

Self-Optimisation of Dense Neural Network

Architectures: An Incremental Approach

Antonio García Díaz

IRIDIA-CoDE

Université libre de Bruxelles

(ULB)

Brussels, Belgium

agarciad@ulb.ac.be

Hugues Bersini

IRIDIA-CoDE

Université libre de Bruxelles

(ULB)

Brussels, Belgium

bersini@ulb.ac.be

Abstract—This paper presents a newly developed self-

structuring algorithm for generating convolutional neural

networks, as well as the results of preliminary tests performed

on it. The algorithm produces DenseNet and DenseNet-BC

architectures layer by layer from scratch, at the same time as

they are being trained. Experimental results for well-known

image classification datasets (CIFAR-10 and SVHN) are

promising. The accuracy levels of generated networks are not

significantly different than those of prebuilt DenseNet and

DenseNet-BC with similar topologies, and are approaching the

state of the art for these datasets.

Keywords—neural network, architecture, topology,

optimization, self-structuring, DenseNet, EMANN, connection

strength

I. INTRODUCTION

An important aspect of the construction of a neural
network (NN) model is the architecture, or topology, of the
network – that is, its inner structure. Indeed, the so-called
“topology problem” is one of the main concerns when
implementing NN: how many layers, how many neurons (or
kernels) per layer, and what connection scheme for these
neurons and layers, would make the NN better suited for a
given task.

The aim of the topology problem is to make a NN perform
better on a task, by overcoming limitations that are not due to
the learning algorithm, but rather inherent to the selected
topology and to some of its settings [1]. Nevertheless,
parameters such as the learning rate, momentum value, and
epoch size for the learning scheme may also be considered
part of the topology problem [2].

One of the most obvious aspects of the topology problem
is the choice of the size of the NN architecture. On one hand,
a poorly structured NN [3] or a NN with few hidden neurons
[4] may underfit the dataset, as it will lack the representational
power to model the diversity of the dataset’s items, or the
complexity inherent in them. On the other hand, an
architecture that has been structured so as to suit every single
item in the dataset may cause the system to be overfitted [5],
owing to its excess information capability [6].

Nowadays the topology problem is often solved through
means of trial and error [4]: candidate topologies are

handcrafted by humans, and their parameters’ values are tuned
through experimentation and testing. This process often
becomes a tedious and time-consuming search for the right
values [5]. For this reason, there is growing interest in
techniques for automatically designing NN architectures [7],
despite these techniques not being widely used today (as they
can be computationally expensive).

In order to become a viable alternative, these algorithms
should produce topology designs that are both more efficient
for a given task and simpler in their design than their
handcrafted equivalents are. By “more efficient for a given
task”, it is understood that the architecture, once properly
trained, can produce predictions for a given problem that are
as accurate as possible. By “simpler in their design”, it is
understood that the topology has a small and clean design
scheme: as few layers as possible, and very few (if any) loops
and branches.

This paper presents the preliminary results obtained with
a newly developed algorithm of the kind described above.
This is a self-structuring algorithm – it builds a convolutional
neural network (CNN) architecture from scratch, by
incrementally adding layers on top of each other while the
network is being trained, and stops when a point that is
deemed sufficiently “optimal” is reached.

The architectures produced by this newly developed
algorithm are based on the DenseNet and DenseNet-BC
Densely Connected Convolutional Networks [8]. DenseNet
are a kind of CNN architectures characterized by their “dense
blocks”, network sections where convolutional layers are
made explicitly complementary to each other (Fig. 1). The
input of each layer is a concatenation of all the previous
outputs in the block, together with the block’s global input.
DenseNet-BC are optimized DenseNet where the input size of
each layer is reduced. This is done by means of bottleneck
layers at each layer output and a compression mechanism at
the end of each block. The DenseNet and DenseNet-BC
architectures built by the self-structuring algorithm presented
in this paper only contain one such dense block, where new
layers are stacked at the output of the previous ones at certain
events during the network’s training.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. Diagram showing the concatenations of layer outputs (including the

global input) in a dense block. Each layer’s output feature maps are

represented in a different colour. Taken from [8].

II. RELATED WORK

Algorithms where the NN is self-structured (or self-
constructed) dynamically, while it is being trained, provide a
timely solution for displacing some of the burden from system
designers. It is for this reason that they have gained the
attention of many researchers [4]. For instance, in 1994 Sam
Waugh [1] reviewed various strategies for gradually
improving NN architectures by means of pruning: pruning on
connections, pruning on weights, and construction or pruning
of hidden nodes. More recently (in 2016), Fadi Thabtah, Rami
M. Mohammad, and Lee McCluskey [4] presented an
opposite solution where the NN model is restructured by
incremental means: tuning some parameters, adding new
neurons to the hidden layer or sometimes adding a new layer
to the network

A. Different Approaches to Self-Structuring

Three main approaches exist to automating a dynamic
self-structuring process for a NN [9]. These are constructive
algorithms, pruning algorithms, and constructive-pruning
algorithms.

Constructive Algorithms (also known as incremental
algorithms) start with a simple NN architecture, such as one
hidden layered NN with a single neuron in the hidden layer
[6]. Recursively, new items and parameters (hidden layers,
hidden neurons, connections, etc.) are added to the initial
topology, until a satisfactory result is reached. After each
addition, either the entire network architecture or only the
recently added parameter(s) are retrained, and they cannot be
modified. Constructive algorithms tend to be relatively simple
to tune because they usually depend on few initial parameters.
These algorithms are also computationally efficient, since
they search for small structures [4].

The first constructive algorithm likely was Dynamic Node
Creation (DNC) [10]. This is a simple algorithm: neurons are
added to the hidden layer one by one whenever the mean
square error on the training dataset stops variating, until a
predefined desired error rate is reached. Its main drawback is
that, since each addition is irreversible, it tends to produce

messy topologies [4]. Another example of a constructive
algorithm is the Cascade-Correlation algorithm (CC-Alg.)
[11], on which several improvements have been proposed,
such as [12].

Pruning Algorithms start with an oversized NN
architecture (i.e.: multiple hidden layers and many neurons in
each layer) [4]. They work by recursively removing items and
parameters (hidden layers, hidden neurons, connections, etc.)
from the network until the final architecture is achieved. After
each pruning phase, the new network is retrained for a while
to let it compensate any post-pruning loss in the performance.
However, if the performance does not improve, the deleted
parameters are restored and others are removed instead.
Usually, only one item or parameter is removed in each
pruning phase [10]. This approach is not without
disadvantages: it may be too time consuming, and the
programmer needs to decide beforehand how big the initial
NN topology should be for the specific problem in question.

Constructive-Pruning Algorithms work in two phases: a
constructive phase and a pruning phase [4]. During the
constructive phase new hidden layers, neurons, and
connections are added. This phase may result in a ridiculously
complicated topology, so a pruning phase is employed to
simplify this topology while preserving the network’s
performance. Examples of constructive-pruning algorithms
for NN can be found at [6], [13] and [14].

B. The EMANN Self-Structuring Algorithm

Particularly relevant for this paper is the EMANN
algorithm [15]. EMANN is mostly a constructive approach,
but it also sometimes uses pruning.

In this algorithm, the topology is built from “modules” or
“blocks”, which are progressively stacked on top of each other
not unlike layers in the DenseNet CNN architecture. These
“blocks” represent MLP networks with two layers each. They
are connected together in a way that ensures complementary
behavior (Fig. 2). Whenever a new MLP “block” is added, a
constructive algorithm is performed on its first layer (or
“hidden layer”).

Fig. 2. Diagram showing an example of the topology structures generated
by EMANN. “Modules” or “blocks” are stacked together in such a way as to

ensure complementarity. Adapted from [15].

Neurons are added to this hidden layer (and sometimes
pruned from it) based on the value of a feature called the
connection strength (CS). For each neuron in a MLP’s hidden
layer, the CS is merely the average (mean) of the weights of
all of its connections.

Because of the specific activation function used by
EMANN neurons (the sigmoid), the CS proves to be a very
good indicator of whether or not a neuron is extracting some
feature from the data, and of how “settled” on identifying this
feature the neuron has become. If the CS is very high, the
neuron has clearly settled on identifying a feature, and if it is
very low, the neuron is not successfully identifying anything
useful.

III. METHODOLOGY

A. The Newly Developed Algorithm

The new self-structuring algorithm automatically
constructs DenseNet and DenseNet-BC architectures from
scratch while they are being trained. Specifically, the
algorithm performs a training routine on what is, initially, an
extremely simple DenseNet or DenseNet-BC network (one
dense block with only one layer). Meanwhile, in-between
certain epochs of the training process, the algorithm may
modify the network by adding new layers at the end of its
dense block. As a result, a network with a suitable layer count
is successfully built and trained from scratch.

The main two reasons why DenseNet and DenseNet-BC
were chosen as the basis for the new algorithm are that the
performance level of these CNN topologies is very close to
the state of the art for most well-known image classification
datasets, and that some relevant parallels can be made between
DenseNet and the topologies that EMANN produces.
Furthermore, unlike other similar CNN architectures such as
Residual Networks (ResNet) [16] and Crescendo Networks
(CrescendoNet) [17], DenseNet make it possible to build a
shallow but optimal scheme by progressively adding layers
one by one. This makes little sense with CrescendoNet
because of their path-based topology, and may take a very
long time with ResNet due to their focus on depth.

The algorithm is based on a measurable feature in each
layer of a DenseNet. This feature is called “connection
strength” or CS. It derives its name from the connection
strength used in the EMANN algorithm, to which it is
analogous. There is one CS for every connection between any
layer l and a previous layer s – CSl,s (the CS between l and s)
is the mean (average) of the filter weights connecting l to s,
taken in their absolute (positive) value.

In the new algorithm, CS values are compared together in
order to extract a measurable feature that identifies layers as a
whole, rather than connections between them. This has been
called a “layerwise interpretation of CS”, or LCS.

The LCS that is used in the algorithm has been named
“relevance for sources”. It is a fraction that expresses, for a
given layer, how many of its sources treat that layer as a
relevant output for sending information (Fig. 3).

Fig. 3. Visualisation of the steps for calculating “relevance for sources”

LCS. An iteration (solid green) is made through connections (slanted blue

stripes) between a layer l and any of its source layers s. The CS of each of
these connections is compared to the maximum CS (solid red) for the

connections between source layer s and its destinations (vertical yellow

stripes).

The “relevance for sources” for a given layer l is calculated
through the following algorithm:

• For any given connection between layer l and a
previous layer s:

o If CSl,s ≥ n ∗ maxλ(CSλ,s), add ‘1’ to the LCS
(n is such that 0 ≤ n ≤ 1).

o Else, add ‘0’ to the LCS.

• Divide the final LCS value by the number of
connections between l and any previous layer
(normalization).

The value of n, the fraction of the maximum LCS for
source layer s that CSl,s is compared with, is usually set to 0.67
(around two thirds).

The algorithm (Fig. 4) begins by initializing a DenseNet
(or a DenseNet-BC) with a single dense block, and only one
layer inside that block. The growth rate (the number of new
convolutions per layer) is set to 12, and the network’s weights
are initialized at random. Afterwards, successive training
epochs are performed on the DenseNet, with a learning rate
initially fixed at 0.1.

Meanwhile, a self-structuring procedure is performed on
the DenseNet. This procedure follows two successive stages:
the so-called “ascension stage” and “improvement stage”.

• The first of these stages is the “ascension stage”, the
main topology-building stage of the algorithm. It is a
stage of quick growth for the network, and is guided
by loops with a fixed duration. This duration,
measured in training epochs, is a settable parameter
called the “ascension threshold” or ‘AT’. The loops
mark the rhythm at which new layers are stacked at
the end of the dense block: whenever a loop (which
lasts for ‘AT’ epochs) ends, a new layer is added. The
ascension stage normally ends when three or more
layers have been stacked together, and one of the
layers “settles” – that is, when its LCS reaches a value
of 1.

Fig. 4. Visualisation of a typical execution of the algorithm. Shows the

evolution of a DenseNet’s architecture throughout the two stages of the
algorithm (ascension and improvement). During the “ascension stage”, new

layers are added to the dense block at the end of cycles with a length of ‘AT’

training epochs. Under normal conditions, the ascension stage lasts until
there are at least three layers in the block and at least one of them has settled

(in the figure’s case there are four layers in the block when the first one

settles). The next stage is the “improvement stage”, which depends on a
countdown of ‘PP’ epochs. Whenever another layer settles, a new layer is

added to the dense block and the countdown is reset. The improvement stage

ends when this countdown is able to end.

• In order to prevent the algorithm from getting stuck in
the ascension stage (a phenomenon which has been
empirically observed to occur with some datasets),
this stage can be terminated if the accuracy of the
network has not changed much in the latest epochs.
The algorithm may thus exit the ascension stage if, in
a window of the (usually 50) latest accuracies
(measured on the validation set), the standard
deviation is below a certain tolerance threshold
(usually set to 0.1).

• After this comes the “improvement stage”: a
“waiting” stage where only a few layers are added at
specific moments. Indeed, since sudden layer
additions could disrupt the training process, a stage
where the network remains mostly unchanged is
necessary for it to recover and reach optimal accuracy
levels. This stage is guided by a countdown system.
The expected length of the countdown, in epochs, is
yet another settable parameter called the “patience
parameter” or ‘PP’. When the improvement stage
begins, a countdown with a duration of ‘PP’ training
epochs starts, at the end of which both the training
epochs and the algorithm end. Nevertheless, if any
additional layer “settles”, a new layer is stacked at the
end of the block and the countdown starts again from
the beginning.

During the training and self-structuring process, the
learning rate may either remain constant at 0.1 or change
under specific conditions. These changes in the learning rate

are mostly reductions, and may be applied in either of two
versions:

• In the first version, which will hereafter be called
“reduce LR #0”, the learning rate is divided by 10 two
times during the ‘PP’ countdown: one when 50% of
the countdown has elapsed, and another one at 75%
of the countdown. In case the countdown is restarted,
the learning rate returns to its original value of 0.1.

• In the second version, which will be called “reduce
LR #1”, the learning rate is also divided by 10 at the
same points during the ‘PP’ countdown. However,
these changes are now permanent, and can only be
applied once. This means that the learning rate is only
modified two times during the training: the first time
that the countdown gets past 50% of the PP, and the
first time that the countdown gets past 75% of the PP.

The previously described self-structuring algorithm was
implemented in Python using the TensorFlow library. The
DenseNet and DenseNet-BC implementation by Illarion
Khlestov [18] was used as a basis for the algorithm’s source
code. An executable file, run_dense_net.py, is used for
commanding the self-structuring, training and testing
operations. The network itself is implemented as an object in
the file models/dense_net.py. The most relevant functions for
building and training networks are also found in that file. The
code is available on GitHub [19].

B. Experimental Work for Designing the Algorithm

The analogous CS for the new self-structuring algorithm,
as well as its layer-wise interpretation (the LCS), were
developed on basis of a set of experiments. These had the
objective of observing changes in the network’s accuracy and
some weight-related features when simple self-structuring
routines were carried out. Meaningful correlations between
these observations would then be established.

In the first of these experiments, it was intended to identify
changes in DenseNet after layer additions, and to understand
at which points it is “better” – with respect to performance –

to add a layer. A naïve routine of layer additions was
performed on a simple DenseNet with only one block and
(initially) one layer. During a training period of 80 epochs,
layers would be added one by one every 10, 20, or 40 epochs.
The additions would stop either after 40 epochs or at the end
of the training.

Two kinds of measures were taken in this experiment:
measures on the network’s performance (its accuracy and
cross-entropy loss, as well as a loss calculated at each layer as
if it were the last layer in the block), and measures on each
layer’s learned parameters (the mean and standard deviation
of the weights in each layer’s convolutional filter).
Comparisons were also made with measures on prebuilt
DenseNet, containing only one block with 1, 2, or 4 layers.

The experiment showed that, in general, layer additions
tend to make the accuracy grow, but also tend to move layer
weights closer to 0. After comparing the experiment’s results
with data from the original DenseNet paper [8], it became
apparent that the learning patterns of DenseNet would initially
need to be measured for each connection independently.

Indeed, because of the design of DenseNet architectures,
in increasingly deep networks some connections are given
more “importance” than others. During training, the weights
of less “important” connections get closer to 0 than other
weights, limiting the impact of these connections through a
“zeroing-out” effect. This could result in a smaller global
mean (and standard deviation) for a layer’s weights. This
became the principle after which the analogous CS was
modelled.

In the second experiment, it was intended to see if this CS
could be generalized to a relevant feature defining an entire
layer. The starting point of this experiment was a normalized
version of the CS, where the CS between a layer and one of
its sources is divided by the maximum CS in that layer.

The experiment consisted in measuring the evolution of
normalized CS values for 300 epochs in two kinds of contexts.
On one side, one-block DenseNets starting with one layer,
where a naïve layer addition routine was applied (adding a
layer every 40, 60, or 80 training epochs). On another, prebuilt
DenseNets with either 1 very deep block (6, 12, or 18 layers)
or 3 shallower blocks of equal depth (2, 4, 6, or 12 layers).

Results showed that, after each layer was added, its
normalized CS values tended to rise until reaching a sort of
equilibrium. Then, they plateaued until the end of the training.
This equilibrium position tended to be closer to 1 (the max CS
value) than 0 (a complete “zeroing-out”). However, in layers
at the end of the block, normalized CS values tended to be
more spread out at their equilibrium point, sometimes even
falling under 0.5 (CS value closer to 0 than to the max CS).

By definition, the connections with the highest CS are also
those with the highest weight values assigned to them. At the
same time, higher weight values cause the information
travelling through a connection to have more repercussion in
the network’s operations – more “importance”. Since, as this
second experiment shows, normalized CS values of early
layers tend towards an equilibrium point close to 1, this means
that all of their sources play important roles in their operations.
A very likely cause is that these layers have learned to exploit

all of their sources optimally, implying that the layers have
been optimally trained.

In conclusion, to evaluate how well a DenseNet layer is
trained, one could compare its CS values together, and see
how many of them are high enough for the connection to be
considered “important” or “relevant”. In the new algorithm,
this became the basis for the layer-wise interpretations of the
CS, or LCS.

C. Testing the Performance of the Algorithm

The algorithm was tested by using it to produce both
DenseNet and DenseNet-BC architectures. Initially, these
architectures were trained on the CIFAR-10 dataset [20] in
order to find optimal values for the ‘AT’ and ‘PP’ parameters
empirically. Afterwards, tests with both the CIFAR-10 and
SVHN [21] datasets were carried out, using both reduce LR
#0 and reduce LR #1 and the following parameter values:
growth rate = 12, (initial) learning rate = 0.1, AT = 10 epochs,
and PP = 200 epochs (these values for ‘AT’ and ‘PP’ were
previously found to produce optimal results).

The above-mentioned tests were also run for a second time
using a version of the algorithm that did not rely on the CS to
end its ascension stage (only stopping based on the validation
set accuracy). Tests with a constant learning rate were also
initially carried out, but these produced worse results than
tests that used learning rate modification schedules did.

In addition, a reference test was devised that consisted in
training and testing prebuilt topologies on the CIFAR-10 and
SVHN datasets. These topologies were DenseNet or
DenseNet-BC of the same kind as those produced by the
algorithm (architectures with only one dense block that
contained a fixed number of layers). The topologies were
initialized with random weights, and then trained for 300
epochs. The learning rate was initialized at 0.1, and then
divided by 10 at epochs 150 and 225 (50% and 75% of the
training).

Each test (both the self-structuring and reference ones)
was replicated five times with the same parameters. In order
to assess the evolution of the accuracy over time, a random
validation set was split off the training data at every epoch. At
the end of each test, for the sake of comparison, the final
accuracy was calculated on both the last generated validation
set and the testing set. The final cross-entropy losses were also
measured on these two datasets. These were stored together
with the architecture’s final number of layers and the total
number of epochs performed. The mean and standard
deviation of these values (over the five replicas) were then
calculated to produce the final results.

The main objective of these tests was to compare the mean
final accuracies obtained for each kind of test. It was hoped to
generate self-structured DenseNet and DenseNet-BC that,
compared with similar prebuilt structures and with the state of
the art, would exhibit a higher accuracy for similar topologies
or the same accuracy for smaller topologies. The best
performing algorithm variants and parameter values for
achieving this goal had to be identified, as well as means to
improve them.

IV. EXPERIMENTAL RESULTS

A. Results Obtained with CIFAR-10

The results obtained with CIFAR-10 can be found in Table
I. Those obtained for their equivalent prebuilt networks,
whose number of layers corresponds to the average layer
count in each self-structuring test, can be found in Table II.
Most of the values were rounded to the closest figure with two
decimals. The only exceptions are the mean and standard
deviation of the final number of epochs, which has been
rounded to the closest integer.

In CIFAR-10, a validation set corresponds to 5,000
random examples cut off the full training set at each epoch, so
that the network is not trained on the entire training set (with
50,000 examples) every time. The validation set mentioned in
both tables is the one used in the last training epoch. In both
tables also, the entire CIFAR-10 test set with 10,000 examples
was used – the network does not process it until the end of the
training.

Currently, the best mean accuracy values are above 80%
on the test set. The low mean number of layers produced
(around 6 or 7) makes these generated structures very simple,
but it may in fact prevent them from reaching higher accuracy
levels. The obtained results are nevertheless approaching the
state of the art (99% accuracy for the CIFAR-10 test set) [22].

TABLE I. SELF-STRUCTURING TESTS USING CIFAR-10

Self-Structuring Tests

Using CIFAR-10

Test Results

Number

of

Layers

End

Epoch

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

Reduce

LR #1

Mean 6.80 355 76.38 0.74 75.52 0.77

STD 1.48 160 2.29 0.06 2.11 0.07

Reduce

LR #0

Mean 6.00 308 74.46 0.80 73.31 0.82

STD 0.71 26 3.80 0.16 4.04 0.18

Dense

Net-

BC

Reduce

LR #1

Mean 9.80 459 79.35 0.71 78.29 0.73

STD 1.64 81 2.51 0.13 3.02 0.13

Reduce

LR #0

Mean 8.40 422 82.05 0.57 80.75 0.59

STD 0.89 63 3.00 0.11 2.92 0.11

TABLE II. PREBUILT ARCHITECTURE TESTS CORRESPONDING TO

SELF-STRUCTURED ARCHITECTURES, USING CIFAR-10

Prebuilt Architecture Tests

Using CIFAR-10

Test Results

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

7 layers

(Reduce

LR #1)

Mean 77.25 0.72 76.68 0.74

STD 2.13 0.11 2.48 0.12

6 layers

(Reduce

LR #0)

Mean 77.84 0.69 76.78 0.71

STD 3.03 0.09 3.43 0.10

Dense

Net-

BC

10 layers

(Reduce

LR #1)

Mean 84.56 0.57 83.74 0.58

STD 1.90 0.10 2.44 0.11

8 layers

(Reduce

LR #0)

Mean 77.27 0.86 76.45 0.86

STD 1.71 0.11 2.02 0.12

The mean accuracies of the self-constructed networks
obtained in these tests are also very close to those of prebuilt
DenseNet and DenseNet-BC with architectures corresponding
to their mean number of layers (rounded to the closest integer).

The version of the algorithm that used reduce LR #1 shows
the best mean accuracies on the CIFAR-10 test set for
DenseNet: 75.52% (vs. 76.68% mean accuracy for prebuilt
DenseNet with 7 layers). For DenseNet-BC, it is the version
that uses reduce LR #0 that results in a greater accuracy:
80.75% (vs. 83.74% for prebuilt DenseNet-BC with 10
layers).

In the case of DenseNet, an analysis of variance
(ANOVA) showed that no significant difference existed
between the mean accuracies of self-constructed and prebuilt
examples. The analysis resulted in a 0.4514 p-value between
the topologies generated with reduce LR #1 and
corresponding prebuilt topologies, and a 0.1810 p-value
between those built with reduce LR #0 and their own prebuilt
equivalents.

An ANOVA performed on DenseNet-BC tests, however,
showed that differences between self-constructed and prebuilt
accuracies are in fact statistically significant (if the α value is
set to 0.05). The p-value obtained for reduce LR #1 tests was
0.0139, while that for reduce LR #0 tests was 0.02672.
Nevertheless, networks generated with reduce LR #0 perform
only slightly better than their prebuilt equivalents, while
networks generated with reduce LR #1 perform only slightly
worse than their own equivalents.

B. Results Obtained with SVHN

The results obtained with SVHN can be found in Table III
and their equivalents for prebuilt networks can be found in
Table IV. Again, all values were rounded to two decimals
except the final number of epochs (rounded to the closest
integer).

The validation sets used for SVHN consist of 6,000
random examples from the training set. As with CIFAR-10,
the validation set results on both tables concern the validation
set created for the last epoch, and the test set results concern
the entire actual test set for the SVHN database.

For this dataset, there is a clear difference between the
results obtained with DenseNet and those obtained with
DenseNet-BC.

In tests with DenseNet, the results in terms of mean
accuracy are above 90%, which is quite close both to the state
of the art (99% accuracy for the SVHN test set) [22] and to the
results obtained from their prebuilt equivalents. This said, the
topologies that are produced tend to be very deep, and not as
homogenous in their depth as for the tests with CIFAR-10.

The best results with regards to accuracy were those
obtained with reduce LR #1. The networks generated by this
version of the algorithm were on average the most complex of
those generated in the tests, with about 20 layers on average
and a standard deviation of 5.50 layers. Nevertheless, they had
a mean accuracy of 92.87% on the SVHN test set (vs. 93.02%
mean accuracy for prebuilt DenseNet with 20 layers).

TABLE III. SELF-STRUCTURING TESTS USING SVHN

Self-Structuring Tests

Using SVHN

Test Results

Number

of

Layers

End

Epoch

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

Reduce

LR #1

Mean 19.80 409 99.99 0.00 92.87 0.31

STD 5.50 73 0.02 0.00 0.54 0.02

Reduce

LR #0

Mean 15.40 361 99.96 0.00 92.02 0.35

STD 5.08 57 0.07 0.00 0.72 0.01

Dense

Net-

BC

Reduce

LR #1

Mean 4.20 236 81.45 0.59 71.81 1.01

STD 2.68 30 12.56 0.42 10.13 0.40

Reduce

LR #0

Mean 3.00 222 81.76 0.55 70.70 0.99

STD 0.00 0 3.05 0.08 1.57 0.08

TABLE IV. PREBUILT ARCHITECTURE TESTS CORRESPONDING TO

SELF-STRUCTURED ARCHITECTURES, USING SVHN

Prebuilt Architecture Tests

Using SVHN

Test Results

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

20 layers

(Reduce

LR #1)

Mean 100.00 0.00 93.02 0.31

STD 0.00 0.00 0.17 0.01

15 layers

(Reduce

LR #0)

Mean 100.00 0.00 92.59 0.34

STD 0.00 0.00 0.13 0.01

Dense

Net-

BC

4 layers

(Reduce

LR #1)

Mean 92.25 0.23 79.34 0.84

STD 1.82 0.05 1.77 0.10

3 layers

(Reduce

LR #0)

Mean 86.74 0.41 73.73 0.95

STD 5.11 0.16 3.88 0.19

A mean accuracy of 71.81% on the test set was obtained
with reduce LR #1 (vs. 79.34% mean accuracy for prebuilt
DenseNet-BC with 4 layers), and one of 70.70% was obtained
with reduce LR #0 (vs. 73.73% mean accuracy for DenseNet-
BC with 3 layers).

However, the differences that were found between the
mean accuracies of self-structured networks and their prebuilt
equivalents were not statistically significant. An ANOVA
performed on the tests with DenseNet shows a p-value of
0.5611 between networks generated with reduce LR #1 and
their equivalents, and one of 0.1143 between networks
generated with reduce LR #0 and their own equivalents. The
results of the ANOVA for tests with DenseNet-BC also
obtained p-values above 0.05: the p-value obtained for reduce
LR #1 was 0.1402, and that obtained for reduce LR #0 was
0.1433.

The low accuracy levels for DenseNet-BC are most likely
due to the very small number of layers produced, as the only
obtained DenseNet-BC with more than three layers (9 layers)
had a final accuracy of 87.58% on the SVHN test set. This
phenomenon occurs when one of the early layers settles too
quickly (its LCS reaches 1 too soon), which seems to be very
common for DenseNet-BC trained on SVHN.

C. Results Obtained With Modified Ascension Stage

Normally, there are two ways in which the ascension stage
can end: either when one of the layers’ LCS reaches 1, or when
the network’s accuracy on the validation set has not changed
much in the latest epochs.

Since the previous experimental results showed that the
first of these requirements makes the ascension stage end too
soon in some cases (i.e. DenseNet-BC trained on the SVHN
dataset), a version of the algorithm without this requirement
was tested.

The previous (self-structuring) tests were run again on a
version of the algorithm that used a modified ascension stage.
The results obtained with CIFAR-10 for this version of the
algorithm are found in Table V, and those obtained with
SVHN are found in Table VI.

In the case of CIFAR-10, the differences between the
accuracies obtained in these tests and those obtained in the
original algorithm are not significant, although the p-value for
DenseNet-BC with reduce LR #1 was of 0.0544. For that case,
the mean accuracy on the test set increased slightly (78.29%
for the standard algorithm vs. 81.81% for the version with the
modified ascension stage).

This increase is probably due to a greater number of layers
obtained with the new ascension stage (an average of nearly
12 layers rather than 10). Nevertheless, although there is also
an increase in the layer count for DenseNet-BC with reduce
LR #0 (11 layers rather than 8), for this combination and all
the other ones the differences in accuracy are not statistically
significant.

When it comes to SVHN, the results of the ANOVA show
that the differences in accuracy are highly significant for all
the tests with DenseNet-BC (a p-value of 0.0027 for reduce
LR #1, and one of 3 * 10-9 for reduce LR #0). Once again, the
most likely explanation for this is a higher number of layers:
the new ascension stage does not tend to get stuck at three
layers anymore, and therefore is able to reach higher levels of
accuracy (91.29% for reduce LR #1, and 92.22% for reduce
LR #0). The difference is also almost significant for the tests
with DenseNet and reduce LR #1 (the p-value was 0.0561).

TABLE V. SELF-STRUCTURING TESTS USING CIFAR-10 (MODIFIED

ASCENSION STAGE)

Self-Structuring Tests

Using CIFAR-10

(Modified Ascension

Stage)

Test Results

Number

of

Layers

End

Epoch

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

Reduce

LR #1

Mean 7.00 331 76.82 0.75 76.61 0.75

STD 0.71 86 3.61 0.18 3.68 0.19

Reduce

LR #0

Mean 6.80 316 77.86 0.68 76.60 0.71

STD 0.45 48 4.01 0.14 4.38 0.15

Dense

Net-

BC

Reduce

LR #1

Mean 12.20 535 82.57 0.58 81.81 0.60

STD 2.17 195 2.03 0.10 1.76 0.10

Reduce

LR #0

Mean 11.00 531 83.19 0.53 82.26 0.56

STD 0.71 128 1.96 0.07 1.90 0.07

TABLE VI. SELF-STRUCTURING TESTS USING SVHN (MODIFIED

ASCENSION STAGE)

Self-Structuring Tests

Using SVHN (Modified

Ascension Stage)

Test Results

Number

of

Layers

End

Epoch

Validation Set Test Set

Accuracy

(%)
Loss

Accuracy

(%)
Loss

Dense

Net

Reduce

LR #1

Mean 15.00 347 99.96 0.00 92.11 0.34

STD 2.92 27 0.04 0.00 0.53 0.02

Reduce

LR #0

Mean 13.80 335 99.95 0.01 91.83 0.35

STD 2.59 26 0.06 0.00 0.33 0.02

Dense

Net-

BC

Reduce

LR #1

Mean 13.80 334 99.63 0.02 91.29 0.34

STD 4.44 44 0.30 0.01 1.03 0.04

Reduce

LR #0

Mean 18.00 378 99.90 0.01 92.22 0.31

STD 3.39 34 0.10 0.00 0.66 0.03

V. CONCLUSIONS AND FUTURE WORK

A new self-structuring algorithm has been developed that
is able to select DenseNet and DenseNet-BC structures for a
given problem, and build them at the same time as they are
being trained. The CNN architectures generated by this
algorithm are able to obtain very good accuracy in some of the
most popular image classification datasets (CIFAR-10 and
SVHN). It is expected that future versions of this algorithm
will be able to produce state-of-the-art CNN, capable of
competing with handcrafted topologies in terms of their
accuracy and simplicity.

After examining the experimental results obtained from
this algorithm, one likely route for future work has been
identified: adding some form of pruning mechanism after the
current two stages (ascension and improvement). In this stage,
the connections with lowest CS would be pruned away, thus
simplifying the network and perhaps allowing it to reach a
higher accuracy.

A version of the algorithm that builds more than one dense
block could also be beneficial in terms of accuracy, but this
could make networks undesirably deep and complex.

ACKNOWLEDGMENTS

This work is part of a PhD thesis titled “Self-Optimisation
of Neural Network Architectures”, carried out at the IRIDIA-
CoDE department (Université libre de Bruxelles, ULB).

REFERENCES

[1] S. Waugh, Dynamic Learning Algorithms, Department of Computer
Science, University of Tasmania, 1994.

[2] I. Basheer, and M. Hajmeer, “Artificial neural networks: fundamentals,
computing, design, and application,” Journal of Microbiological
Methods, vol. 43, pp. 3–31, Elsevier, 2000.

[3] S. Duffner, and C. Garcia, “An online backpropagation algorithm with
validation error-based adaptive learning rate,” ICANN International
Conference of Artificial Neural Networks, Porto, Portugal, 2007.

[4] F. Thabtah, R.M. Mohammad, and L. McCluskey, “A dynamic self-
structuring neural network model to combat phishing,” IJCNN
International Joint Conference on Neural Networks, pp. 4221–4225,
2016.

[5] R.M. Mohammad, F. Thabtah, and L. McCluskey, “Predicting phishing
websites based on self-structuring neural network,” Neural Computing
and Applications, vol. 25, issue 2, pp. 443–458, 2013.

[6] M. Islam, A. Sattar, F. Amin, X. Yao, and K. Murase, “A new adaptive
merging and growing algorithm for designing artificial neural
networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics. vol. 39, issue 3, pp. 705–722, 2009.

[7] G. Bender, P.J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,”
Proceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018.

[8] G. Huang, Z. Liu, L. Van der Maaten, and K.Q. Weinberger, “Densely
connected convolutional networks,” arXiv:1608.06993v5, 2016, last
updated on 28 January 2018.

[9] F. Thabtah, R.M. Mohammad, and L. McCluskey, “An improved self-
structuring neural network, trends and applications in knowledge
discovery and data mining,” PAKDD 2016 Workshops, BDM,
MLSDA, PACC, WDMBF, Revised Selected Papers, Auckland, New
Zealand, pp. 35–47, 2016.

[10] T. Ash, “Dynamic node creation in backpropagation networks,”
Connection Science, vol. 1, issue 4, pp. 365–375, 1989.

[11] S.E. Fahlman, and C. Lebiere, “The cascade-correlation learning
architecture,” Advances in neural information processing systems, pp.
524–532, 1990.

[12] L. Ma, and K. Khorasani, “A new strategy for adaptively constructing
multilayer feedforward neural networks,” Neurocomputing, vol. 31,
pp. 361–385, Elsevier, 2003.

[13] T.Y. Kwok, and D.T., Yeung, “Constructive algorithms for structure
learning in feedforward neural networks for regression problems,”
IEEE Transactions on Neural Networks, vol. 8, issue 3, pp. 630–645,
1997.

[14] S.H. Yang, and Y.P. Chen, “An evolutionary constructive and pruning
algorithm for artificial neural networks and its prediction applications,”
Neurocomputing, vol. 86, pp. 140–149, Elsevier, 2012.

[15] T. Salomé, and H. Bersini, “An algorithm for self-structuring neural
net classifiers,” IRIDIA, Université Libre de Bruxelles, 1994.

[16] K. He, X. Zhang, S., Ren, and J. Sun., “Deep residual learning for
image recognition,” arXiv:1512.03385v1, 2015.

[17] X. Zhang, N. Vishwamitra, H. Hu, and F. Luo., “CrescendoNet: a new
deep convolutional neural network with ensemble behavior,”
arXiv:1710.11176v2, 2017, last updated on 4 January 2018.

[18] I. Khlestov, “DenseNet with TensorFlow,” GitHub repository.
https://github.com/ikhlestov/vision_networks, 2017, last updated on 31
July 2018.

[19] A. García Díaz, “Study of deep learning algorithms: incremental
solutions,” Master thesis, Université Libre de Bruxelles, unpublished.
https://github.com/AntonioGarciaDiaz/MasterThesis-
IncrementalDeepLearning, 2018.

[20] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master thesis, Department of Computer Science, University
of Toronto.

[21] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[22] https://paperswithcode.com/task/image-classification.

