 ± 0.669 8.973 73.226 ± 1.521 1.088
OAMgra 80.760 ± 1.613 2.281 69.810 ± 7.131 8.590 74.128 ± 2.219 1.007
CBRFIFO 86.760 ± 0.895 72.60 85.953 ± 0.001 202.7 81.576 ± 0.243 80.14
SOLAM 86.425 ± 0.114 1.662 83.525 ± 0.015 5.723 73.846 ± 1.636 0.719
ASAM 86.851 ± 0.048 4.183 85.820 ± 0.060 21.06 80.311 ± 0.145 0.789
PSAM 87.059 ± 0.001 5.344 85.950 ± 0.001 28.44 80.993 ± 0.020 1.248
BAM 87.18 15.02 85.81 63.75 81.64 12.36
Algorithm farm-ads sector news20

AUC Training
time AUC Training

time AUC Training
time

OAMseq 89.260 ± 0.091 19.43 98.258 ± 0.240 39.108 97.610 ± 0.100 90.90
OAMgra 90.080 ± 0.397 20.15 98.161 ± 0.206 37.94 97.647 ± 0.046 89.40
CBRFIFO 93.959 ± 1.572 226.8 98.720 ± 0.245 541.6 98.619 ± 0.074 1576
SOLAM 91.738 ± 0.385 19.39 96.836 ± 0.186 29.39 97.605 ± 0.021 65.73
ASAM 95.690 ± 0.071 7.877 97.719 ± 0.039 20.537 97.904 ± 0.006 36.67
PSAM 95.839 ± 0.037 12.45 98.875 ± 0.013 25.03 98.182 ± 0.395 56.73

[7] C. CORTES AND M. MOHRI, Auc optimization vs. error rate minimiza-
tion, Advances in neural information processing systems, 16 (2004),
pp. 313–320.

[8] K. CRAMMER, O. DEKEL, J. KESHET, S. SHALEV-SHWARTZ, AND
Y. SINGER, Online passive-aggressive algorithms, Journal of Machine
Learning Research, 7 (2006), pp. 551–585.

[9] A. DEFAZIO, A simple practical accelerated method for finite sums, in
Advances in Neural Information Processing Systems, 2016, pp. 676–
684.

[10] A. DEFAZIO, F. BACH, AND S. LACOSTE-JULIEN, Saga: A fast incre-
mental gradient method with support for non-strongly convex composite
objectives, in Advances in neural information processing systems, 2014,
pp. 1646–1654.

[11] W. GAO, R. JIN, S. ZHU, AND Z.-H. ZHOU, One-pass auc optimiza-
tion., in ICML (3), 2013, pp. 906–914.

[12] J. A. HANLEY AND B. J. MCNEIL, The meaning and use of the area

under a receiver operating characteristic (roc) curve., Radiology, 143
(1982), pp. 29–36.

[13] V. KAKKAR, S. SHEVADE, S. SUNDARARAJAN, AND D. GARG, A
sparse nonlinear classifier design using auc optimization, in Proceedings
of the 2017 SIAM International Conference on Data Mining, SIAM,
2017, pp. 291–299.

[14] M. KHALID, I. RAY, AND H. CHITSAZ, Confidence-weighted bipartite
ranking, in Advanced Data Mining and Applications: 12th International
Conference, ADMA 2016, Gold Coast, QLD, Australia, December 12-
15, 2016, Proceedings 12, Springer, 2016, pp. 35–49.

[15] M. KHALID, I. RAY, AND H. CHITSAZ, Scalable nonlinear auc maxi-
mization methods, in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 2018, pp. 292–307.

[16] T.-M. KUO, C.-P. LEE, AND C.-J. LIN, Large-scale kernel ranksvm, in
Proceedings of the 2014 SIAM international conference on data mining,
SIAM, 2014, pp. 812–820.

TABLE III
COMPARISON OF AUC CLASSIFICATION ACCURACY AND TRAINING TIME (IN SECONDS) FOR THE NONLINEAR VARIANTS OF THE BATCH AND THE

STOCHASTIC AUC MAXIMIZATION ALGORITHMS. THE TRAINING TIME EXCLUDES THE EMBEDDING STEPS.

Algorithm acoustic aloi cod-rna

AUC Training
time AUC Training

time AUC Training
time

NSOLAM 92.826 ± 0.279 8.25 92.450 ± 0.212 8.99 99.108 ± 0.000 34.93
NASAM 93.316 ± 0.063 5.61 98.992 ± 0.025 5.75 99.163 ± 0.007 23.65
NPSAM 94.073 ± 0.028 7.36 99.507 ± 0.002 8.22 99.195 ± 0.000 31.15
NBAM 94.173 142.4 99.742 171.8 99.182 419.5

Algorithm webspam covtype susy

AUC Training
time AUC Training

time AUC Training
time

NSOLAM 99.594 ± 0.001 29.34 94.324 ± 0.241 49.07 86.933 ± 0.000 303.44
NASAM 99.629 ± 0.014 19.45 95.201 ± 0.081 34.26 87.200 ± 0.024 603.08
NPSAM 99.759 ± 0.000 26.74 96.150 ± 0.021 45.40 87.301 ± 0.006 589.48
NBAM 99.740 295.65 96.650 2025.1 87.280 5512.3

[17] C.-P. LEE AND C.-J. LIN, Large-scale linear ranksvm, Neural compu-
tation, 26 (2014), pp. 781–817.

[18] M. LIU, X. ZHANG, Z. CHEN, X. WANG, AND T. YANG, Fast stochastic
auc maximization with o (1/n)-convergence rate, in International Con-
ference on Machine Learning, 2018, pp. 3195–3203.

[19] T.-Y. LIU, Learning to rank for information retrieval, Foundations and
Trends in Information Retrieval, 3 (2009), pp. 225–331.

[20] M. NATOLE, Y. YING, AND S. LYU, Stochastic proximal algorithms for
auc maximization, in International Conference on Machine Learning,
2018, pp. 3707–3716.

[21] A. NITANDA, Stochastic proximal gradient descent with acceleration
techniques, in Advances in Neural Information Processing Systems,
2014, pp. 1574–1582.

[22] S. RENDLE, L. BALBY MARINHO, A. NANOPOULOS, AND
L. SCHMIDT-THIEME, Learning optimal ranking with tensor
factorization for tag recommendation, in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2009, pp. 727–736.

[23] H. ROBBINS AND S. MONRO, A stochastic approximation method, in
Herbert Robbins Selected Papers, Springer, 1985, pp. 102–109.

[24] J. ROOT, J. QIAN, AND V. SALIGRAMA, Learning efficient anomaly
detectors from k-nn graphs, in Artificial Intelligence and Statistics, 2015,
pp. 790–799.

[25] S. SHALEV-SHWARTZ, Y. SINGER, N. SREBRO, AND A. COTTER,
Pegasos: Primal estimated sub-gradient solver for svm, Mathematical
programming, 127 (2011), pp. 3–30.

[26] L. XIAO AND T. ZHANG, A proximal stochastic gradient method with
progressive variance reduction, SIAM Journal on Optimization, 24
(2014), pp. 2057–2075.

[27] Z. XIE AND M. LI, Cutting the software building efforts in continuous
integration by semi-supervised online auc optimization., in IJCAI, 2018,
pp. 2875–2881.

[28] Y. YING, L. WEN, AND S. LYU, Stochastic online auc maximization,
in Advances in Neural Information Processing Systems, 2016, pp. 451–
459.

[29] K. ZHANG, I. W. TSANG, AND J. T. KWOK, Improved nyström low-
rank approximation and error analysis, in Proceedings of the 25th
international conference on Machine learning, ACM, 2008, pp. 1232–
1239.

[30] P. ZHAO, R. JIN, T. YANG, AND S. C. HOI, Online auc maximization, in
Proceedings of the 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 233–240.

1 2 3 4 5 10 30 60

number of epochs

93.5

94

94.5

95

95.5

96

96.5

97

97.5

98

A
U

C

PSAM

ASAM

SOLAM

(a) spambase

1 2 3 4 5 10 30 60

number of epochs

89.5

90

90.5

91

91.5

92

92.5

A
U

C

PSAM

ASAM

SOLAM

(b) ijcnn1

1 2 3 4 5 10 30 60

number of epochs

89

89.5

90

90.5

91

A
U

C

PSAM

ASAM

SOLAM

(c) a9a

1 2 3 4 5 10 30 60

number of epochs

85.5

86

86.5

87

87.5

88

88.5

A
U

C

PSAM

ASAM

SOLAM

(d) connect-4

1 2 3 4 5 10 30 60

number of epochs

93.5

94

94.5

95

95.5

96

96.5

A
U

C

PSAM

ASAM

SOLAM

(e) mnist

1 2 3 4 5 10 30 60

number of epochs

86.5

87

87.5

88

88.5

89

A
U

C

PSAM

ASAM

SOLAM

(f) acoustic

1 2 3 4 5 10 30 60

number of epochs

72

74

76

78

80

82

A
U

C

PSAM

ASAM

SOLAM

(g) aloi

1 2 3 4 5 10 30 60

number of epochs

95.8

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

A
U

C

PSAM

ASAM

SOLAM

(h) webspam

1 2 3 4 5 10 30 60

number of epochs

86.2

86.4

86.6

86.8

87

87.2

A
U

C

PSAM

ASAM

SOLAM

(i) covtype

1 2 3 4 5 10 30 60

number of epochs

82.5

83

83.5

84

84.5

85

85.5

86

A
U

C

PSAM

ASAM

SOLAM

(j) susy

1 2 3 4 5 10 30 60

number of epochs

92

93

94

95

96

97

98

99

A
U

C

PSAM

ASAM

SOLAM

(k) sector

1 2 3 4 5 10 30 60

number of epochs

96

96.5

97

97.5

98

98.5

99

A
U

C

PSAM

ASAM

SOLAM

(l) news20

Fig. 1. AUC classification accuracy with respect to the number of epochs for stochastic linear AUC methods. We randomly pick a positive and negative
instance in each iteration for PSAM and ASAM, where n iterations correspond to one epoch.

