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Abstract—Image captioning is a multi-modal complex task in
machine learning. Traditional methods focus only on entities
in visual strategy networks, and can’t reason about the rela-
tionship between entities and attributes. There are problems
of exposure bias and error accumulation in language strategy
networks. To this end, this paper proposes a multi-level visual
fusion network model based on reinforcement learning. In the
visual strategy network, multi-level neural network modules are
used to transform visual features into feature sets of visual
knowledge. The fusion network generates function words that
make the description more fluent, and is used for the interaction
between the visual strategy network and the language strategy
network. The self-criticism strategy gradient algorithm based on
reinforcement learning in language strategy networks is used to
achieve end-to-end optimization of visual fusion networks. We
evaluated our model on the Flickr 30K and MS-COCO datasets,
and verified the accuracy of the model and the diversity of model
learning subtitles through experiments.Our model achieves better
performance over state-of-the-art methods.

Index Terms—Image Captioning, Visual Fusion, Reinforcement
Learning, Policy Network

I. INTRODUCTION

Image captioning can be understood as giving a picture a
piece of text that is described in a natural language. Image
captioning and Visual Question Answering (VQA) [16] system
is an intersection of computer vision and natural language
processing (NLP), which is a more challenging task than target
detection, image classification and semantic. In the extraction
of image entities and attributes, we also infer the relationship
between entities and attributes.
Inspired by machine translation, the encoder-decoder [1], [10],
[11]frameworks are widely used in image captioning. The
encoder side extracts image features using a convolution neural
network (CNN). The decoder end inputs the extracted image
features into a Long Short-Term Memory (LSTM) network,
then outputs a sequence describing the image. However, CNN
does not recognize the relationship between scenarios based
on context when extracting visual features. When using visual
attention, only one visual area can be fixed at each step,
and there is no interaction between different visual areas.
When dealing with complex scene combinations, the sequence
captioning error occurs over time.
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Fig. 1. MVF first detects targets present in the image.

The human visual system is not a simple scene overlay when
describing a colorful world. Not only will the visual fusion
be based on the context, but also multi-step inference based
on the received visual signals. This is a human talent, but
it is a challenging task for the machine. Although visual
representation learning [13] and language modeling [17] have
made great progress in their respective ways in recent years,
how to establish cross-modal connections between vision and
language is still an urgent problem to be solved. The multi-
level visual fusion networks proposed in this paper does
not only fix the current visual attention when generating
the sequence, but interprets the visual information of the
previous time step as a scenario, and then uses the current
visual attention perception determines whether the situation is
conducive to the generation of the next word. Compared with
the traditional attention model [19], which encoder context into
the hidden state of LSTM, the method presented in this paper
shows the role of context in predicting sequences. As shown
in Figure 1 , the target detection module first detects entities
in the image (such as: ”man”, ”horse”) and considers their
relevant regions. The attribute module converts the attributes
extracted by CNN into entity attribute knowledge feature sets,
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and generates adjectives describing the entities. (eg: ”red”,
”brown”). Then the relational module infers the relationship
between the entity and the entity, the entity and the attribute in
multiple steps. For example, according to the entities ”man”
and ”horse”, according to the context, ”is riding”. Finally,
when generating sequences, the fusion network can make
the generated description more coherent and consistent with
grammatical rules.
In summary, the main contributions of this paper are as
follows:
i) An end-to-end MVF model is proposed, which fusion multi-
level visual features and enriches visual language tasks through
the matching of different neural modules.
ii) On this basis, the attention module is redesigned. The
adaptive attention in this paper has different attention strategies
for different parts of speech, which reduces the interference
of non-visual gradients on visual information.
iii) Finally, the design module with a controller has used to
fine-grain the tasks of each neural module described in the
image. The experimental results show that the CIDEr score of
the MVF model is significantly improved. MVF is a general
framework that supports potential improvements.

II. RELATED WORK

A. Image captioning

The study of image caption has a long history. Early
image captioning methods used template-based filling first
constructing a sentence pattern when generating a captioning,
and then filling the word into a fixed sentence pattern. This
method generates a captioning of the template and the word
function is not joint training, so performance and evaluation
indicators do not perform well. Inspired by machine trans-
lation, the attention-based encoding and decoding framework
[1], [3], [10], [21] has recently been used to achieve superior
performance. Among them, Lu et al. [10] found that the
gradient of the non-visual word would mislead or reduce the
effectiveness of visual information, and proposed an adaptive
gating mechanism, and decoders had different language strate-
gies for different words. Chen et al. [3] proposed channel
attention, studied the effects of visual attention model on
space and channels, and applied the attention mechanism to
the coding end. Anderson et al. [1] applied target detection
technology to image captioning and proposed a bottom-up
attention mechanism, which could make the image captioning
more natural, but could not deduce the relationship between
entities and attributes in the image. The above model only
focuses on the visual attention of the current time step and
ignores the consideration of visual context over time, which
we believe is a key factor leading to the obscurity of the cap-
tioning sequence. For this reason, we introduce the situational
awareness fusion network, which integrates the previous time
step content with the current time step attention. The attention
network generates more efficient feature vectors, which are
then inputted into the language strategy network.

B. Strategy Gradient

The image describes the use of cross entropy loss as a loss
function during training, using backpropagation to maximize
the likelihood of a ground-truth. As discussed in [2], the
training LSTM network uses Teacher forcing—the input of the
actual word of the image captioning label at each step, but at
the time of testing, the input to the next moment of the LSTM
network is the output of a moment is not a real word, which
leads to exposure bias. The word at the next moment in the
test depends on the word generated by the previous time. If the
word generated at a certain moment is not good, the error will
be accumulated, and the word generated later will be affected.
Cross entropy is used during training, but there are problems
in the evaluation when using BLEU, CIDEr, and ROUGE.
The concept of sequence decision-making is introduced in
reinforcement learning, and the problem of exposure bias is
well solved during training [9], [14], [22]. The decision forces
the agent to think about the next move, state, and reward. In the
image captioning, the reward can select the score of CIDEr, the
state is the image, the generated word and the scene, and the
action is to select the visual feature vector and the next word.
Ranzato et al. [12] proposed a strategy gradient method using
Monte Carlo search technique to train sequence-like tasks, and
solved the problem of exposure bias and non-differentiable
measurement of test sequences. Rennie et al. [15] proposed
a self-critical training method. Since the biased baseline can
be an arbitrary function and does not depend on actions, the
model uses the reward of generating words in the test phase
as a baseline. Inspired by the above work, this article has
made some improvements based on the reinforcement learning
framework. At each time step, the output of one time on
the language policy network and the visual policy network
is simultaneously input to the next moment. Therefore, when
generating a visual captioning sequence, not only the current
time step vision but also the context awareness can be used
for multi-step reasoning.

III. MULTI-LEVEL VISUAL FUSION NETWORK

This section will introduce the architecture diagram of
multi-level visual fusion network in detail. As shown in Figure
2, it is a MVF structure diagram based on codecs. MVF
mainly includes three parts: visual network, fusion network,
and language network. In section III-A, the visual network will
be introduced. We define the form of the problem, the image
captioning the task as a continuous decision making process.
The visual network includes a CNN and three neural modules,
which generate feature vectors for language decoding. In
section III-B, we will introduce the fusion network, which
includes adaptive attention module, module controller, and
multimodal attention. Section III-C will introduce the language
network. LSTM inputs part of the accumulated situational
awareness into the module controller and the fusion network
for multi-step reasoning.
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Fig. 2. MVF structure diagram with a loop fusion process added after the to better represent decoding. The dashed line from the LSTM module to the control
module and the fusion module indicates the context in which the sentence needs to be observed.

A. Visual Network

In this paper, Given image I , the local features {v1, · · · , vk}
of the image are extracted using Faster R-CNN [13], and vi
is the feature of the localized area of the mean, and the first k
ROIs are selected for each image. In the meantime, the visual
representation of the image is x = {x1, x2, · · · , xT }, where
xt represents the action of the visual network at time t, the
corresponding description sequence is Y = {y1, y2, · · · , yT },
yt is the action of language network at momentt. At time
step t, each policy network acts as a agent and receives
the state ft of the environment, then produces a series of
(at|a1:t−1, θ) . At time t the visual context {xi<t}, generates
the sequence {yi<t}, and evaluates the score obtained from
the real sequence ground-truth and the generated sequence Y .
Input Pt = {pt,1, pt,2, · · · , pt,d} is a set of attribute features.
The network selects a visual representation y from the input
according to this action. In the visual network, LSTM is used
to encode the environment state, and ϕ is used as the symbol
of the network. Then y is formalized as:

y =

k∑
i=1

ϕi,t, pti (1)

When calculating the action probability distribution, follow the
attention mechanism:

ai,t = WT
a tanh (Whvi +Wpht) (2)

ϕi,t = softmax (at) (3)

Where,Wa,Wh,Wp are trainable hyperparameters. the hidden
state of LSTM can be calculated as:

ht = LSTM (x, ht−1) (4)

We note that at time step t the agent in reinforcement learning
is a network in the visual network, and the action is to select
the next visual feature vt and visual representation yt. The
reward in reinforcement learning comes from the feedback
of the language network evaluation indicators. Therefore, it is
only necessary to determine the environmental state ft of each
network and the input attribute feature pt at time t.

1) Object Detection Module: The target detection module
fot is composed of three parts at time t. The hidden state
hlt−1 at a time on the language policy network LSTM, hidden
state hlt−1 at the moment of the language strategy network
LSTM, the regional feature v̄ = 1

kΣivi of the mean pooling,
and the word embedding matrix at the moment yt−1. Then the
environment code fot of the target detection module at time t
can be expressed as:

fot = LSTM
[
hlt−1, v̄,WpΠt

]
(5)

Wp ∈ R|Σ|×M is a word embedding matrix learned from
scratch,

∏
is one-hot encoding matrix. The area feature

detected at each time step is pct = {v̄1, v̄2 . . . v̄k}, the output
of the target detection module at time t is a single feature vot
, which will be used in the fusion network.

2) Attribute Module: The attribute module is used to detect
the attributes of the entity. It is designed to transform the
attributes of the entity into a feature set of attribute knowledge
and generate adjectives such as ”black” and ”red”. This
module takes the last fully connected layer of ResNet101 and
Faster R-CNN as the feature set of attribute knowledge. How-
ever, not all attributes are helpful for word generation at the
moment. At time t the output of the attribute module is {vi<t}.
The attribute module combines it with the detected regional
features, and selects the feature with the most information as
the input of the LSTM in the visual strategy network. The
environment state of the attribute module is defined as:

fat = LSTM

[
fot ,

1

k

∑
i
vi,WeΠ (yt−1)

]
(6)

Input feature pat = {v1, · · · , vt−1} then merge the regional
feature with vot to get feature δt,i of the attribute module:

δt,i =
ept,i · wT

c∑N
i=1 e

pt,i

(7)

Among them, WT
c is a projection of the attribute feature as

a region feature to the original dimension, and ept,i is the
logarithm of the eigenproperty vector. Attribute characteristics
are used in the relationship module.



3) Relationship Module: The relation network represents
attributes as feature sets of potential interactions between two
objects, which helps to generate verbs like preposition ”in”
or ”riding”. The module hidden state of the language policy
network t− 1, the mean pooled region feature, and the words
generated at the previous moment into the environment state:

frt = softmax (W p
a f

o
t +W p

c f
a
t + bp) (8)

The input features of the relational network come from the
attribute module network:

prt = p
(
δt,i|r,y1:t−1

)
p (r|y1:t−1) (9)

Then the output of the relation network at time t is regarded
as the relation eigenvector vrt .

B. Fusion Network

There are three modules in the fusion network. Adaptive
attention module, module with controller and multimodal
attention. Adaptive module is used to reduce the effectiveness
of non-visual word gradient on visual information, module
collocation controller is used to match modules in visual
network and adaptive module to generate complete descrip-
tion sentences, and multi-modal attention is used for visual
description output. The function of the adaptive attention
module is to generate non-visual information words that make
the description sequence smoother, such as ”a” or ”an”. The
decoder should have different attention strategies for words
of different parts of speech, and the generation of non-visual
information words depends more on semantic information than
visual information.At each time step t, ht can be known
from Eq 2, so the standardized attention weight αi,t can be
calculated as:

αi,t = WT
a tanh (Wvavi +Whaht) (10)

Among them, parameters that can be learned in training of
Wva ∈ RH×V ,Wha ∈ RH×M and Wa ∈ RH At each
moment, Ĉt decides whether the function word ”a” or ”an” is
generated by the model or by the language network. Ĉt can
be expressed as:

ĉt = βtct + (1− βt)hlt (11)

When βt = 0.5 is selected during the experiment, the exper-
imental effect is the best. As can be seen from the adaptive
feature vector Ĉt and the standardized attention weight αi,t,
the environment encoding of the adaptive attention module is:

fst = LSTM

[
k∑

i=1

αi,tĉt, v̄,WeΠt−1

]
(12)

It will be used in each step of the language strategy network
and will be considered part of the context in subsequent time
steps. We noticed that although the input characteristics of
each module are different, the coding environment is partially
the same. In the experiment, in order to avoid the occurrence
of overfitting and reduce the complexity of the model, this
article shares the LSTM parameters.
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Fig. 3. Module controller structure, which soft-merges the environmental
states encoded by four modules into a fusion feature.

The module controller will be used to describe the word
collocation of the sequence. Its structure is shown in Figure
3 , although the existing image description methods based on
slot filling can realize simple visual reasoning, how to combine
simple visual neural modules to define a complete set of visual
reasoning in the face of complex scenes. Before visual features
are fused, the input attribute features are transformed into
information features: fot = AttObj (pot , ht)

fat = AttAtr (pat , ht)
frt = AttRela (prt , ht)

(13)

Where, ht is the state of LSTM in the module controller at
timet. And input features pot , pat and prt of object detection
module, attribute module and relational module are generated
by three visual modules in section III-A. According to Eq
13, the three transformed features can be obtained, and the
adaptive attention module can get fst . The module controller
generates four soft weights for them, and the process of
generating soft weights is expressed as: x = Concat (pot , p

a
t , p

r
t , ht)

w = Softmax(LSTM(x))
vt = Concat (wof

o
t , waf

a
t , wrf

r
t , wff

s
t )

(14)

Among them, x is a concatenation of three visual input vectors,
and w is a four-dimensional soft attention vector. The resulting
vector vt is sent to the language strategy network for decoding.
Visual cues and language context are indispensable conditions
for generating soft weights and modules. In addition, the
layout of the neural module at the next moment is highly
similar to the layout at the previous moment. Therefore, LSTM
is used to accumulate this knowledge and then update to
generate new soft weights.

C. Language Network

At each time step, MVF generates a visual representation
of the merged situation, selecting the word that best fits the
current situation. The language strategy network takes the
multimodal visual feature vector and the implicit state hct of



TABLE I
DEMOGRAPHIC PREDICTION PERFORMANCE COMPARISON BY THREE EVALUATION METRICS.

Methods
MS-COCO datasets

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Adative [10] 74.7 58.4 43.9 34.4 25.7 54.8 105.6 -

SCST [15] 77.6 61.8 47.4 34.9 25.2 56.6 116.4 18.1

SCA-CNN [3] 70.5 49.6 43.7 31.6 25.1 - 97.3 17.8

Top-Down [1] 73.8 54.6 44.2 36.2 26.1 55.4 120.4 19.1

NBT [11] 75.5 56.2 43.8 34.9 26.4 - 108.9 20.4

RFNet [6] 78.1 60.5 47.4 37.5 26.3 57.3 125.7 19.7

GHA [18] 73.3 56.4 46.2 35.1 25.5 55.8 99.8 18.9

CGO [23] 78.5 60.2 48.7 34.4 25.7 55.8 125.2 -

SGAE [20] 77.6 63.8 48.4 36.9 25.2 57.6 126.4 19.1

MVF 80.5 64.1 49.3 38.5 28.2 58.1 128.1 22.1

the work as input, and then updates the implicit state of LSTM:

hlt+1 = LSTM
(
[hct , vt] , h

l
t

)
(15)

When calculating the distribution of words in the vocabulary,
this paper uses the fully connected layer as the hidden state of
LSTM. The probability of each word after normalization by
the softmax function can be expressed as:

ϕ (yt|y1:t−1) = softmax
(
Wph

l
t + bp

)
(16)

Where by is the bias value and Wy is the weight parameter,
both of which are learned in training. The complete captioning
sequence is the product of all time step conditional distribu-
tions, which can be expressed as:

ϕ (y1:T ) =

T∏
t=1

ϕ (yt|y1:t−1) (17)

IV. EXPERIMENTS

In this section, we will first introduce the data set used in
the experiment and the hyperparameters set in the experiment.
Then compare the different methods and discuss some details
during the experiment in detail. Finally, quantitative and
qualitative analysis of the experimental results.

A. Dataset

In selecting the experimental dataset, the image described
herein is the most popular MS-COCO dataset [8]. There are
82,783 pictures in the data set for training, 40,504 pictures for
evaluation, and 40,775 pictures for testing, each with 5 sen-
tences. Since the official test set is not publicly available, this
article follows the Karpathy split [7] used in previous work,
113,287 images for training, 5,000 images for evaluation, and
5,000 images for testing.

B. Parameter Setting

In order to make Faster R-CNN faster in convergence, this
paper uses ResNet-101 [5] to initialize network parameters.In
the cross entropy training process, the Adam optimization

algorithm is used for optimization. The initial learning rate
is set to 5e-4, and the index is reduced by 0.8 every 5 cycles.
The total training period is set to 100 cycles, and after 40
cycles, intensive learning training is started, the learning rate
is set to 5e-5, and the contraction is 0.1 every 10 cycles. The
batch size is set to 100 pictures at a time, and the beam width
of the beam search is set to 5. The number of layers of the
LSTM is set to 1, the number of hidden cells is set to 1300,
the number of hidden cells in Eq 12 is set to 1024, and the
word embedding size is set to 1000.

C. Comparison with State-of-the-Art Methods

In the comparison of experimental methods, this paper
compares the image description based on reinforcement learn-
ing with the traditional image description based on codec
framework. The methods of using reinforcement learning are:
SGAE [20],CGO [23],Top-Down [1],NBT [12], RFNet [6],
GHA [18]. The results of the experiment using the MS-COCO
dataset are shown in Table I. MVF achieved state-of-the-art
results on multiple evaluation indicators. As shown in Figure
4, if RL-based fine-tuning is used, the experimental results will
be further improved. Traditional image description methods
ignore the influence of context on the description sequence,
and some important visual information will be lost as the
time step increases. The MVF model proposed in this paper
alleviates this problem through the fusion of visual features at
different stages. It can be seen from the results that the MVF
model proposed in this paper achieves better performance
than traditional methods in almost every metric, which clearly
shows the effectiveness of the proposed MVF model.
As shown in Table II, it is the MVF online test result. Please
note that this model exhibits good performance compared to
industrial companies with extensive computing resources. With
the fine-tuning of parameters and the improvement of hardware
resources, we believe that the MVF model will have a lot of
potential improvement. In order to better understand MVF, as
shown in Figure 6, this paper visualizes the output prediction
of the language policy network. Perceptually fused networks



TABLE II
COMPARISON OF MVF ON THE MS-COCO TEST SERVER AND SEVERAL OTHER METHODS

EVALUATION INDICATORS.

Methods
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

PG-CIDEr [9] 75.1 88.6 59.1 84.2 44.5 73.8 33.6 63.7 27.5 33.9 55.1 69.4 104.2 107.1

SCST [15] 78.2 90.7 61.9 86.0 47.0 75.9 34.6 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Google-NIC [19] 71.2 87.6 53.9 80.2 41.2 69.7 30.9 58.7 25.4 34.6 52.9 68.4 94.2 94.7

Adative [10] 74.4 92.0 58.4 84.5 43.9 74.6 33.5 63.7 26.4 36.0 55.1 71.2 104.2 105.9

SCA-CNN [3] 71.2 88.9 54.5 81.4 41.0 69.1 31.6 57.9 23.8 33.2 53.1 67.4 91.2 92.1

Top-Down [1] 80.2 93.7 64.2 87.9 49.1 80.2 36.9 68.5 27.0 35.9 56.4 70.8 117.5 124.1

NBT [11] 69.1 94.6 59.2 86.7 48.7 81.3 34.7 67.5 27.3 34.6 55.6 71.6 108.9 112.3

GHA [18] 72.9 93.7 56.0 81.8 41.9 70.8 31.3 59.8 25.2 34.1 53.3 68.3 95.4 96.3

RFNet [6] 78.4 94.0 64.9 88.2 50.1 80.1 38.0 68.0 28.2 37.2 58.2 73.1 122.9 125.1

SCNT [4] 77.6 93.1 61.3 86.1 46.5 76.0 34.8 64.6 26.9 35.4 56.1 70.4 112.6 115.3

CGO [23] 77.8 92.9 61.2 85.5 45.9 74.6 33.4 62.5 26.4 33.4 55.4 69.1 110.2 112.1

SGAE [20] 78.6 93.3 64.5 88.9 50.7 80.4 37.5 68.7 28.2 37.2 58.6 73.6 124.8 126.5

MVF 81.0 95.3 65.0 89.3 51.2 79.6 38.5 69.7 28.7 38.0 57.3 74.4 127.6 128.4

can not only focus on single entity objects in the graph, such as
dogs, teddy bears, and beds. And you can generate a combined
word placement that connects the physical teddy bear and the
bed. The combined generated words make the captioning more
human-like, and in the case of a deep understanding of the
scene, it is possible to avoid generating rigid captioning sen-
tencesfluctuates less. Compared with the NBT model, it fully
reflects the advantages of multi-level visual fusion. Adaptive
attention reduces the interference of non-visual gradients on
visual information, and has different attention strategies for
different parts of speech. Modules and controllers enrich visual
semantic information, define a complete set of visual reasoning
steps, and complete complex description tasks through the
combination of neural modules.

Fig. 4. Fine-tuning RL parameters and METEOR evaluation index have been
improved to some extent.

In addition to the BCMR indicator, the SPICE evaluation
indicator of MVF has also improved to some extent. SPICE
subdivides semantic categories and has the greatest correlation

with human visual judgment results. In Figure 5, compared
with Top-Down and NBT, MVF has improved the classi-
fication index of semantic categories. MVF fully considers
the relationship between entities and attributes, and performs
knowledge reasoning on visual context.

Fig. 5. Comparison diagram of SPICE semantic classification results of MVF.

D. Ablation study

The collocation between different neural modules has dif-
ferent variants. In this section, the MVF model is studied in
detail through the ablation comparison experiments. MVF/O+Self

means using the target detection module and adaptive attention
module, MVF/O+Cont means using the target detection module
and module with the controller, MVF/O+A+Self means using the
target detection module, attribute module and adaptive atten-
tion module, MVF/O+R+Self means using target detection module,
attribute module and adaptive attention module, MVF/0 + R +

Cont means target detection module, relationship module and
module with controller. The experimental results are shown
in Table III. Compared with MVF/O + Self and MVF/O + Cont,
the MVF/O + Self has a certain degree of improvement, which



A dog and a teddy

bear laying on a bed

Fig. 6. Visually describes the sequence generation process.

indicates that the function words are not the key factors
affecting the final description sequence, but the function words
in the proper position make the description more natural.
MVF/O+A+Self is significantly improved compared to MVF/ O+R+Self,
indicating that the rich visual fusion information comes from
the last few time steps. The convolutional neural network
extracts the primary image features in the shallow layer and the
relationship network can effectively use visual context visual
information. Compared with MVF/O+A+Self and MVF/O+R+Cont, it
shows that the module with the controller can handle the
matching between neural modules very well, avoiding the
over-fitting phenomenon of the entire network.

TABLE III
PERFORMANCE OF ABLATION EXPERIMENTS ON MS-COCO

DATASET.

Modle BLEU-4 METEOR ROUGE CIDEr SPICE

MVF/O+Self 36.9 26.6 56.6 123.1 20.9

MVF/O+Cont 37.8 26.8 57.0 123.6 21.2

MVF/O+A+Self 37.2 27.4 57.4 126.7 21.1

MVF/O+R+Self 37.6 27.4 57.4 124.7 21.1

MVF/O+R+Cont 38.5 28.3 57.9 128.3 21.6

When training a generated sequence using a strategy gradient,
the reward function can choose CIDEr, BLEU, METEOR,
ROUGE, and SPICE. As shown in Table IV , the horizontal
axis represents the evaluation index at the time of training,
and the vertical axis represents the evaluation index at the
time of evaluation, and optimization of different evaluation
indexes may result in different results. Through experimental
comparison, it is known that the specific evaluation index is

optimized during training, and the index can obtain the best
performance when tested. Optimizing the overall performance
of BLEU and CIDEr is the best, but the cost of computing
is more than CIDEr when using BLEU as a reward, so this
article uses CIDEr as an evaluation index.

TABLE IV
PERFORMANCE OF ABLATION EXPERIMENTS ON MS-COCO

DATASET.

Metric BLEU-4 METEOR ROUGE CIDEr SPICE

BLEU-4 38.5 36.6 37.4 37.9 37.3

METEOR 26.5 28.4 27.3 27.2 26.8

ROUGE 56.7 57.6 58.1 56.4 57.0

CIDEr 114.5 113.4 124.0 128.4 122.3

SPICE 20.2 19.4 19.8 20.6 21.1

V. CONCLUSION

This paper proposes an image description framework based
on visual fusion network. MVF makes full use of the ad-
vantages of the visual environment for visual reasoning when
generating description sequences, so it can process complex vi-
sual combinations over time. Based on extensive comparative
experiments and ablation experiments, the validity of the MVF
model is tested on the MS-COCO dataset. Compared with the
deep learning-based image description model, the experimen-
tal results of the MVF model are significantly improved. In
future work, 1) apply the MVF model to other visual reasoning
tasks—visual question answering systems, and 2) migrate the
exploration scenarios into scene graph generation and video
description.



ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Nos. 61866004, 61663004, 61966004,
61962007, 61751213), the Guangxi Natural Science Founda-
tion (Nos. 2018GXNSFDA281009, 2017GXNSFAA198365,
2019GXNSFDA245018, 2018GXNSFDA294001), the In-
novation Project of Guangxi Graduate Education(Nos.
XYCSZ2020071), the Guangxi "Bagui Scholar" Teams for
Innovation and Research Project, and Guangxi Collaborative
Innovation Center of Multi-source Information Integration and
Intelligent Processing.

REFERENCES

[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark
Johnson, Stephen Gould, and Lei Zhang. Bottom-up and top-down
attention for image captioning and visual question answering. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6077–6086, 2018.

[2] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-
uled sampling for sequence prediction with recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 1171–1179,
2015.

[3] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei
Liu, and Tat-Seng Chua. Sca-cnn: Spatial and channel-wise attention in
convolutional networks for image captioning. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
5659–5667, 2017.

[4] Junlong Gao, Shiqi Wang, Shanshe Wang, Siwei Ma, and Wen Gao.
Self-critical n-step training for image captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
6300–6308, 2019.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[6] Wenhao Jiang, Lin Ma, Yu-Gang Jiang, Wei Liu, and Tong Zhang.
Recurrent fusion network for image captioning. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 499–515,
2018.

[7] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3128–3137, 2015.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[9] Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy.
Improved image captioning via policy gradient optimization of spider. In
Proceedings of the IEEE international conference on computer vision,
pages 873–881, 2017.

[10] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing
when to look: Adaptive attention via a visual sentinel for image
captioning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 375–383, 2017.

[11] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Neural baby
talk. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7219–7228, 2018.

[12] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech
Zaremba. Sequence level training with recurrent neural networks. arXiv
preprint arXiv:1511.06732, 2015.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[14] Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and Li-Jia Li. Deep
reinforcement learning-based image captioning with embedding reward.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 290–298, 2017.

[15] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and
Vaibhava Goel. Self-critical sequence training for image captioning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7008–7024, 2017.

[16] Jiaxin Shi, Hanwang Zhang, and Juanzi Li. Explainable and explicit
visual reasoning over scene graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8376–
8384, 2019.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[18] Qingzhong Wang and Antoni B Chan. Gated hierarchical attention for
image captioning. In Asian Conference on Computer Vision, pages 21–
37. Springer, 2018.

[19] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In
International conference on machine learning, pages 2048–2057, 2015.

[20] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-
encoding scene graphs for image captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
10685–10694, 2019.

[21] Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao Mei. Boosting
image captioning with attributes. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 4894–4902, 2017.

[22] Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang Gong, Yongxin
Yang, and Timothy M Hospedales. Actor-critic sequence training for
image captioning. arXiv preprint arXiv:1706.09601, 2017.

[23] Yue Zheng, Yali Li, and Shengjin Wang. Intention oriented image
captions with guiding objects. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8395–8404, 2019.




