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Abstract—A key to the generalization ability of Convolutional
Neural Networks (CNNs) is the idea that patterns that appear in
one region of the image have a high probability of appearing
in other regions. This notion is also true for other spatial
relationships, such as orientation. Motivated by the fact that
in the early layers of CNNs distinct filters often encode for the
same feature at different angles, we propose to incorporate the
rotation equivariant prior in these models. In this work, different
regularization strategies that capture the notion of approximate
equivariance were designed and quantitatively evaluated in their
ability to generate rotation-equivariant models and their effect
on the model’s capacity to generalize to unseen data. Some of
these strategies consistently lead to higher test set accuracies
when compared to a baseline model, on classification tasks. We
conclude that the rotation equivariance prior should be adopted
in the general setting when modeling visual data.

Index Terms—deep learning, convolutional neural networks,
rotation equivariance

I. INTRODUCTION

The development and popularization of deep learning have
played a central role in many of the recent breakthroughs
in computer vision research. Neural networks (NN) are now
frequent in state-of-the-art systems. In contrast with the previ-
ous approaches based on handcrafted feature extractors, these
models enable data-driven feature learning. In this interpre-
tation, hidden layers are sequentially applied to the input for
feature extraction, while the output layer acts as a classifier or
regressor. Thus, one of the challenges of deep learning is how
to make the feature learning process more robust.

From the lense of the machine learning field, one of the
challenges of image data is that individual pixels are usually
not very informative on their own. However, their combination
forms intricate patterns that are highly relevant to different
visual tasks. Deep neural networks are often used to model
these patterns. When this is the case, the features encoded in
the neurons’ activations become progressively higher-level in
the sense that they are more informative towards the ultimate
goal of the model.

This work was partially financed by the ERDF – European Regional
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and Internationalisation – COMPETE 2020 Programme – and by National
Funds through the Portuguese funding agency FCT – Fundação para a Ciência
e a Tecnologia – within the project “POCI-01-0145-FEDER-028857” and
the PhD grant ”SFRH/BD/136274/2018”. The authors would also like to
aknowledge NVIDIA for their generous donation of a TitanX gpu.

Convolutional neural networks (CNNs) are the most com-
mon type of NN in vision applications. Essentially, two
properties make them better suited for modeling natural im-
ages, when compared to the multilayer perceptron model
(MLP). While in MLPs, the activation of a neuron depends
on all the responses of the previous layer, for CNNs, this
activation depends only on a small local region of the input
(local connectivity). Also, the weights of CNNs are shared
across spatial dimensions in the same layer (weight sharing).
From a probabilistic perspective, we can understand CNNs as
MLPs with a very strong prior on the weights’ distribution,
which assigns zero probability to values that do not respect
either one of the conditions of local connectivity or weight
sharing. In practice, this means that feature extraction is the
same regardless of the image region that is being processed.
Equivalently, we can say that feature extraction is equivariant
under translations.

Intuitively, this seems a good prior as patterns that emerge
in one image region are probably useful in other regions
as well. This intuition is validated by empirical results, as
CNNs generalize better than MLPs in the majority of visual
tasks. From statistical learning theory, this prior is seen as a
restriction of the hypothesis space. The fact that it leads to
better solutions reflects the fact that the functions kept in the
hypothesis space are generally more useful for visual tasks.

The importance of translation equivariant feature extractors
in NNs motivates the search for other types of equivariances of
potential interest to the majority of visual tasks. In this context,
plane rotations of the input are a natural candidate. It is well-
known that in CNNs, the first layer weights often converge
into filterbanks with repeated filters at multiple orientations.
Feature extraction in multiple orientations is preserved for at
least the next few layers, as shown in Fig. 1a. On the contrary,
higher-level features are dominated by directional features that
either appear in one single orientation or are rotation-invariant
(see Fig. 1b).

In this work, we evaluate rotation equivariance as a prior
for the weights of the early layers of a CNN model. Our work
builds on previous literature on equivariant representations
for convolutional models. We also propose soft rotation-
equivariant convolutional networks, which are inspired by the
concept of “approximately equivariant.” Finally, we evaluate
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(a) Feature visualization for the fourth convolutional layer.

(b) Feature visualization for the last convolutional layer.

Fig. 1: Feature visualization for the VGG19 model trained on
ImageNet. Each image corresponds to the input which maxi-
mizes the activations in a given channel (based on [1]). Many
neurons on the fourth layer (a) encode the same feature in
different orientations. On the contrary, the last layer’s channels
(b) encode for different features, some orientation invariant
(top row) and others orientation specific (bottom row).

the effectiveness of different methods for the introduction of
this prior in CNNs and its influence on the ability of the
network to generalize to unseen data.

II. RELATED WORK

Previous works in the field have addressed rotation equiv-
ariance and invariance in different ways. The most common
technique to incorporate this prior knowledge in computer
vision tasks is by doing rotation-based data augmentation [2],
[3], in which data is rotated by a random angle before being
fed to the training algorithm. This angle is usually drawn
from a uniform distribution, whose interval is defined based
on the specific problem at hand. This method can be seen
as a prior on the data sampling scheme - e.g., the angle at
which the image was captured was arbitrary. This technique
allows an increase in the amount of training data, and thus, it
usually leads to better generalization, most notably on rotation-
invariant problems.

Another approach is to analyze the image at multiple
orientations simultaneously. For this, rotated versions of the
input are given to the model and processed in parallel. The
intermediate representations are therefore available for differ-
ent orientations and can be combined for decision. The works
of [4] and [5] combine the outputs of these parallel streams at
inference for increased robustness. Differently, [6] also employ
this technique during training. A different approach also based
on parallel processing is the rotation-invariant layer of [7]. This
method penalizes in the loss function different intermediate
representations for the same input at different orientations.

Some works address rotation equivariance and invariance
using more sophisticated theoretical frameworks that make
use of group theory to describe the symmetries expected in
the data. This is the case of group equivariant convolutional
networks [8], in which the authors define the group-equivariant
convolution operation. This operation is more general and
addresses other types of transformations, such as reflections
of the plane. This work serves as a reference for the analysis
done in our work. While the group-equivariant convolution
works for 90º rotations, harmonic-networks [9] are equivariant
under continuous groups of rotations. They replace the tradi-
tional filterbank parametrization in the network with circular
harmonics, returning a maximal response and orientation. This
notion of steerable filters, in which a finite set of coefficients
can encode the response of the filter in all orientations, was
also explored by [10], which proposed Steerable CNNs. An-
other interesting example of this is group-equivariant capsule
networks [11]. While the original capsules aimed at viewpoint
equivariance and invariance through the use of a pose vector,
[11] make these pose vectors elements of a group, guarantying
rotation equivariance.

Other works that are also relevant in this context provide
insight into the equivariance properties in neural networks.
This is the case of [12] that studies common CNN architectures
and the equivalence and equivariance of their representations.
Through their proposed method, they can detect at which point
in the network a CNN loses its geometric symmetries. The
work of [13] demonstrates the general link between convo-
lution and equivariance under compact groups. In a similar
fashion [14] describes the relationship between parameter
sharing and equivariance. Finally, the work of [15] categorizes
different previous works on this topic and provides a general
theory for equivariant CNNs.

III. ROTATION-EQUIVARIANT CNNS

A layer is said to be equivariant under a set of transfor-
mations if applying them to the input changes the output in a
predictable way (Fig. 2). If the output is unchanged, the layer
is said to be invariant, which is a special case of equivariance.
More formally, considering the function f and the group G,
we say that f is equivariant if the group actions T and T ′

exist such that, for any x and any element g ∈ G:

f(Tg.x) = T ′g.f(x) (1)



Fig. 2: Example of a rotation equivariant function. A rotation
(T ) on the input causes a shift (T ′) on the output.

Equivariance reflects the symmetries of function f . In
Equation 1, T is a group action of the group G on set X ,
and Tg represents the transformation associated with element
g ∈ G. Similarly, T ′ is a group action of the same group G
on the codomain of f . Note, however, that T ′g need not be
equal to Tg , and in general, they do not act on the same set.
The only requirements for T to be a group action are: 1) that
the transformation associated with the identity element maps
to the same element Te.x = x; and 2) that the composition of
two transformations can be obtained by performing the group
operation on the associated elements Tg.Th = Tgh. From
Equation 1 it is clear that invariance is a special case where
T ′g = T ′e ∀g ∈ G. Notice, however, that invariance is not
always a good prior as, in the case of rotation, it prevents the
extraction of features in specific orientations, such as those in
Fig. 1a and the bottom of Fig. 1b.

A. Plane Rotations

In this work, we considered the group composed of plane
rotations multiple of π

2 , G = {0, π2 , π, 3π2 }. Notice that the
square grid is invariant to these rotations. As a consequence
of this, we can define the group action hθ on a point as that
of first rotating the square grid by θ and then computing the
coordinates of point x after the grid is rotated. Thus the result
of applying hθ to point x = (u, v) ∈ Z2, is given by:

hθ.

[
u
v

]
=

[
cθ −sθ
sθ cθ

] [
u
v

]
=


(u, v) if θ = 0

(−v, u) if θ = π
2

(−u,−v) if θ = π

(v,−u) if θ = 3π
2

(2)

with cθ, sθ the cosine and sine functions evaluated at θ. Notice
that G is cyclic as it can be generated using the element π

2 .
The group operation of G is the sum of the rotation angles:

hθ1 + hθ2 = h(θ1+θ2 mod 2π) (3)

To see that h is indeed a group action notice that: 1) using
Equation 2, h0.x = x; 2) the composition of two transforma-

tions is given by the sum of the two angles.

hθ1 .hθ2 .x =

[
cθ1 −sθ1
sθ1 cθ1

] [
cθ2 −sθ2
sθ2 cθ2

]
= (4)[

cθ1+θ2 −sθ1+θ2
sθ1+θ2 cθ1+θ2

]
= hθ1+θ2 .x (5)

B. The Convolutional Layer

In this work we will model layer representations (including
the input) as f : Z2 → RC and each weight tensor, w, as
a stack of K filters with the form wi : Z2 → RC for i ∈
{0, ...,K−1}. In this formulation, C is the number of channels
in representation f while K is the number of output channels
in the layer parameterized by w. The convolution operation
between the input image and one filter wi is denoted by ∗ and
given by:

[f ∗ wi](x) =
C−1∑
c=0

∑
y∈Z2

fc(y)wi,c(y − x) (6)

If we want to refer to all output channels of that layer we
will use the same symbol f ∗ w, which can then be indexed
to specify one specific channel ([f ∗ w]i = f ∗ wi).

Considering f0 as the input of the network, we can define
the group action Tθ which rotates the image: [Tθ.f

0](x) =
f0(h−θ.x). It follows from the properties of the transformation
h and the fact that f0 is a function, that this is indeed a
group action of group G on the codomain of f0. Similarly,
this operation is also defined for wi: [Tθ.wi](x) = wi(h−θ.x),
which means a filter rotation.

C. Rotation-Equivariant Convolution

We now show how a CNN may be parameterized in order
to preserve rotation-equivariance throughout its intermediate
representations. Our first observation is that the convolution of
the transformed image Tθ.f0 with filter wk can alternatively
be obtained by rotating the filter and the resulting feature map:

[[Tθ.f
0] ∗ wi](x) =

C−1∑
c=0

∑
y∈Z2

f0c (h−θ.y)wi,c(y − x) (7)

=
C−1∑
c=0

∑
z∈Z2

f0c (z)wi,c((hθ.z)− x) (8)

=

C−1∑
c=0

∑
z∈Z2

f0c (z)wi,c(hθ.(z − h−θ.x)) (9)

= [f0 ∗ [T−θ.wi]](h−θ.x) (10)

= [Tθ.[f
0 ∗ [T−θ.wi]]](x) (11)

In step 9 we assumed the group action was distributive over
the sum, which is true given that the action can be computed
with matrix multiplication (Equation 2).

Based on this result, we can parameterize the first convo-
lutional layer so that it produces an equivariant response. For
this, we define each filter of the new weight tensor, w′, to be:

w′4i+k = T− kπ2
.wi (12)



with k ∈ {0, 1, 2, 3}. This definition means that the same filter
is included four times, one for each angle multiple of π

2 . As
such, the number of output channels increases by four if the
same number of parameters is kept. Conversely, if one wishes
to keep the number of convolutions the same, the number of
base filters (wi) should be reduced four-fold. It also means
that each rotation on w′ causes a circular shift between the
filters that correspond to the same base filter:

Tθ.w
′
4i+k = Tθ.T− kπ2

.wi = T (b−k)π
2

.wi = w′4i+((k−b) mod 4)

(13)

with b = 2θ
π and mod the modulo operator. The last step is

based on fact that kπ
2 = (k mod 4)π

2 .
We now show that this parametrization guarantees an equiv-

ariant response for the first layer of the model. Based on the
previous result (Equation 11), the result of the convolution of
Tθ.f

0 with the (4i+ k)th filter in w′ is given by:

[[Tθ.f
0] ∗ w′]4i+k = [Tθ.f

0] ∗ [T− kπ2 .wi] (14)

= Tθ.[f
0 ∗ [T−θ.[T− kπ2 .wi]]] (15)

= Tθ.[f
0 ∗ [T− (k+b)π

2
.wi]] (16)

= Tθ.[f
0 ∗ w′]4i+((k+b) mod 4) (17)

Notice that a rotation of the input causes a rotation of the
output along with a circular shift. The combination of these
two transformations is a group action of group G on the
codomain of [f0 ∗ w′]. To see this, notice that there are four
possible circular shifts, which can be accessed by successively
applying the first element (π2 or b = 1) zero to three times,
just like rotation. We will call this new group action Lθ and
so:

[Lθ.f
1]4i+k = Lθ.[f

0∗w′]4i+k = Tθ.[f
0∗w′]4i+((k+b) mod 4)

(18)

Fig. 3: Visualization of the group actions defined in section III.

This parametrization for w′ ensures that there is a correspon-
dence between each input rotation, Tθ, and output transforma-
tion, Lθ. Because layers are applied sequentially, the next layer
should preserve equivariance for an input acted upon by Lθ
(rather than Tθ). Only then is equivariance preserved across
the composition of the two layers, a fact that follows from the
definition in Equation 1. A parametrization that ensures this
is given by:

w′4i+k = L− kπ2
.wi (19)

Note that Lθ acts on the input-channels dimension of the
tensor:

Lθ.wi,c(x) = wi,c′(h−θ.x) (20)

with c′ = (c//4) × 4 + ((c − b) mod 4), with // denoting
the integer division operation.

An analogous result to Equation 11, showing the equiva-
lence between performing the operation on the feature repre-
sentation or on the filters, can be obtained for Lθ:

[[Lθ.f
1] ∗ wi](x) =

C−1∑
c=0

∑
y∈Z2

f1c′(h−θ.y)wi,c(y − x) (21)

=

C−1∑
c′=0

∑
z∈Z2

f1c′(z)wi,c(hθ.(z − h−θ.x))

(22)

= [f1 ∗ [L−θ.wi]](h−θx) (23)

= [Tθ.[f
1 ∗ [L−θ.wi]]](x) (24)

in the above result we considered c′ = (c//4)× 4 + ((c− b)
mod 4) which means c = (c′//4) × 4 + ((c′ + b) mod 4),
the shift corresponding to L−θ. Using this, we can show that
the parametrization shown in Equation 19 indeed guaranties
equivariance:

[[Lθ.f
1] ∗ w′]4i+k = Tθ.[f

1 ∗ [L−θ.w′4i+k]] (25)

= Tθ.[f
1 ∗ w′4i+((k+b) mod 4)] (26)

= Tθ.[f
1 ∗ w′]4i+((k+b) mod 4) (27)

= Lθ.[f
1 ∗ w′]4i+k (28)

In this case there is a correspondence between the input
transformation Lθ and the output transformation Lθ. Thus,
using the same parametrization for the following layers is
enough to preserve equivariance across the composition of
layers.

IV. ROTATION EQUIVARIANCE REGULARIZATION

The introduction of the rotation equivariance prior in early
layers can make learning more robust, and thus act as a
regularization method. Following the analysis of the previous
section, one way to do this is by hard constraining the
weights in the convolutional layers. However, it is not clear
that this is the best method. For instance, in the work of
[12], authors show how the internal representations become
progressively less equivariant to rotation as we move from the
input to the output of the model. Thus, a fixed structure on
the convolutional filters might not be optimal, as it does not
allow for this progressive loss of equivariance.

In this context, we considered three families of methods
to incorporate the rotation equivariance prior. The first one
uses a fixed structure on the weights, as discussed in the
previous section. The remaining two consist of additive terms
which when added to the loss function promote (but do not
enforce) equivariance and thus must be balanced with other
minimization objectives. Because they capture this notion of



approximately equivariant, we name the models regularized
by these strategies as Soft Rotation-Equivariant CNNs. Each
method was given a short name to facilitate the comprehension
of the experimental section.

A. Constraining the Weights (hard)
The equivariance prior can be implemented directly based

on the previous analysis by setting the filters of the first and
subsequent layers according to the formulas:

w′4i+k = T kπ
2
.wi (29)

w′4i+k = L kπ
2
.wi (30)

This formulation is a particular case of the group equivariant
convolution proposed by [8]. While the authors validate their
method as a new convolution operation, in our work, we use
it as a prior on the weights of particular layers. This allows
us to understand the importance of rotation equivariance at
different points in the network. Also, differently from [8], in
our experimental setting we compare models with the same
time complexity (number of operations), instead of parameter
complexity (number of parameters). Both comparisons are
valid, and its usefulness depends on the considered setting.

B. Soft priors on the Weights
An alternative strategy to achieve rotation equivariance is

to penalize parametrizations that do not guarantee rotation
equivariance in the loss function. Thus, this strategy takes the
form of:

L = Ltask + λ
∑
l∈L

Lreg(wl) (31)

with L the set of layers we want to regularize.
In the above formulation, the design of Lreg is not an

easy task as equivariance depends on the group action on the
layer’s input and the group action on the layer’s output. For
instance, in the first layer of the network, there are many
possible rotation equivariant parametrizations which would
induce different group actions on the output. Each of these
actions would make the first layer equivariant while defining
a different transformation to which the second layer’s regu-
larization would need to account for. To address this, in this
work, we settle for parametrizations, which approximate the
one described in the previous section (hard). One problem of
approximating a fixed structure is that if at a particular internal
representation of the network, a rotation of the input, Tθ, does
not correspond to the output transformation Lθ, the method
loses its regularization property. Also, note that although these
methods contain more parameters for the same number of
channels, when compared to the hard strategy, the fact that
they approximate it can be used for model compression, by
encoding the small differences to the hard structure (residues)
with less bits. These methods are listed below.

Difference Decay (decay) For each weight tensor the loss
term is given by:∑

i

3∑
k1=k2+1

3∑
k2=0

∥∥∥w4i+k1 − L (k2−k1)π
2

w4i+k2

∥∥∥2
2

(32)

It is easy to check that Ldecay reaches a minimum when the
filters mimic the parametrization seen in the previous section.

Alignment (align) The second strategy uses the inner product
to capture the idea of alignment. The following quantity is
minimized:∑

i

1

16

3∑
k1=0

3∑
k2=0

(1− wT4i+k1L (k2−k1)π
2

.w4i+k2)
2 (33)

In this case, minimizing Lalign requires mimicking the
equivariant parametrization but also that the filters have norm
1. This requirement can also be found on other regularization
methods such as weight orthonormality regularization [16].

Rotation Variant δ (comp) In this strategy we parameterize
filters as a combination between two components, one using
the hard structure and one conventional filter.

w′4i+k = L kπ
2
.wi + δ4i+k (34)

A stronger L2 penalty is applied to the rotation variant com-
ponent δ. The δ’s can be seen as residues and are initialized
as zeros.

C. Soft priors on the Activations

Alternatively, to achieve rotation equivariance one can
penalise non-equivariant intermediate representations in the
network. This strategy is similar to that of [7] but focusses
on equivariance instead of invariance. In this case, the regu-
larization term takes the form of:

L = Ltask + λ
∑
g∈G

[
T ′g.F (x)− F (Tg.x)

]
(35)

Different regularization methods can be designed based
on this general term, depending on the group G and the
transformations T and T ′ considered. In this work, we are
dealing with 90º rotations of the input, which define both T
and G. Thus, the proposed strategies only change T ′g . One
important consideration for these methods is that it requires
additional computation to obtain F (Tg.x). As such, contrary
to weight regularization strategies, its impact on optimization
time is not negligible. Also, it does not allow for model
compression as the weights are not similar to each other, but
only the activations.

Fixed T ′ (fixed) This strategy defines T ′ to be the Lθ from the
previous section. As such, for each activation, the following
term is minimized:∑

θ∈G

[Lθ.F (x)]− F (h−θ.x) (36)

Note that there are other parametrizations, different from
the hard strategy, that minimize this term. For instance, one
could reorder the filters and their coefficients in an orderly way
and maintain the equivariance property. For this strategy, the
filters are initialized with the rotation equivariance structure
and allowed to diverge from there.



Learned T ′ (learn) An alternative strategy is to learn the
transformation along with the model. For this we define
the matrix M whose value Mm,n expresses the equivalence
between the feature extracted by wn from the input and wm
from the same input after a π

2 rotation. Formally:∑
θ∈G

[M.F (h−θ−π2 x)]− F (h−θ.x) (37)

Note that, contrary to all the previous techniques, here
the group action on the output is not defined. The only
requirement is that it exists and that F is equivariant under
plane rotations of the input and M−multiplication on the
output. Although M is not defined for the other elements of
a group it could be obtained by computing M b. In practice
however, the minimization of Equation 37 requires that M
can be optimized efficiently by gradient descent. Initialization
of the weights is done similarly to the previous method. M
is initialized as a “shifted” identity matrix to account for the
channel shifting effect of Lθ. In this way we guarantee that at
the start the regularization term is zero.

V. EXPERIMENTS

In this work, we study the rotation equivariance prior for
feature learning in CNNs. Specifically, we assess if this is a
good prior for modeling conventional image data, and its use is
not limited to problem formulations with rotation symmetries
(e.g., aerial images). Also, we evaluate the effectiveness of the
proposed strategies for introducing this prior and their effect
on the model’s ability to generalize to unseen data.

To this end, the task of image classification was focussed.
The following data was used for the proposed validation:

• CIFAR [17] - The CIFAR10 and CIFAR100 are well-
known datasets for classification tasks. They are divided
into a standard train and test split with 50k and 10k
images, respectively. The dataset was augmented using
random cropping after 4-pixel padding on each side of
the image, along with random horizontal flipping.

• SVHN [18] - Street View House Numbers is another well-
known classification dataset for digit recognition. No data
augmentation was used in this case.

• SINS10 [19] - The Scaled ImageNet Subset dataset is
composed of 100k colored images of ten classes. The
images have a side dimension of 96px. The dataset
contains ten folds of equal size. The first eight were used
for training while the last two were used for testing.

As baseline, a VGG19 [20] architecture was optimized from
scratch in each dataset, using stochastic gradient descent with
momentum. The network was adapted by reducing the number
of neurons in the fully-connected layers. The batch size was set
to 128 for all datasets. Batch normalization and weight decay
were used, along with dropout for the fully connected layers.
The learning rate and the number of epochs were adapted for
each dataset. Initialization was done using LSUV [21].

A. Measuring Rotation-Equivariance

One way to measure how similar two features are is to
estimate their correlation coefficient (ρ). Based on this, we
define the following measure to assess how equivariant are
the features extracted by a CNN up to a certain layer:

Ex∈D

 1

16

∑
θ1,θ2∈G

1

K

K−1∑
i=0

max
0≤j<K

ρ [Fi(hθ1 .x), Fj(hθ2 .x)]


(38)

This function will return a value close to one if, for
each data point, the extracted features are well-correlated for
different orientations of the input.

To evaluate the ability of each strategy to approximate
equivariant representations, the first two convolutional blocks
(4 convolutional layers) of the VGG19 model were regularized
at different values of λ. For the activation-based strategies,
the output of the second block was used to compute the
regularization loss. Each model was trained on the first 40k
images of the CIFAR10 dataset. Then, for each, the measure
described above was computed for the validation data (the last
10k images of the training set) and random data.

As shown in Figure 4, weight-based methods progressively
become more equivariant as λ is increased. The difference
between the validation data and the random data is small,
revealing that they maintain this property even for patterns that
are not frequent in the training data, similar to the use of hard
structured filters. This is to be expected as their weights are
close to the hard structure, which is necessarily equivariant.
Interestingly, the parametrization of comp leads to a model
more equivariant than the baseline, even for small values of λ.

Activation-based methods are also able to learn equivariant
representations for the validation. However, their behavior
changes for random data. The fact that they were not exposed
to some of these visual patterns during training means they
were not optimized to recognize them at multiple orientations.
The zero value for high values of λ using the learn strategy
signifies non-convergence, indicating instability of the model
for high values of λ.

B. Generalization

To assess how each method affects the ability of the
model to generalize to unseen data, the baseline network was
regularized in the first two convolutional blocks for all four
datasets. For the SVHN and SINS10 datasets, the experiment
was repeated while regularizing the first four convolutional
blocks. For the activation-based methods, the output of the last
layer of these blocks was used. The regularization parameter
λ was optimized for the CIFAR10 on the training data, by
training on the first 40k images and leaving the last 10k
for validation. Each experiment was repeated five times, and
average accuracy and standard deviations are reported. Due to
the high number of classes in CIFAR100 we also report the
top-5 accuracy. The results are shown in Table I.

As shown, hard constraining the weights or regularizing
them using weight-based methods leads to an increase in
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(c) Activation-based on val. data
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Fig. 4: Rotation equivariance measure for different methods of regularization. The horizontal lines correspond to the baseline
and the hard constrained methods and were empirically obtained for each setting. The value of zero in the measure for the
learn strategy indicates non-convergence.

TABLE I: Classification accuracies for the four datasets for each regularization method. Results are in %

CIFAR10 CIFAR100 SVHN SINS10 SVHN SINS10
2 Rot. Equiv. Blocks 4 Rot Equiv. Blocks

Strategy Top1 - Acc. Top1 - Acc. Top5 - Acc. Top1 - Acc. Top1 - Acc. Top1 - Acc. Top1 - Acc.
Baseline 91.88±0.23 69.45±0.18 89.19±0.15 94.53±0.10 93.20±0.15 94.53±0.10 93.20±0.15
Hard 92.04±0.17 69.99±0.19 89.63±0.17 94.93±0.08 93.54±0.07 95.48±0.07 93.86±0.13
Decay 92.43±0.24 70.48±0.33 89.64±0.18 94.77±0.08 93.40±0.09 95.45±0.08 94.01±0.11
Align 92.07±0.11 69.86±0.18 89.43±0.16 94.64±0.05 93.28±0.11 95.11±0.09 93.55±0.08
Comp 92.10±0.14 70.38±0.23 89.64±0.14 94.84±0.15 93.57±0.10 95.73±0.11 94.03±0.11
Actv 91.66±0.16 69.63±0.38 89.08±0.29 93.99±0.06 92.54±0.15 93.76±0.15 91.37±0.52
Learn 91.86±0.18 69.64±0.19 89.05±0.24 94.12±0.17 92.66±0.16 93.92±0.20 92.17±0.27
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Fig. 5: Effect of regularization for different numbers of convolutional blocks on SVHN dataset.

classification accuracy for all datasets. This increase is more
noticeable when regularization is applied for four convolu-
tional blocks on the SVHN and SINS10 datasets. Regarding
the activation methods, they always lead to comparable or
worse results than the baseline. The three strategies that
consistently lead to better generalization, when compared to
all the remaining ones, were hard, decay, and comp.

The fact that different methods of encoding the same prior
lead to a consistent increase in the test set accuracy strongly
suggests that rotation equivariance is an important factor for
generalization in these settings. This was observed for datasets
composed of images with different characteristics and mostly
without rotational symmetries, suggesting that its usability is
not limited to a narrow set of problems.

The relatively low accuracy of activation-based methods
across different datasets, combined with the previous set
of experimental results leads to the conclusion that even
though these methods produce equivariant representations on
unseen data, this does not equate to better generalization.
Possible reasons for this include the fact that applying this

regularization might lead to optimization problems or that the
model is trivially minimizing the objective (e.g., by learning
rotation-invariant features). After inspecting the activations of
the layer where the activation difference was minimized, we
verified that they were smaller on average when compared to
the baseline. We also verified that initializing the baseline’s
weights with an equivariant structure (the one used for these
models) does not affect the final test set accuracy.

Finally, we note that regularizing the filters of the interme-
diate layers (blocks 3 and 4) also leads to a significant increase
in test set accuracy, as these were the best models in both the
SVHN and SINS10 datasets. This shows that the usefulness
of the proposed prior is not limited to the early features of the
network. To investigate this, we run the experiments for each
weight-based strategy for different numbers of regularized
blocks, from two up to five. The results for the SVHN and
SINS10 are shown in Figures 5 and 6.

The results generally show that, as we increase the number
of regularized layers, the test-set accuracy is increased or
maintained. The only exception to this is the hard strategy.
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Fig. 6: Effect of regularization for different numbers of convolutional blocks on SINS10 dataset.

Also, there is no clear winner strategy between the three
best strategies (hard, comp and decay), with the “number of
layers regularized” being the variable that most affects the
generalization ability.

C. The Rotation Equivariance Prior

The experimental component of this work shows that differ-
ent strategies for incorporating the notion that “features in one
orientation should be useful in other orientations” makes learn-
ing more robust and thus serves as a regularization strategy.
The usability of such methods is not limited to applications
which contain rotational symmetries and its implementation is
straight-forward in most scenarios. It is important to mention
that the regularization proposed was not used in spite of other
methods (weight decay, batch norm and dropout) but alongside
them.

Equivariance plays a key role in neural network optimization
and their ability to generalize to unseen data. This idea is
central in the design of CNNs. Image models, such as these,
should be adapted for rotation equivariance in the generality
of computer vision tasks.

VI. CONCLUSION

Rotation equivariant features are learned by CNNs from data
in the generality of computer vision tasks, for early layers.
Thus, incorporating this idea into the training process or the
architecture of the model has the potential to make learning
more robust in the general setting.

In this work, we frame rotation equivariance as a prior
on the distribution of the weights of CNNs. We propose
different regularization techniques that capture the notion of
approximate equivariance, leading to the optimization of soft
rotation equivariant CNNs. We quantitatively evaluate the
equivariance and generalization properties of the proposed
models. Finally, we demonstrate that incorporating this prior in
CNNs leads to better generalization in different image datasets.

Equivariance plays a central role in the generalization ability
of CNNs. These models should become better at modeling
natural data, as we increase the number of useful equivariance
properties these models have. Rotation equivariance is one of
such properties.
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[5] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber,
Mitosis Detection in Breast Cancer Histology Images with Deep Neural
Networks. MICCAI, 2013.

[6] D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys, “Ti-pooling:
Transformation-invariant pooling for feature learning in convolutional
neural networks,” CVPR, 2016.

[7] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolu-
tional neural networks for object detection in vhr optical remote sensing
images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54,
no. 12, pp. 7405–7415, Dec 2016.

[8] T. S. Cohen and M. Welling, “Group equivariant convolutional net-
works,” in ICML 2016.

[9] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow,
“Harmonic networks: Deep translation and rotation equivariance,” in
CVPR, 2017, pp. 7168–7177.

[10] T. Cohen and M. Welling, “Steerable CNNs,” ICLR, 2017.
[11] J. E. Lenssen, M. Fey, and P. Libuschewski, “Group equivariant capsule

networks,” in NIPS, 2018, pp. 8844–8853.
[12] K. Lenc and A. Vedaldi, “Understanding image representations by

measuring their equivariance and equivalence,” International Journal of
Computer Vision, vol. 127, no. 5, pp. 456–476, May 2019.

[13] R. Kondor and S. Trivedi, “On the generalization of equivariance and
convolution in neural networks to the action of compact groups,” in
ICML, 2018, pp. 2752–2760.

[14] S. Ravanbakhsh, J. Schneider, and B. Póczos, “Equivariance through
parameter-sharing,” in ICML, 2017, pp. 2892–2901.

[15] T. Cohen, M. Geiger, and M. Weiler, “A general theory of equivariant
cnns on homogeneous spaces,” CoRR, vol. abs/1811.02017, 2018.

[16] N. Bansal, X. Chen, and Z. Wang, “Can we gain more from orthogo-
nality regularizations in training deep networks?” in NeurIPS, 2018, pp.
4261–4271.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[18] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[19] T. U. of Waikato, “Sins-10 dataset,”
https://www.cs.waikato.ac.nz/ ml/sins10/.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[21] D. Mishkin and J. E. S. Matas, “All you need is a good init,” CoRR,
vol. abs/1511.06422, 2015.




