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Abstract—Successful and cost-effective water split-
ting could be one of the most interesting energy
sources of the future. The modification of the tran-
sition metal oxide rutile-TiO2 as photocatalyst can
lead to improved performance in the water splitting
process. For that purpose, an accurate description of
the interaction potential of a water molecule and the
rutile-TiO2(110) surface in the ground and electroni-
cally excited state after photoexcitation is crucial. The
electronic Schrödinger equation for the states involved
is solved pointwise for different nuclear configurations
within the Born-Oppenheimer approximation, and ac-
curate fits to these energy points are required to obtain
an analytic expression for the potential energy surface.
This is too computationally expensive for fine-grained
surface calculations of quantum chemical models. In
this paper, we propose to use state-of-the-art deep
learning techniques to provide accurate fits for this
problem. Namely, we employ a fully connected variant
of ResNet and DenseNet with heavy regularization (L2,
RReLU, Dropout, and BatchNormalization). Previous
literature applied neural network approaches before,
but with unsatisfactory accuracy. In an experimental
evaluation we show that the root mean squared error
(RMSE) can be 6.8 times lower for the exited state
and 12.7 times lower for the ground state compared to
former approaches.

Index Terms—Neural Networks, Water Splitting,
ResNet, DenseNet

I. Introduction
Water splitting represents a promising way to produce

molecular hydrogen, which stores chemical energy that
can be used in fuel cells. Nowadays, the main source of
hydrogen is crude oil (with CO2 as a by-product), but
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the former alternative represents an auspicious alterna-
tive in the context of green chemistry, because the only
byproduct is oxygen. Unfortunately, there is no known
method to operate this reaction efficiently. Therefore, not
only the search for appropriate catalysts is a cutting-
edge research topic, but also the modification of presently
applied materials to increase their performance. For this
purpose, an understanding of the elementary reaction
steps is substantial.

One promising class in this context are transition metal
oxides (TMOs). In general, these class of materials exhibits
a band gap, which allows for an electronic response due
to incident light irradiation. These electronically excited
states may open up new reaction pathways for adsorbed
molecules. In addition, most TMOs are cheap, non-toxic,
and earth abundant. The most prominent representative
TMO is rutile-TiO2. Fujishima and Honda have shown in
their now famous experiment, that water can be success-
fully split up into hydrogen and oxygen using TiO2 as a
photocatalyst [1].

To understand the process of water splitting, a combina-
tion of quantum chemical and quantum dynamical studies
is necessary. The general workflow sheet for quantum
dynamical studies is depicted in Figure 1. The first part
contains the calculation of the high-dimensional potential
energy surface (PES) in the ground state (GS) and the
excited state (ES). In particular, the ES is characterized
by a complex topology that can no longer be mapped
using classical analytic fit methods. The calculated points
therefore represent crucial points on the overall PES. In
the second part we utilize these points as a basis for
the fitting procedure to acquire a dense grid of points.
The task here is to fit and extrapolate the energetic
behavior of different configurations of the water molecule
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Fig. 1. Working scheme towards quantum dynamical studies. This
work focuses on the second task of fitting data points.

on the PES. Finally, we use these fitted PESs for quantum
dynamical studies to gain time-resolved insights into the
photodissociation process. The present study contributes
to the second part of this scheme, to the fitting of data.

To fit these PESs, actual physical experiments are
not feasible, as they require intensive preparations and
fast measurements that are challenging to acquire. Thus,
quantum chemical simulations are employed for this task.
However, these are computationally very demanding, i.e.
it might take several hours to calculate a single data point.
A typical high-dimensional study contains from 10 000
to several 100 000 single energy points depending on the
degrees of freedom considered in the chosen adsorbate-
substrate system. Hence, the need for an fitting proce-
dure is evident. Previous work has applied a multi-layer-
perceptron (MLP) as fitting procedure with the quantum
chemical results as training data [2]. Since the given data
points exhibit a significantly small simulation error, the
fit should not only represent the topology of the energy
surface very precisely, but should also be as accurate as
possible. Although these MLPs were successfully deployed
in the quantum dynamical calculation for the motion
of the nuclei, there is still an arguably great need for
improvement with respect to their accuracy [3].

In this paper, we apply a fully connected variant of
the ResNet [4] and DenseNet [5] architectures to fit these

PESs. Our hypothesis is that we can improve on the
performance of the existing MLPs by making intensive use
of state-of-the-art methods such as batch normalization
(BN) [6], dropout [7], and residual connections [4]. We also
ensemble the ResNet and DenseNet models to improve
the prediction. These assumptions are confirmed by our
empirical evaluation, e.g. we achieve a substantially lower
RMSE that is 6.8 times lower for the ES and 12.7 for the
GS, respectively.

This work is structured as follows: To put our work into
context, related work is described in Section II. We explain
the used quantum chemical model that defines our data in
Section III. Then, the applied architectures are introduced
in Section IV. In Section V we present our experimental
setup and findings. Finally, we draw our conclusions in
Section VI.

II. Related Work
Previous studies approach the fitting of arbitrary PES

by representing the total energy as a sum of atomic
contributions [8]. For this purpose, a symmetric atomic
local environment must be defined to account for the
invariance of rotation and translation of the whole system.
This is accomplished by introducing a cutoff function for
certain interatomic distance thresholds. Consequently, the
atomic energies are fitted independently and summed up
afterwards.

For instance, [9] fit a two-dimensional PES for the GS
and ES of CH2NH with neural networks. Their chosen
network architecture is four parallel running seven layer
MLPs for three atoms of the studied molecule, that are
eventually summed up to output the energy level. They
train on 90 000 ab initio data points in a three-dimensional
input space, of which 10% are used for testing. For valida-
tion an independent data set of 26 522 points was chosen.
Their loss function is specific to the model system and
incorporates neighboring data points which are identified
through a cutoff radius of 6 Å [10]. The final fit of the
energy exhibits a RMSE of 0.011 eV for GS and 0.003 eV.

To tackle the problem of generalization [11], [12] in-
troduced an approach that defines permutation invariant
polynomial neural networks. It relies on adapting analytic
functions reflecting the symmetry of the input data such
as the translational periodicity of molecule-surface inter-
actions. Albeit the interaction of the diatomic hydrogen
molecule on a rigid Ag(111) surface was proven to be
described accurately (RMSE 0.003 eV) [12], working out
the symmetric functions for constructing the input data
highly depends on the studied surface and might lead to
neglecting certain potentially relevant data points.

On a broader scope, Blaschke et al. [13] use variational
autoencoder to generate completely new molecule struc-
tures. They represent a molecular structure as time series.
The encoder uses convolutional layers, while the decoder
employs recurrent network layers. This technique is not
applicable here though, since the molecules are fixed in
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Fig. 2. Illustration of the H2O/Ti9O18Mg714+ cluster model with
9D Jacobi coordinates (without point charge field). The labels S and
C denote the center of mass for the terminal OH group and the
whole water molecule, respectively. Note, that the relevant Jacobi
coordinates for our study are depicted in blue.

their study, but the position of the atoms has to be variable
for our scope.

There has also been research to fit PESs with other ma-
chine learning methods. [14] apply kernel methods called
gradient-domain machine learning to find accurate fits,
while [15] employ Gaussian process regression. Further,
[16] have been incorporating kernel ridge regression to
generate new data points, if possible.

III. Quantum Chemical Model System
To investigate the interaction of surfaces with a variety

of molecules still represents one of the major topics in con-
densed matter physics as the knowledge of the underlying
steps aids in the design and application of heterogeneous
catalysts in industrial processes.

In our study, we used the quantum chemical model sys-
tem proposed by [2] in order to describe the mechanism of
the photocatalytic water splitting reaction with high-level
quantum chemistry and quantum dynamical methods. The
applied model is depicted in Figure 2. This cluster model is
embedded into a cubic field of 4421 point charges to model
the solid adequately by incorporating long-range Coulomb
effects. Jacobi coordinates are employed to simulate the
motion of the water molecule on the rutile-TiO2(110)
surface, as well as the dissociation process [17]. Since
it is experimentally proven that dissociation is preceded
by electronic excitation, we calculated a five-dimensional
PES in θ, γ, Y , Z, and R for the electronic GS and ES,
resulting in a total of 171 239 data points for both states,
respectively.

In addition to the 171 239 ab initio data points, further
quantum chemical simulations in the repulsive region of
the adsorbate (e.g. for low values in the desorption co-
ordinate Z) were necessary to describe this chemically
”forbidden” region. Using a minimal basis set for these

coordinates, 103 689 data points for the GS and 64 569 for
the ES were additionally calculated.

IV. Network Architectures
In contrast to most deep learning scenarios, in our

application, the popular convolutional layers are hard to
apply. Although the data represents spatial coordinates
with additional information about the rotation of the
axes, we cannot create simple 3D-images, as the distance
between points is non-equidistant unlike, e.g., in images.
We need to be able to define areas with either finer or
coarser meshed points to focus on areas of higher interest.
Consequentially, we have applied fully connected layers,
but also other techniques, to improve the performance of
the networks.

A. Baseline MLP
We initially used two MLPs to fit the PES of GS and

ES, respectively. These present our baseline. While the
ES-model has three hidden layer with (10 − 15 − 20)
neurons and a total amount of 566 parameters, the GS-
model utilizes two hidden layers with (10 − 30) neurons,
which totals to 421 parameters. As non-linear activation
function, tanH is employed. For initialization and training
of the MLPs, the [18] program package was used. Details
of the overall procedure as well as representative two-
dimensional PES cuts were presented by [2] and due to
low accuracy extended in [3]. Backpropagation according
to Bayesian Regularization algorithm was employed to
optimize the mean squared error during training [19]. This
algorithm was observed to outperform the more simple
Levenberg-Marquardt model due to automatic improve-
ment of regularization parameters.

B. ResNet and DenseNet
The ResNet architecture proposed by [4], [20] is highly

successful due to its residual connections, which allow the
information of previous layers to be used throughout the
network. These connections sum up the output of the
previous and the current layer. The network learns which
residuals fl+1 to add to the previous outputs xl to acquire
the next output xl+1:

xl+1 := xl + fl+1 . (1)

This architecture is well suited for our purposes, as it has
been shown that residual connections also help networks
with only fully connected layers [21].

ResNet is organized in building blocks which is illus-
trated in the upper part of Figure 3. We use the pre-
activation variant with BN [6], randomized leaky ReLU
(RReLU) [22], and fully connected weight layers. BN is
normalizing the layer output with mini-batch statistics
and helps the training process by beneficially reparameter-
izing the optimization problem [23]. We choose RReLU as
non-linearity function, since it has the advantages of leaky
ReLU, but also helps to avoid overfitting. Our ResNet
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Fig. 3. Building blocks of ResNet and DenseNet with summation operator + and concatenation operator ⊕ employed in this paper. The
shown DenseNet block has a layer depth of 2, more internal layers are possible.

model has 8 of these blocks with an increasing number of
neurons (256 − 512 − 768 − 1024) every 2 blocks, an initial
fully connected layer with 256 neurons, and an output
layer with 1024 neurons that are averaged to predict the
energy values E. This totals to 18 layers and 8 901 120
parameters. We conducted further tests with more layers
observing no improvements.

An architecture that builds upon similar principles is
DenseNet proposed by [5]. One of the main differences is
that instead of adding up the output of previous layers,
here they are concatenated throughout a block, and such
a block can contain more than two weight layers. In the
lower part of Figure 3 such a block is illustrated. Each
internal layer receives the input of all previous layers of
this block, leading to a linear increase of the input size
for these layers. Our DenseNet model consists of 4 blocks;
the numbers of neurons are (32 − 64 − 192 − 256) and the
numbers of layers per block are (6 − 12 − 24 − 16). The
initial layer contains 16 neurons and the output layer is
the same as in the ResNet model. In total, our DenseNet
model consists of 64 layers and 7 888 272 parameters.

To train our ResNet and DenseNet models, we employed
Adam [24] with AMSGrad [25] as optimizer and a batch
size of 1024. We train each model for 10 000 epochs and use
the checkpoint with the best performance on the validation
set. To reduce overfitting, we apply dropout [7] with a
rate of p = 0.5 before the output layer, which results
in half the neurons being randomly set to zero during
one training iteration. Additionally, a L2 weight decay
of 1 × 10−5 is utilized for all weights. Our experiments
are based on implementations in Python using the deep
learning framework PyTorch [26].

V. Experimental Evaluation

Our hypothesis that state-of-the-art deep learning meth-
ods create better PES fits than the classical MLP is
empirically tested in a quantitative and qualitative way
for the H2O/rutile-TiO2(110) system.

A. Settings
We train models on the aforementioned data for the

GS and ES calculated by a quantum chemical model and
compare the baseline MLP with the ResNet, DenseNet,
and an ensemble of both models. In addition, for greater
comparability, we also include experiments with selected
other machine learning algorithms: RandomForest (RF)
in its extremely randomized trees variant [27], [28] and
a scalable machine learning system for tree boosting
(XGBoost) [29]. For these algorithms, we also conducted
an extensive hyperparameter search.

Before training, all input data are shuffled randomly,
normalized to fall in the range [−1 : 1] and divided into
70% training, 15% validation, and 15% test data sets. To
better quantify our model accuracy, we applied 10-fold
cross-validation (CV).

The loss function used by our neural network models is
the weighted mean squared error:

L := 1
n

n∑
i=0

1
wq

i

· (f(xi) − yi)2
, (2)

with the batch size n, input Jacobi-coordinates x, model f ,
and energy level y from the quantum chemical model.
Moreover, the parameter wq (with 0 < wq ≤ 1) was added
to manually account for the quality of the ab initio data
(wq = 1 for high-precision data points).

We select the RMSE and the coefficient of determination
(R2) as evaluation metrics. For our subsequent quantum
dynamical studies, especially the data points around the
local minima and the pathways in between (transition
states) are important. Thus, a weighted root mean squared
error (wRMSE) and weighted coefficient of determina-
tion (wR2) is employed that neglects the aforementioned
”forbidden” data points [2]: For the GS, we remove the
chemically irrelevant energy values above 7 eV. Further,
for the ES, all values above 20 eV are ignored.

B. Results
In Table I we present our results for the ES. We observe

that ResNet achieves the best of the single models per-



TABLE I
Performance on the ES-data for RMSE, wRMSE, R2, and wR2 score of the averaged CV-runs. The best results are

highlighted in bold font.

model RMSE wRMSE R2 wR2

MLP (base) 0.835 ± 0.065 0.321 ± 0.014 0.9811 ± 2.838 × 10−3 0.9788 ± 1.853 × 10−3

RF 0.250 ± 0.009 0.212 ± 0.011 0.9983 ± 0.124 × 10−3 0.9907 ± 1.002 × 10−3

XGBoost 0.212 ± 0.011 0.166 ± 0.008 0.9907 ± 0.222 × 10−3 0.9943 ± 0.530 × 10−3

ResNet 0.133 ± 0.004 0.126 ± 0.004 0.9995 ± 0.032 × 10−3 0.9967 ± 0.210 × 10−3

DenseNet 0.138 ± 0.010 0.131 ± 0.009 0.9995 ± 0.077 × 10−3 0.9964 ± 0.510 × 10−3

Ensemble 0.123 ± 0.006 0.119 ± 0.006 0.9996 ± 0.043 × 10−3 0.9970 ± 0.295 × 10−3

formances, but the ensemble can further improve on these
results. Nevertheless, it is noticeable that the ensemble
model has a higher standard deviation than ResNet. To
ignore high energy values improves the performance for
wRMSE, especially for the MLP approach, but the error
is still more than two times as high as compared to our
new models. Interestingly, the results for R2 generally
show higher values than for wR2, most likely due to the
smaller overall variance of values when neglecting high
energy values. The RF and XGBoost models performed
notably better than the MLP, but cannot achieve the
same accuracy as deeper NNs. In short, the best model
compared to the MLP has better evaluation metrics by a
factor of ∼6.8 for RMSE, ∼2.7 for wRMSE, and ∼1.02 for
R2 as well as wR2.

Table II shows the results of our models on the GS-
data. Here, DenseNet achieves the best results without
the weighting of the metrics. With the metric weight-
ing, DenseNet offers a slightly worse performance than
XGBoost, but DenseNet would still be preferable as it has
a lower variance over the runs. The ensemble approach
does not help here. Note, that the wRMSE of the MLP
is nearly as high as the ResNet error. Again, wR2 results
are scaled differently and thus show lower score values,
except for the MLP, where the score actually is better
than the unweighted one. Here, the relative improvements
compared to the MLP are better by a factor of ∼12.7
for RMSE, ∼1.8 for the wRMSE, ∼1.1 for R2, and
∼1.03 for wR2. Note that the different states cannot be
compared since they have different target distributions,
which explains why the error appears to be worse on the
GS although the ES just has smaller value differences in
general.

In Figures 4, 5, 6, and 7 we display projections of the
PES fits chosen by experts, where three input dimensions
are fixed. These are the same projections that are used in
the work of [2], since they have distinct physical properties
and show complex topologies that help to qualify a fit.
To calculate these projections, we applied an ensemble
of models from all CV-runs, where we combined ResNet
and DenseNet for the ES and only the DenseNet models
for the GS. As expected the GS-PESs show lower energy
values and the topology of the ES-PES is more complex.

Only Figure 7 shows a nearly identical topology, but
still the energy level is significantly higher. All the PESs
are smooth and show no sudden jumps, which would be
implausible from a physical perspective. The experts use
these projections to evaluate the topology for physical
plausibility and confirm that our models are well fitted.
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1.52.02.53.03.54.04.55.0R/Å
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1.52.02.53.03.54.04.55.0R/Å
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Fig. 4. Projections with R/Å and Z/Å against energy/eV with
Y/Å = −0.3, θ = 88.0◦, γ = 50.0◦.

Y/Å
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Fig. 5. Projections with Y/Å and R/Å against energy/eV with
Z/Å = 1.82, θ = 82.0◦, γ = 40.0◦.

VI. Conclusion

In this paper, we apply state-of-the-art neural net-
work techniques to fit PESs for the GS and ES of the
H2O/rutile-TiO2(110) system. We employ ResNet and
DenseNet architectures that are completely fully con-
nected and benefit from various regularization techniques
(L2, Dropout, RReLU, BatchNormalization). The results
presented here offer new insights into a highly complex
photochemical process and can contribute significantly to



TABLE II
Performance on the GS-data for RMSE, wRMSE, R2, and wR2 score of the averaged CV-runs. The best results are

highlighted in bold font.

model RMSE wRMSE R2 wR2

MLP (base) 3.605 ± 0.570 0.362 ± 0.025 0.9107 ± 2.999 × 10−2 0.9589 ± 5.619 × 10−3

RF 0.419 ± 0.017 0.237 ± 0.022 0.9988 ± 0.001 × 10−2 0.9822 ± 3.349 × 10−3

XGBoost 0.440 ± 0.025 0.202 ± 0.019 0.9987 ± 0.015 × 10−2 0.9870 ± 2.562 × 10−3

ResNet 0.568 ± 0.026 0.318 ± 0.021 0.9978 ± 0.021 × 10−2 0.9683 ± 4.166 × 10−3

DenseNet 0.284 ± 0.018 0.204 ± 0.012 0.9995 ± 0.007 × 10−2 0.9869 ± 1.503 × 10−3

Ensemble 0.362 ± 0.018 0.234 ± 0.013 0.9991 ± 0.009 × 10−2 0.9828 ± 1.829 × 10−3
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Fig. 6. Projection with Y/Å and θ/◦ against energy/eV with Z/Å =
2.2, R/Å = 0.98, γ = 65.0◦.
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Fig. 7. Projection with R/Å and γ/◦ against energy/eV with Y/Å =
0.0, Z/Å = 2.2, θ = 88.0◦.

the mechanistic understanding. They represent an impor-
tant part in the optimization of photocatalysts without
the need for experiments.

In future work, it might be interesting to include more
information about the PES topology into the networks
a priori, e.g. by introducing an educated guess upon
initialization of the neural network weights. Another inter-
esting line of research is the viability of transfer-learning
techniques of neural network models to fit PES other,
comparable adsorbate-substrate systems.
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