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Abstract—In recent years, many approaches have been pro-
posed for automated heart sound analysis. However, most of
these algorithms separate the two steps required for an accurate
detection of abnormal cardiac sounds: segmentation of stetho-
scope recording into individual heart cycles and detection of
heart murmurs. In this work we propose a method to train a
neural network to perform both of these tasks simultaneously
achieving a synergy effect. Despite the fact that the method uses
both types of labels for training, they don’t have to be specified
for all training examples. Moreover it also supports negative
examples, i.e recordings with no heart sounds. The result is a
single neural network model that can detect individual heartbeat
cycles, segment these into the 4 heartbeat phases and predict
heart murmur presence. This is achieved by using a training loss
function that incorporates relations between the different output
types and uses masking in case of missing labels. We evaluated
our results on the popular 2016 PhysioNet/CinC Challenge
dataset for heart sounds and benchmarked it with respect to
three state-of-the-art heart murmur detection algorithms. Our
method significantly outperforms the latter algorithms achieving,
in particular, an F1-score of 83.9% – an enhancement of 7.6
percentage points over the best of the considered alternatives.

I. INTRODUCTION

Cardiac auscultation is the first and most common ex-
amination that facilitates the identification of many heart
diseases with high predictive power [1]. Despite the advent
of new technological innovations like handheld ultrasound,
this procedure is still very important in healthcare because
it is both quick and cost-effective. Heart auscultation allows
for detection of abnormal heart sounds called heart murmurs,
which are symptomatic of heart problems. Heart murmurs are
caused by turbulent blood flow through the heart. resulting
from abnormal opening or closing of heart valves. This may
lead to backward blood flow or reduced forward blood flow
resulting in murmurs registered by a stethoscope. In children,
abnormal murmurs are usually caused by congenital heart
disease. In adults, abnormal murmurs are most often due to
acquired heart valve problems. Early detection of pathological
changes in the heart is clinically beneficial for patients and
reduces the risk of serious complications including, in some
cases, the need of undergoing risky heart operations [2].

Heart auscultation normally involves the usage of a stetho-
scope by a trained physician whose diagnosis is highly sub-
jective and relies on his education and experience [3], [4]

and [5]. The ability to properly identify heart sounds varies
significantly among different groups of medical doctors and
trainees. As reported in [6], medical students, residents, and
even academic internists in many countries recognize less than
40% of abnormal heart sounds. According to [7], the main
reason for such lack of proficiency is inadequate training. In
fact, cardiologists, who represent only 5% of physicians in
the US, are the only group that has been shown to recognize
a majority of abnormal heart sounds and murmurs. However,
even experienced examiners often disagree about heart sounds
and are additionally unable to detect certain sounds due to
human auditory limitations, which include insensitivity to low
frequencies, slow responses to rapidly occurring, brief sonic
events, and the masking of soft sounds by loud sounds in close
proximity [8].

Thankfully, with the advent of digital stethoscopes, comput-
erized and automated heart sound classification systems can
play a significant role in solving the inherent subjectivity and
overcome limitations of human hearing ability. Additionally,
these tools can play an important educational role and help to
upskill medical staff in ausculation. All this should contribute
to earlier diagnosis of heart murmurs in patients and thus lead
to quicker treatment and better health care.

II. RELATED WORK

Historically many attempts have been made to develop al-
gorithms for automatic heart sound analysis. Recently, a com-
prehensive study of heart sound detection and classification
algorithms was published [9] clearly pointing towards great in-
terest in this topic. Indeed, the study lists a total of 117 relevant
peer-reviewed articles, of which 53 focus on segmentation and
88 deal with sound classification. Among the many proposed
approaches to solve the problem, the most often explored
models are: support-vector machines (SVMs), artificial neural
networks, hidden Markov models (HMM), k-nearest neighbor
classifiers (k-NN) and their hybrids. Moreover the aspect of
feature engineering and extraction is another important facet
to this problem that has also attracted much focus (72 articles
mentioned in the study). Remarkably, none of the articles
mentioned in the study or later, to the best of our knowledge,
investigate training a single machine learning model for joint
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heart sound segmentation and murmur detection, which is the
core idea that we present in this work.

In 2016, the Research Resource for Complex Physiologic
Signals (PhysioNet) organized a challenge to develop algo-
rithm for detection of abnormal heart sounds [10]. The chal-
lenge data still remains, to date, the most comprehensive pub-
licly available dataset on the subject which is also confirmed
in [9]. The winning submission [11] featured an ensemble of
two models: an AdaBoost classifier trained on hand-crafted
features extracted from both time and frequency domains and
a convolutional neural network trained on raw audio samples.
The solution relied on heart cycle segmentation provided in
the challenge data which was obtained via a HMM-based
algorithm [12]. More solutions have been proposed since the
culmination of the challenge whose performance is unfortu-
nately not always possible to fairly gauge. This is because
the official test dataset was never released to the public,
and moreover there is no commonly accepted performance
evaluation procedure. According to [9], the best performance
on the PhysioNet 2016 data has thus far been reported in [13]
using Gram polynomials and probabilistic neural networks.
However, the test was performed on a set of 300 recordings
that are not representative of the whole dataset as they are
derived from just one of the six constituent databases forming
the PhysioNet 2016 training dataset.

To deal with the mentioned types of problems, we have
chosen three reference high performing algorithms in heart
murmur detection for which the full source code is publically
available, thus allowing for a fair comparison. We summarize
these below:

A. SVM classifier

The solution proposed by Ortiz et al. [14] utilizes an
SVM classifier that is trained on a combination of four types
of features. The first type of features are the time interval
features that contain information about the length of each
heart cycle phase (S1, systole, S2, diastole). The second and
third set of features includes basic statistics such as mean and
standard deviation computed from a) Mel-Frequency Cepstral
Coefficients (MFCCs) and b) the Discrete Wavelet Transform
(DWT) of heart cycle signals.

Finally, Discrete Time Warping (DTW) on the DWT is used
as a measure of how individual heart cycles differ within
one patient (Intra-DTW) and how they compare with class
templates (Inter-DTW). Heart cycle segmentation was however
not conducted, with the authors relying on this data provided
by the challenge organizers.

B. Convolutional neural network trained on MFSC

The algorithm introduced by Maknickas et al. [15] is a
simple convolutional neural network trained on MFSC (MFCC
with no DCT) patches of size 128 by 128. Interestingly, this
solution doesn’t make any use of heart cycle segmentation - the
MFSC coefficients are calculated for the entire recording and
uniformly cut into frames which in general bear no relation
to the heart cycles. Partial frames are filled with zeros and

all frames are normalized. Data imbalance was addressed by
sub-sampling more numerous class (healthy heartbeats) during
training. The final prediction regarding the presence of heart
murmur is obtained by averaging predictions from all frames
extracted from a recording.

This solution was submitted for evaluation during the Phy-
sioNet 2016 challenge. On the final leaderboard it is ranked
sixth with a final score of 84.2%, which places it only 1.8
percentage points behind the winner.

C. Convolutional neural network trained on time series

The solution proposed by Humayun et al. [16] was de-
veloped as a part of The INTERSPEECH 2018 ComParE
Challenge [17], where the task was to classify heart phono-
cardiograms into one the three classes: Normal, Mild and
Moderate/Severe. Authors developed a two-stage algorithm,
where the first stage included training the initial model on
PhysioNet 2016 train data and second stage, where the knowl-
edge was transferred to new model and fine-tuned for target
task. The model is very similar to the CNN classifier used
in [11]. Processing starts with resampling of the time series
into a 1kHz signal and separation into four frequency bands:
25-45, 45-80, 80-200 and 200-500 Hz. Each of the four time
series is cut into individual heart cycles according to externally
provided heart segmentation ground truth, zero-padded to a
total length of 2.5s (2500 samples) and fed into dedicated
branches of the network where 1D convolutions are performed.
Features from each branch are then concatenated and fed into a
multilayer perceptron network that generates final predictions.
Binary predictions from all heart cycles are averaged to obtain
the final prediction for the entire recording.

III. PROBLEM FORMULATION

The problem that we solve in this article is simple to state:
predict the presence/absence of heart murmur in an input
stethoscope recording containing heartbeat signals. This is a
simple binary classification task.

We are given a dataset of training stethoscope recordings
with ground truth binary information of murmur presence.
Additionally, some recordings have ground truth segmentation
into the four phases of the heart cycle or information indicating
absence of a heartbeat. In accordance with the definition of
heart cycle phases provided in [12], the five segmentation
classes are: (1) no heart; (2) S1; (3) systole; (4) S2 and (5)
diastole.

Our solution, described below, can either generate the
predictions directly from the input recording, or it can rely
on an external algorithm, e.g. [12], to provide automatic heart
cycle segmentation.

IV. PROPOSED SOLUTION

A. Model

We propose to solve the task by using a deep neural network
model that jointly performs heart cycle segmentation and pre-
dicts murmur presence directly from the input recording. Our



proposed model uses the modified Convolutional Recurrent
Neural Network (CRNN) architecture described in [18].

As input, the network accepts spectrograms generated from
recordings that were first resampled to 500Hz. The hop length
used during generation of the spectrogram is 10ms and it is
equal to the time resolution of the output prediction raster.

The final layer of the network consists of two groups of
neurons that represent the two different output types. The first
group consists of five neurons that encode the segmentation of
the input signal into the five possible classes described earlier.
The second group consists of two neurons and describes the
presence or absence of heart murmurs. The occurance of heart
murmur, as well as heart cycle segmentation, are output for
each frame. Softmax is applied at the output of the network,
independently for each group of neurons.

B. Masked Loss Function

1) Segmentation Loss: The first output group of our pro-
posed network can be represented as a matrix Ŝ ∈ 〈0, 1〉Cs×N ,
where Cs = 5 is the number of segmentation classes and N
is the number of time frames. We represent the ground truth
training set for this output as S ∈ {0, 1}Cs×N . Given these
two matrixes, the training loss function for segmentation is
defined as the conditional categorical crossentropy:

cross(S, Ŝ) = − 1

N

N∑
n=1

5∑
c=1

Sc,n log(Ŝc,n), (1)

losssegmentation =

{
cross(S, Ŝ), if S is known
0, otherwise

(2)

2) Heart Murmur Loss: The second output of the network
representing heart murmur presence is handled in similar
fashion. M ∈ {0, 1}Cm×N represents the ground truth raster
for heart murmur with Cm = 2 referring to (1) murmur and (2)
no murmur classes while M̂ ∈ 〈0, 1〉Cm×N represents network
predictions for murmur and no murmur classes.

The ground truth labelling for murmur presence is provided
globally for each full recording. As a result, the ground truth
raster M is prepared such that this single label is repeated for
all frames of a given recording.

This definition poses a significant obstacle to model training
based on the direct comparison of M and M̂. This is because
the particular frames with heart murmur are not known. We
note that out of the four heart cycle phases heart murmur
can only be heard in two, viz. systole and diastole. Moreover
some recordings might contain a part with no audible heartbeat
(that can occur because e.g. the stethoscope did not touch
the skin properly during part of the recording). For efficient
identification of murmurs, it is hence pertinent that heart
murmurs are not inferred during the S1 or S2 phases, as well
during intervals where no heartbeat is present.

To implement this understanding into our model, we modify
the crossentropy with an additional weighting scheme. The
goal of this is to evaluate network predictions regarding
murmurs only on valid heart cycle phases for calculation of

Fig. 1. Visualization of input spectrograms and model predictions for two
example recordings. Output rasters are presented with a color map where
values close to 0 are dark and values closer to 1 are light. The violet areas
at the beginning and end of each raster depict network margins - frames for
which the network did not provide predictions due to the lack of padding
in convolutional filters. (Top) Network successfully segmented heart cycles
despite the fact that heart cycle changes periodically with breathing cycle,
which is a known physiological phenomena. The final output shows that
network did not detect heart murmur in the recording. (Bottom) In the first
part of the recording no heartbeat can be heard, the network was able to
correctly detect heart in the second part of the recording. Network correctly
predicted presence of heart murmur (indeed the patient was diagnosed with
Aortic Stenosis).

the loss function. Technically, we introduce a weight mask
Ŵ ∈ 〈0, 1〉N defined as:

Ŵ (Ŝ) = max(Ŝ3, Ŝ5) (3)

where Ŝ3 and Ŝ5 represent the network prediction rasters
for the systole class and diastole class respectively. We note
here that the weight mask is created from current network
predictions, since the ground truth segmentation is assumed
to be unknown in general during inference. Now the weighted
heart murmur crossentropy becomes:

w cross(M,M̂, Ŵ ) = − 1

N

N∑
n=1

2∑
c=1

Mc,n log(M̂c,n)Ŵn

(4)
which leads to the heart murmur loss:

lossmurmur =

{
w cross(M,M̂, Ŵ ), if M is known
0, otherwise

(5)

It is important to note here that the weight mask is deter-
mined independently of the gradient calculation used in the
minimization of the loss function for the model. Specifically,
network predictions for segmentation are treated as constants.
Without this, the optimal way to minimize murmur loss would
be to never detect a heart cycle.

3) Training Loss: Our final optimization criterium is cho-
sen as a weighted sum of segmentation loss and heart murmur



loss. A larger weight is associated with the heart murmur
prediction, which is the central task of this paper:

loss = losssegmentation + α× lossmurmur (6)

In all conducted experiments, α was set to 2.
With this definition, the model is trained for simultaneous

heart cycle segmentation and heart murmur detection. This
allows for sharing learned features between these two tasks.
Such interchange of information is not possible with solutions
proposed so far where the two tasks are solved separately.

C. Recording-level Murmur Prediction

The network, trained to minimize training loss (Equation 6),
generates predictions for each audio frame of the input signal.
Given the two prediction sets: Ŝ for segmentation and M̂ for
murmur, we aim to extract a single prediction about murmur
presence for the whole recording. To do this we propose to
use the following formula:

pmurmur(Ŝ, M̂) =

∑N
n=1 M̂1,nŴn(Ŝ)∑N

n=1 Ŵn(Ŝ)
(7)

where M̂1,n represents the murmur class network prediction
for the audio frame n.

According to this definition, the recording-level prediction
for presence of heart murmur is a weighted sum of network
predictions for the murmur class over all audio frames. The
weighting is consistent with the training loss function and
implies that the network’s prediction for murmur are only
taken into consideration in audio frames where the same
network also predicts systole or diastole.

V. EVALUATION

A. Challenge Data

We evaluated the performance of our and baseline solutions
on the popular PhysioNet Computing in Cardiology Challenge
2016 [10]. In particular, we used the updated official ground
truth data posted by the organizers on the challenge forum
on July 25th, 2016. This data contained a total of 3153
recordings, of which 665 were labelled as containing murmur
and 2488 were labelled as not containing murmur. For all
recordings, two versions of heart cycle segmentation were
provided: automatic segmentation generated using [12], and
the same segmentation that was further manually verified and
corrected by an expert cardiologist. For the purpose of our
studies we used the latter as heart segmentation ground truth.

According to this segmentation some recordings did not
contain any valid heart cycles (although they had ground truth
information about murmur). Because some of the reference
algorithms we were comparing our solution with relied on the
properly detected heart cycle, they were unable to generate
prediction for these recordings. Therefore in order to be able
to compare all solutions on the same dataset, we decided to
exclude these recordings from the final evaluation. In total, the
final number or recordings used for evaluation was 2850 (557
with murmur and 2293 without murmur). We emphasize again

that our algorithm does not suffer from the above mentioned
limitations and can generate predictions for all recordings.

B. Evaluation procedure

We designed a 10-fold cross-validation experiment to get
most reliable results. Folds were generated randomly, but for
each tested algorithm exactly the same split was used. The
trainval dataset was split into training (80%) and validation
(20%). Results obtained from the experiments are summarized
in two ways. First, we aggregate the test set results from each
fold and report the resulting cumulative confusion matrices
as well as the following metrics: precision, sensitivity (recall),
specificity, F1-score and balanced accuracy (BACC). Secondly,
we calculate these statistics separately for each fold and
report their mean values and standard deviations. Finally, we
evaluate the statistical significance of differences observed in
performance between our proposed algorithm and the three
alternatives by means of a Wilcoxon signed-rank test (two-
sided) and report the obtained p-values.

VI. IMPLEMENTATION

A. Proposed Solution

Our solution was implemented in Python using the Tensor-
flow backend. The model was trained for 100 epochs using
a batch size of 32. After each epoch, the performance of the
model was evaluated on the validation set and upon obtaining
the new best result, a snapshot of output weights was taken.
The final snapshot was then used to generate predictions on
the test set of the fold.

The simplicity of the pipeline makes the proposed algorithm
computationally efficient. Each single training epoch (i.e.
single swipe through all training recordings) takes 15 seconds
on a modern home-use GPU (GeForce GTX 1070) or 135
seconds on a CPU (Intel Core i7-6700). The inference time
for a 20-second recording, including preparation of input data
(resampling and spectrogram generation) takes 340ms on CPU
and under 50ms on GPU.

Two examples of network predictions are shown in Figure
1.

B. Baseline models

We used the publicly available author implementations of
the three reference algorithms considered in this paper. For
tunable parameters lacking available default values we tested
all available options and chose the best performing ones in
our evaluation.

In particular, this was the case for SVM parameters used in
the solution proposed by Ortiz et al. In case of Humayun et
al., we used only the first stage of their two-stage solution as
their solution was designed to solve a different problem than
defined here. For the solution of Maknickas et al. we modified
the original author code to match the pipeline described in this
publication. This applies in particular to implementation of 2-
stage pipeline with pre-training model using balanced classes
and finetuning the model using original classes ratio.



Fig. 2. Cumulative confusion matrices obtained from evaluation experiments
for all four considered algorithms.

TABLE I
HEART MURMUR DETECTION PERFORMANCE OF EVALUATED

ALGORITHMS (CUMULATIVE)

Proposed Ortiz Maknickas Humayun
solution et al. et al. et al.

Precision 83.7% 49.9% 78.9% 60.8%
Sensitivity (Recall) 84.0% 88.2% 73.8% 72.5%

Specificity 96.0% 78.5% 95.2% 88.6%
F1-score 83.9% 63.7% 76.3% 66.1%
BACC 90.0% 83.3% 84.5% 80.6%

VII. RESULTS

We now summarize results of the evaluation procedure
performed on the proposed solution and three baseline models.
Cumulative confusion matrices obtained from all four experi-
ments are depicted in Figure 2.

Based on these results we calculated evaluation metrics,
which are presented in Table I.

As can be seen, our solution performed the best with regards
to precision, specificity, F1-score and balanced accuracy. Our
main evaluation metric, the F1-score, is witness to an improve-
ment of 7.6 percentage points of our method with respect to
the best reference algorithm of Maknickas et al. [15].

In terms of sensitivity, the solution of Ortiz et al. [14]
performed best. Note, however, that it was characterized by
very low precision (49.9%) and specificity (78.5%).

In order to evaluate the significance of the differences in
performance of tested models, we summarize the variability
of metrics between folds in Table II, where mean values and
standard deviations for each metric are given. Additionally the
table includes p-values obtained by performing the Wilcoxon
signed-rank test for each considered metric (numbers in round

brackets). The Wilcoxon test was performed between the
proposed solution and each of the three alternative algorithms.

Amongst all tested combinations, assuming a significance
level of 5%, we fail to reject the null hypothesis that the
distributions are the same in only two cases. In particular,
according to the test, precision and specificity of our proposed
algorithm is not significantly higher than that of Maknickas et
al. However, our proposed model shows significantly higher
sensitivity, F1-score and balanced accuracy. Compared do
Humayun et al., our solution shows significantly higher per-
formance in terms of all presented metrics. Also with respect
to Ortiz et al. all differences turned out to be significant,
which means that the baseline solution shows higher sensitivity
compared to our algorithm (although the p-value is close to the
thresholds), but the performance of our model is significantly
higher in all remaining metrics. Moreover our solution shows
significant improvement over all considered benchmarks in
terms of the F1-Score and balanced accuracy.

Going beyond the performance in detection of hear murmur,
we also studied analogous performance with respect to the task
of segmentation. This evaluation was performed with 10ms
time resolution at the frame level. We accumulated information
from all frames of all evaluated recordings, yielding almost 7
million individual ground truth - prediction pairs. For each of
the five classes we calculated the same set of metrics as in the
discussion of heart murmur performance: precision, sensitivity
(recall), specificity, F1-score and balanced accuracy. Results
are presented in Table III.

These findings show that our solution performs heart cycle
segmentation well. The only class for which the performance
is not satisfactory is the class that represents lack of audible
heartbeat (’no heart’). The reason for this is that this class is
heavily under-represented in the dataset used in this study. In
fact, only 8.7% of audio frames in the PhysioNet 2016 [10]
hand-corrected augmentations are labelled as ’no heart’. This
problem can be easily solved by extending the training dataset
with more examples of recordings that have no heartbeat.

VIII. CONCLUSIONS

In this paper a new solution to the heart murmur detection
problem was presented. We propose to train the model for
simultaneous detection and segmentation of heart cycles and
heart murmur prediction. This is in contrast to the standard
2 stage approach consisting first of heart cycle detection
followed by classification of heart murmur presence. Our
solution displays a significant advantage over the considered
benchmarks and has the following additional advantages that
make it suitable for implementation:

• Simple pipeline consisting of single model that accepts
raw audio signal

• Can be trained on recordings provided only with heart
murmur label, only with heart segmentation, or provided
with both

• Provides output on the validity of the recording (i.e. if a
heartbeat was detected) and heart rate.



TABLE II
HEART MURMUR DETECTION PERFORMANCE OF EVALUATED ALGORITHMS (VARIABILITY BETWEEN FOLDS AND WILCOXON TEST P-VALUES)

Proposed solution Ortiz et al. Maknickas et al. Humayun et al.

Precision 83.983.983.9± 6.2% 50.5± 8.9% (0.005) 78.9± 6.9% (0.139) 62.1± 8.3% (0.005)
Sensitivity (Recall) 84.1± 7.6% 88.288.288.2± 5.9% (0.047) 73.8± 7.4% (0.005) 72.3± 7.8% (0.037)

Specificity 96.096.096.0± 1.8% 78.5± 5.7% (0.005) 95.2± 1.6% (0.406) 88.5± 5.6% (0.005)
F1-score 83.683.683.6± 3.5% 63.7± 6.2% (0.005) 75.9± 5.1% (0.013) 66.2± 3.9% (0.005)
BACC 90.190.190.1± 3.3% 83.4± 2.0% (0.005) 84.5± 3.5% (0.007) 80.4± 2.5% (0.005)

TABLE III
PERFORMANCE OF PROPOSED SOLUTION IN HEART CYCLE

SEGMENTATION TASK (CUMULATIVE)

no
heart S1 systole S2 diastole

Precision 61.9% 88.9% 88.7% 85.2% 91.4%
Sensitivity (Recall) 61.5% 86.3% 88.9% 80.1% 93.9%

Specificity 96.4% 98.1% 97.1% 98.1% 93.1%
F1-score 61.7% 87.6% 88.8% 82.6% 92.6%
BACC 93.3% 96.3% 95.5% 95.9% 93.5%

We believe that proposed solution is an important step
towards developing AI algorithms that can be commonly
used by both medical staff and individual home users. In
the first case, they can play both an educational as well as
supportive role providing aid whenever a physician is uncertain
of diagnosis. In principle, this could help enhance the audible
heart sound identification skills of physicians and also allow
the detection of sounds that are undetectable to the human ear.
Home users could benefit from access to automatized basic
screening of household members and allow for fast detection
of potential problems without the need to visit a doctor in
person. This, in turn, should also reduce waiting times for
patients who are in more immediate need of consultancy.
Moreover, we expect that the general framework we used for
solving the heart murmur detection problem will be useful in
other signal processing domains as well, especially in those
that combine tasks of localized detection and overall signal
classification.
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