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Abstract—This paper presents a newly developed self-

structuring algorithm for generating convolutional neural 

networks, as well as the results of preliminary tests performed 

on it. The algorithm produces DenseNet and DenseNet-BC 

architectures layer by layer from scratch, at the same time as 

they are being trained. Experimental results for well-known 

image classification datasets (CIFAR-10 and SVHN) are 

promising. The accuracy levels of generated networks are not 

significantly different than those of prebuilt DenseNet and 

DenseNet-BC with similar topologies, and are approaching the 

state of the art for these datasets. 

Keywords—neural network, architecture, topology, 

optimization, self-structuring, DenseNet, EMANN, connection 

strength 

I. INTRODUCTION 

An important aspect of the construction of a neural 
network (NN) model is the architecture, or topology, of the 
network – that is, its inner structure. Indeed, the so-called 
“topology problem” is one of the main concerns when 
implementing NN: how many layers, how many neurons (or 
kernels) per layer, and what connection scheme for these 
neurons and layers, would make the NN better suited for a 
given task. 

The aim of the topology problem is to make a NN perform 
better on a task, by overcoming limitations that are not due to 
the learning algorithm, but rather inherent to the selected 
topology and to some of its settings [1]. Nevertheless, 
parameters such as the learning rate, momentum value, and 
epoch size for the learning scheme may also be considered 
part of the topology problem [2]. 

One of the most obvious aspects of the topology problem 
is the choice of the size of the NN architecture. On one hand, 
a poorly structured NN [3] or a NN with few hidden neurons 
[4] may underfit the dataset, as it will lack the representational 
power to model the diversity of the dataset’s items, or the 
complexity inherent in them. On the other hand, an 
architecture that has been structured so as to suit every single 
item in the dataset may cause the system to be overfitted [5], 
owing to its excess information capability [6]. 

Nowadays the topology problem is often solved through 
means of trial and error [4]: candidate topologies are 

handcrafted by humans, and their parameters’ values are tuned 
through experimentation and testing. This process often 
becomes a tedious and time-consuming search for the right 
values [5]. For this reason, there is growing interest in 
techniques for automatically designing NN architectures [7], 
despite these techniques not being widely used today (as they 
can be computationally expensive). 

In order to become a viable alternative, these algorithms 
should produce topology designs that are both more efficient 
for a given task and simpler in their design than their 
handcrafted equivalents are. By “more efficient for a given 
task”, it is understood that the architecture, once properly 
trained, can produce predictions for a given problem that are 
as accurate as possible. By “simpler in their design”, it is 
understood that the topology has a small and clean design 
scheme: as few layers as possible, and very few (if any) loops 
and branches. 

This paper presents the preliminary results obtained with 
a newly developed algorithm of the kind described above. 
This is a self-structuring algorithm – it builds a convolutional 
neural network (CNN) architecture from scratch, by 
incrementally adding layers on top of each other while the 
network is being trained, and stops when a point that is 
deemed sufficiently “optimal” is reached. 

The architectures produced by this newly developed 
algorithm are based on the DenseNet and DenseNet-BC 
Densely Connected Convolutional Networks [8]. DenseNet 
are a kind of CNN architectures characterized by their “dense 
blocks”, network sections where convolutional layers are 
made explicitly complementary to each other (Fig. 1). The 
input of each layer is a concatenation of all the previous 
outputs in the block, together with the block’s global input. 
DenseNet-BC are optimized DenseNet where the input size of 
each layer is reduced. This is done by means of bottleneck 
layers at each layer output and a compression mechanism at 
the end of each block. The DenseNet and DenseNet-BC 
architectures built by the self-structuring algorithm presented 
in this paper only contain one such dense block, where new 
layers are stacked at the output of the previous ones at certain 
events during the network’s training. 
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Fig. 1. Diagram showing the concatenations of layer outputs (including the 

global input) in a dense block. Each layer’s output feature maps are 

represented in a different colour. Taken from [8]. 

II. RELATED WORK 

Algorithms where the NN is self-structured (or self-
constructed) dynamically, while it is being trained, provide a 
timely solution for displacing some of the burden from system 
designers. It is for this reason that they have gained the 
attention of many researchers [4]. For instance, in 1994 Sam 
Waugh [1] reviewed various strategies for gradually 
improving NN architectures by means of pruning: pruning on 
connections, pruning on weights, and construction or pruning 
of hidden nodes. More recently (in 2016), Fadi Thabtah, Rami 
M. Mohammad, and Lee McCluskey [4] presented an 
opposite solution where the NN model is restructured by 
incremental means: tuning some parameters, adding new 
neurons to the hidden layer or sometimes adding a new layer 
to the network 

A. Different Approaches to Self-Structuring 

Three main approaches exist to automating a dynamic 
self-structuring process for a NN [9]. These are constructive 
algorithms, pruning algorithms, and constructive-pruning 
algorithms.  

Constructive Algorithms (also known as incremental 
algorithms) start with a simple NN architecture, such as one 
hidden layered NN with a single neuron in the hidden layer 
[6]. Recursively, new items and parameters (hidden layers, 
hidden neurons, connections, etc.) are added to the initial 
topology, until a satisfactory result is reached. After each 
addition, either the entire network architecture or only the 
recently added parameter(s) are retrained, and they cannot be 
modified. Constructive algorithms tend to be relatively simple 
to tune because they usually depend on few initial parameters. 
These algorithms are also computationally efficient, since 
they search for small structures [4]. 

The first constructive algorithm likely was Dynamic Node 
Creation (DNC) [10]. This is a simple algorithm: neurons are 
added to the hidden layer one by one whenever the mean 
square error on the training dataset stops variating, until a 
predefined desired error rate is reached. Its main drawback is 
that, since each addition is irreversible, it tends to produce 

messy topologies [4]. Another example of a constructive 
algorithm is the Cascade-Correlation algorithm (CC-Alg.) 
[11], on which several improvements have been proposed, 
such as [12]. 

Pruning Algorithms start with an oversized NN 
architecture (i.e.: multiple hidden layers and many neurons in 
each layer) [4]. They work by recursively removing items and 
parameters (hidden layers, hidden neurons, connections, etc.) 
from the network until the final architecture is achieved. After 
each pruning phase, the new network is retrained for a while 
to let it compensate any post-pruning loss in the performance. 
However, if the performance does not improve, the deleted 
parameters are restored and others are removed instead. 
Usually, only one item or parameter is removed in each 
pruning phase [10]. This approach is not without 
disadvantages: it may be too time consuming, and the 
programmer needs to decide beforehand how big the initial 
NN topology should be for the specific problem in question. 

Constructive-Pruning Algorithms work in two phases: a 
constructive phase and a pruning phase [4]. During the 
constructive phase new hidden layers, neurons, and 
connections are added. This phase may result in a ridiculously 
complicated topology, so a pruning phase is employed to 
simplify this topology while preserving the network’s 
performance. Examples of constructive-pruning algorithms 
for NN can be found at [6], [13] and [14]. 

B. The EMANN Self-Structuring Algorithm 

Particularly relevant for this paper is the EMANN 
algorithm [15]. EMANN is mostly a constructive approach, 
but it also sometimes uses pruning. 

In this algorithm, the topology is built from “modules” or 
“blocks”, which are progressively stacked on top of each other 
not unlike layers in the DenseNet CNN architecture. These 
“blocks” represent MLP networks with two layers each. They 
are connected together in a way that ensures complementary 
behavior (Fig. 2). Whenever a new MLP “block” is added, a 
constructive algorithm is performed on its first layer (or 
“hidden layer”). 

 

Fig. 2. Diagram showing an example of the topology structures generated 
by EMANN. “Modules” or “blocks” are stacked together in such a way as to 

ensure complementarity. Adapted from [15].  

 

 



Neurons are added to this hidden layer (and sometimes 
pruned from it) based on the value of a feature called the 
connection strength (CS). For each neuron in a MLP’s hidden 
layer, the CS is merely the average (mean) of the weights of 
all of its connections. 

Because of the specific activation function used by 
EMANN neurons (the sigmoid), the CS proves to be a very 
good indicator of whether or not a neuron is extracting some 
feature from the data, and of how “settled” on identifying this 
feature the neuron has become. If the CS is very high, the 
neuron has clearly settled on identifying a feature, and if it is 
very low, the neuron is not successfully identifying anything 
useful. 

III. METHODOLOGY 

A. The Newly Developed Algorithm 

The new self-structuring algorithm automatically 
constructs DenseNet and DenseNet-BC architectures from 
scratch while they are being trained. Specifically, the 
algorithm performs a training routine on what is, initially, an 
extremely simple DenseNet or DenseNet-BC network (one 
dense block with only one layer). Meanwhile, in-between 
certain epochs of the training process, the algorithm may 
modify the network by adding new layers at the end of its 
dense block. As a result, a network with a suitable layer count 
is successfully built and trained from scratch. 

The main two reasons why DenseNet and DenseNet-BC 
were chosen as the basis for the new algorithm are that the 
performance level of these CNN topologies is very close to 
the state of the art for most well-known image classification 
datasets, and that some relevant parallels can be made between 
DenseNet and the topologies that EMANN produces. 
Furthermore, unlike other similar CNN architectures such as 
Residual Networks (ResNet) [16] and Crescendo Networks  
(CrescendoNet) [17], DenseNet make it possible to build a 
shallow but optimal scheme by progressively adding layers 
one by one. This makes little sense with CrescendoNet 
because of their path-based topology, and may take a very 
long time with ResNet due to their focus on depth. 

The algorithm is based on a measurable feature in each 
layer of a DenseNet. This feature is called “connection 
strength” or CS. It derives its name from the connection 
strength used in the EMANN algorithm, to which it is 
analogous. There is one CS for every connection between any 
layer l and a previous layer s – CSl,s (the CS between l and s) 
is the mean (average) of the filter weights connecting l to s, 
taken in their absolute (positive) value. 

In the new algorithm, CS values are compared together in 
order to extract a measurable feature that identifies layers as a 
whole, rather than connections between them. This has been 
called a “layerwise interpretation of CS”, or LCS. 

The LCS that is used in the algorithm has been named 
“relevance for sources”. It is a fraction that expresses, for a 
given layer, how many of its sources treat that layer as a 
relevant output for sending information (Fig. 3). 

 

 

Fig. 3. Visualisation of the steps for calculating “relevance for sources” 

LCS. An iteration (solid green) is made through connections (slanted blue 

stripes) between a layer l and any of its source layers s. The CS of each of 
these connections is compared to the maximum CS (solid red) for the 

connections between source layer s and its destinations (vertical yellow 

stripes). 

The “relevance for sources” for a given layer l is calculated 
through the following algorithm: 

• For any given connection between layer l and a 
previous layer s: 

o If CSl,s ≥ n ∗ maxλ(CSλ,s), add ‘1’ to the LCS 
(n is such that 0 ≤ n ≤ 1). 

o Else, add ‘0’ to the LCS. 

• Divide the final LCS value by the number of 
connections between l and any previous layer 
(normalization). 

The value of n, the fraction of the maximum LCS for 
source layer s that CSl,s is compared with, is usually set to 0.67 
(around two thirds). 

The algorithm (Fig. 4) begins by initializing a DenseNet 
(or a DenseNet-BC) with a single dense block, and only one 
layer inside that block. The growth rate (the number of new 
convolutions per layer) is set to 12, and the network’s weights 
are initialized at random. Afterwards, successive training 
epochs are performed on the DenseNet, with a learning rate 
initially fixed at 0.1. 

Meanwhile, a self-structuring procedure is performed on 
the DenseNet. This procedure follows two successive stages: 
the so-called “ascension stage” and “improvement stage”. 

• The first of these stages is the “ascension stage”, the 
main topology-building stage of the algorithm. It is a 
stage of quick growth for the network, and is guided 
by loops with a fixed duration. This duration, 
measured in training epochs, is a settable parameter 
called the “ascension threshold” or ‘AT’. The loops 
mark the rhythm at which new layers are stacked at 
the end of the dense block: whenever a loop (which 
lasts for ‘AT’ epochs) ends, a new layer is added. The 
ascension stage normally ends when three or more 
layers have been stacked together, and one of the 
layers “settles” – that is, when its LCS reaches a value 
of 1. 

 



Fig. 4. Visualisation of a typical execution of the algorithm. Shows the 

evolution of a DenseNet’s architecture throughout the two stages of the 
algorithm (ascension and improvement). During the “ascension stage”, new 

layers are added to the dense block at the end of cycles with a length of ‘AT’ 

training epochs. Under normal conditions, the ascension stage lasts until 
there are at least three layers in the block and at least one of them has settled 

(in the figure’s case there are four layers in the block when the first one 

settles). The next stage is the “improvement stage”, which depends on a 
countdown of ‘PP’ epochs. Whenever another layer settles, a new layer is 

added to the dense block and the countdown is reset. The improvement stage 

ends when this countdown is able to end. 

• In order to prevent the algorithm from getting stuck in 
the ascension stage (a phenomenon which has been 
empirically observed to occur with some datasets), 
this stage can be terminated if the accuracy of the 
network has not changed much in the latest epochs. 
The algorithm may thus exit the ascension stage if, in 
a window of the (usually 50) latest accuracies 
(measured on the validation set), the standard 
deviation is below a certain tolerance threshold 
(usually set to 0.1). 

• After this comes the “improvement stage”: a 
“waiting” stage where only a few layers are added at 
specific moments. Indeed, since sudden layer 
additions could disrupt the training process, a stage 
where the network remains mostly unchanged is 
necessary for it to recover and reach optimal accuracy 
levels. This stage is guided by a countdown system. 
The expected length of the countdown, in epochs, is 
yet another settable parameter called the “patience 
parameter” or ‘PP’. When the improvement stage 
begins, a countdown with a duration of ‘PP’ training 
epochs starts, at the end of which both the training 
epochs and the algorithm end. Nevertheless, if any 
additional layer “settles”, a new layer is stacked at the 
end of the block and the countdown starts again from 
the beginning. 

During the training and self-structuring process, the 
learning rate may either remain constant at 0.1 or change 
under specific conditions. These changes in the learning rate 

are mostly reductions, and may be applied in either of two 
versions: 

• In the first version, which will hereafter be called 
“reduce LR #0”, the learning rate is divided by 10 two 
times during the ‘PP’ countdown: one when 50% of 
the countdown has elapsed, and another one at 75% 
of the countdown. In case the countdown is restarted, 
the learning rate returns to its original value of 0.1. 

• In the second version, which will be called “reduce 
LR #1”, the learning rate is also divided by 10 at the 
same points during the ‘PP’ countdown. However, 
these changes are now permanent, and can only be 
applied once. This means that the learning rate is only 
modified two times during the training: the first time 
that the countdown gets past 50% of the PP, and the 
first time that the countdown gets past 75% of the PP. 

The previously described self-structuring algorithm was 
implemented in Python using the TensorFlow library. The 
DenseNet and DenseNet-BC implementation by Illarion 
Khlestov [18] was used as a basis for the algorithm’s source 
code. An executable file, run_dense_net.py, is used for 
commanding the self-structuring, training and testing 
operations. The network itself is implemented as an object in 
the file models/dense_net.py. The most relevant functions for 
building and training networks are also found in that file. The 
code is available on GitHub [19]. 

B. Experimental Work for Designing the Algorithm 

The analogous CS for the new self-structuring algorithm, 
as well as its layer-wise interpretation (the LCS), were 
developed on basis of a set of experiments. These had the 
objective of observing changes in the network’s accuracy and 
some weight-related features when simple self-structuring 
routines were carried out. Meaningful correlations between 
these observations would then be established. 

In the first of these experiments, it was intended to identify 
changes in DenseNet after layer additions, and to understand 
at which points it is “better” – with respect to performance – 

 



to add a layer. A naïve routine of layer additions was 
performed on a simple DenseNet with only one block and 
(initially) one layer. During a training period of 80 epochs, 
layers would be added one by one every 10, 20, or 40 epochs. 
The additions would stop either after 40 epochs or at the end 
of the training. 

Two kinds of measures were taken in this experiment: 
measures on the network’s performance (its accuracy and 
cross-entropy loss, as well as a loss calculated at each layer as 
if it were the last layer in the block), and measures on each 
layer’s learned parameters (the mean and standard deviation 
of the weights in each layer’s convolutional filter). 
Comparisons were also made with measures on prebuilt 
DenseNet, containing only one block with 1, 2, or 4 layers.  

The experiment showed that, in general, layer additions 
tend to make the accuracy grow, but also tend to move layer 
weights closer to 0. After comparing the experiment’s results 
with data from the original DenseNet paper [8], it became 
apparent that the learning patterns of DenseNet would initially 
need to be measured for each connection independently. 

Indeed, because of the design of DenseNet architectures, 
in increasingly deep networks some connections are given 
more “importance” than others. During training, the weights 
of less “important” connections get closer to 0 than other 
weights, limiting the impact of these connections through a 
“zeroing-out” effect. This could result in a smaller global 
mean (and standard deviation) for a layer’s weights. This 
became the principle after which the analogous CS was 
modelled. 

In the second experiment, it was intended to see if this CS 
could be generalized to a relevant feature defining an entire 
layer. The starting point of this experiment was a normalized 
version of the CS, where the CS between a layer and one of 
its sources is divided by the maximum CS in that layer. 

The experiment consisted in measuring the evolution of 
normalized CS values for 300 epochs in two kinds of contexts. 
On one side, one-block DenseNets starting with one layer, 
where a naïve layer addition routine was applied (adding a 
layer every 40, 60, or 80 training epochs). On another, prebuilt 
DenseNets with either 1 very deep block (6, 12, or 18 layers) 
or 3 shallower blocks of equal depth (2, 4, 6, or 12 layers). 

Results showed that, after each layer was added, its 
normalized CS values tended to rise until reaching a sort of 
equilibrium. Then, they plateaued until the end of the training. 
This equilibrium position tended to be closer to 1 (the max CS 
value) than 0 (a complete “zeroing-out”). However, in layers 
at the end of the block, normalized CS values tended to be 
more spread out at their equilibrium point, sometimes even 
falling under 0.5 (CS value closer to 0 than to the max CS). 

By definition, the connections with the highest CS are also 
those with the highest weight values assigned to them. At the 
same time, higher weight values cause the information 
travelling through a connection to have more repercussion in 
the network’s operations – more “importance”. Since, as this 
second experiment shows, normalized CS values of early 
layers tend towards an equilibrium point close to 1, this means 
that all of their sources play important roles in their operations. 
A very likely cause is that these layers have learned to exploit 

all of their sources optimally, implying that the layers have 
been optimally trained. 

In conclusion, to evaluate how well a DenseNet layer is 
trained, one could compare its CS values together, and see 
how many of them are high enough for the connection to be 
considered “important” or “relevant”. In the new algorithm, 
this became the basis for the layer-wise interpretations of the 
CS, or LCS. 

C. Testing the Performance of the Algorithm 

The algorithm was tested by using it to produce both 
DenseNet and DenseNet-BC architectures. Initially, these 
architectures were trained on the CIFAR-10 dataset [20] in 
order to find optimal values for the ‘AT’ and ‘PP’ parameters 
empirically. Afterwards, tests with both the CIFAR-10 and 
SVHN [21] datasets were carried out, using both reduce LR 
#0 and reduce LR #1 and the following parameter values: 
growth rate = 12, (initial) learning rate = 0.1, AT = 10 epochs, 
and PP = 200 epochs (these values for ‘AT’ and ‘PP’ were 
previously found to produce optimal results). 

The above-mentioned tests were also run for a second time 
using a version of the algorithm that did not rely on the CS to 
end its ascension stage (only stopping based on the validation 
set accuracy). Tests with a constant learning rate were also 
initially carried out, but these produced worse results than 
tests that used learning rate modification schedules did. 

In addition, a reference test was devised that consisted in 
training and testing prebuilt topologies on the CIFAR-10 and 
SVHN datasets. These topologies were DenseNet or 
DenseNet-BC of the same kind as those produced by the 
algorithm (architectures with only one dense block that 
contained a fixed number of layers). The topologies were 
initialized with random weights, and then trained for 300 
epochs. The learning rate was initialized at 0.1, and then 
divided by 10 at epochs 150 and 225 (50% and 75% of the 
training). 

Each test (both the self-structuring and reference ones) 
was replicated five times with the same parameters. In order 
to assess the evolution of the accuracy over time, a random 
validation set was split off the training data at every epoch. At 
the end of each test, for the sake of comparison, the final 
accuracy was calculated on both the last generated validation 
set and the testing set. The final cross-entropy losses were also 
measured on these two datasets. These were stored together 
with the architecture’s final number of layers and the total 
number of epochs performed. The mean and standard 
deviation of these values (over the five replicas) were then 
calculated to produce the final results. 

The main objective of these tests was to compare the mean 
final accuracies obtained for each kind of test. It was hoped to 
generate self-structured DenseNet and DenseNet-BC that, 
compared with similar prebuilt structures and with the state of 
the art, would exhibit a higher accuracy for similar topologies 
or the same accuracy for smaller topologies. The best 
performing algorithm variants and parameter values for 
achieving this goal had to be identified, as well as means to 
improve them. 



IV. EXPERIMENTAL RESULTS 

A. Results Obtained with CIFAR-10 

The results obtained with CIFAR-10 can be found in Table 
I. Those obtained for their equivalent prebuilt networks, 
whose number of layers corresponds to the average layer 
count in each self-structuring test, can be found in Table II. 
Most of the values were rounded to the closest figure with two 
decimals. The only exceptions are the mean and standard 
deviation of the final number of epochs, which has been 
rounded to the closest integer. 

In CIFAR-10, a validation set corresponds to 5,000 
random examples cut off the full training set at each epoch, so 
that the network is not trained on the entire training set (with 
50,000 examples) every time. The validation set mentioned in 
both tables is the one used in the last training epoch. In both 
tables also, the entire CIFAR-10 test set with 10,000 examples 
was used – the network does not process it until the end of the 
training. 

Currently, the best mean accuracy values are above 80% 
on the test set. The low mean number of layers produced 
(around 6 or 7) makes these generated structures very simple, 
but it may in fact prevent them from reaching higher accuracy 
levels. The obtained results are nevertheless approaching the 
state of the art (99% accuracy for the CIFAR-10 test set) [22]. 

TABLE I.  SELF-STRUCTURING TESTS USING CIFAR-10 

Self-Structuring Tests 

Using CIFAR-10 

Test Results 

Number 

of 

Layers 

End 

Epoch 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

Reduce 

LR #1 

Mean 6.80 355 76.38 0.74 75.52 0.77 

STD 1.48 160 2.29 0.06 2.11 0.07 

Reduce 

LR #0 

Mean 6.00 308 74.46 0.80 73.31 0.82 

STD 0.71 26 3.80 0.16 4.04 0.18 

Dense

Net-

BC 

Reduce 

LR #1 

Mean 9.80 459 79.35 0.71 78.29 0.73 

STD 1.64 81 2.51 0.13 3.02 0.13 

Reduce 

LR #0 

Mean 8.40 422 82.05 0.57 80.75 0.59 

STD 0.89 63 3.00 0.11 2.92 0.11 

TABLE II.  PREBUILT ARCHITECTURE TESTS CORRESPONDING TO 

SELF-STRUCTURED ARCHITECTURES, USING CIFAR-10 

Prebuilt Architecture Tests 

Using CIFAR-10 

Test Results 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

7 layers 

(Reduce 

LR #1) 

Mean 77.25 0.72 76.68 0.74 

STD 2.13 0.11 2.48 0.12 

6 layers 

(Reduce 

LR #0) 

Mean 77.84 0.69 76.78 0.71 

STD 3.03 0.09 3.43 0.10 

Dense

Net-

BC 

10 layers 

(Reduce 

LR #1) 

Mean 84.56 0.57 83.74 0.58 

STD 1.90 0.10 2.44 0.11 

8 layers 

(Reduce 

LR #0) 

Mean 77.27 0.86 76.45 0.86 

STD 1.71 0.11 2.02 0.12 

The mean accuracies of the self-constructed networks 
obtained in these tests are also very close to those of prebuilt 
DenseNet and DenseNet-BC with architectures corresponding 
to their mean number of layers (rounded to the closest integer). 

The version of the algorithm that used reduce LR #1 shows 
the best mean accuracies on the CIFAR-10 test set for 
DenseNet: 75.52% (vs. 76.68% mean accuracy for prebuilt 
DenseNet with 7 layers). For DenseNet-BC, it is the version 
that uses reduce LR #0 that results in a greater accuracy: 
80.75% (vs. 83.74% for prebuilt DenseNet-BC with 10 
layers). 

In the case of DenseNet, an analysis of variance 
(ANOVA) showed that no significant difference existed 
between the mean accuracies of self-constructed and prebuilt 
examples. The analysis resulted in a 0.4514 p-value between 
the topologies generated with reduce LR #1 and 
corresponding prebuilt topologies, and a 0.1810 p-value 
between those built with reduce LR #0 and their own prebuilt 
equivalents. 

An ANOVA performed on DenseNet-BC tests, however, 
showed that differences between self-constructed and prebuilt 
accuracies are in fact statistically significant (if the α value is 
set to 0.05). The p-value obtained for reduce LR #1 tests was 
0.0139, while that for reduce LR #0 tests was 0.02672. 
Nevertheless, networks generated with reduce LR #0 perform 
only slightly better than their prebuilt equivalents, while 
networks generated with reduce LR #1 perform only slightly 
worse than their own equivalents. 

B. Results Obtained with SVHN 

The results obtained with SVHN can be found in Table III 
and their equivalents for prebuilt networks can be found in 
Table IV. Again, all values were rounded to two decimals 
except the final number of epochs (rounded to the closest 
integer). 

The validation sets used for SVHN consist of 6,000 
random examples from the training set. As with CIFAR-10, 
the validation set results on both tables concern the validation 
set created for the last epoch, and the test set results concern 
the entire actual test set for the SVHN database. 

For this dataset, there is a clear difference between the 
results obtained with DenseNet and those obtained with 
DenseNet-BC. 

In tests with DenseNet, the results in terms of mean 
accuracy are above 90%, which is quite close both to the state 
of the art (99% accuracy for the SVHN test set) [22] and to the 
results obtained from their prebuilt equivalents. This said, the 
topologies that are produced tend to be very deep, and not as 
homogenous in their depth as for the tests with CIFAR-10. 

The best results with regards to accuracy were those 
obtained with reduce LR #1. The networks generated by this 
version of the algorithm were on average the most complex of 
those generated in the tests, with about 20 layers on average 
and a standard deviation of 5.50 layers. Nevertheless, they had 
a mean accuracy of 92.87% on the SVHN test set (vs. 93.02% 
mean accuracy for prebuilt DenseNet with 20 layers). 

 



TABLE III.  SELF-STRUCTURING TESTS USING SVHN 

Self-Structuring Tests 

Using SVHN 

Test Results 

Number 

of 

Layers 

End 

Epoch 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

Reduce 

LR #1 

Mean 19.80 409 99.99 0.00 92.87 0.31 

STD 5.50 73 0.02 0.00 0.54 0.02 

Reduce 

LR #0 

Mean 15.40 361 99.96 0.00 92.02 0.35 

STD 5.08 57 0.07 0.00 0.72 0.01 

Dense

Net-

BC 

Reduce 

LR #1 

Mean 4.20 236 81.45 0.59 71.81 1.01 

STD 2.68 30 12.56 0.42 10.13 0.40 

Reduce 

LR #0 

Mean 3.00 222 81.76 0.55 70.70 0.99 

STD 0.00 0 3.05 0.08 1.57 0.08 

TABLE IV.  PREBUILT ARCHITECTURE TESTS CORRESPONDING TO 

SELF-STRUCTURED ARCHITECTURES, USING SVHN 

Prebuilt Architecture Tests 

Using SVHN 

Test Results 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

20 layers 

(Reduce 

LR #1) 

Mean 100.00 0.00 93.02 0.31 

STD 0.00 0.00 0.17 0.01 

15 layers 

(Reduce 

LR #0) 

Mean 100.00 0.00 92.59 0.34 

STD 0.00 0.00 0.13 0.01 

Dense

Net-

BC 

4 layers 

(Reduce 

LR #1) 

Mean 92.25 0.23 79.34 0.84 

STD 1.82 0.05 1.77 0.10 

3 layers 

(Reduce 

LR #0) 

Mean 86.74 0.41 73.73 0.95 

STD 5.11 0.16 3.88 0.19 

 

A mean accuracy of 71.81% on the test set was obtained 
with reduce LR #1 (vs. 79.34% mean accuracy for prebuilt 
DenseNet-BC with 4 layers), and one of 70.70% was obtained 
with reduce LR #0 (vs. 73.73% mean accuracy for DenseNet-
BC with 3 layers). 

However, the differences that were found between the 
mean accuracies of self-structured networks and their prebuilt 
equivalents were not statistically significant. An ANOVA 
performed on the tests with DenseNet shows a p-value of 
0.5611 between networks generated with reduce LR #1 and 
their equivalents, and one of 0.1143 between networks 
generated with reduce LR #0 and their own equivalents. The 
results of the ANOVA for tests with DenseNet-BC also 
obtained p-values above 0.05: the p-value obtained for reduce 
LR #1 was 0.1402, and that obtained for reduce LR #0 was 
0.1433. 

The low accuracy levels for DenseNet-BC are most likely 
due to the very small number of layers produced, as the only 
obtained DenseNet-BC with more than three layers (9 layers) 
had a final accuracy of 87.58% on the SVHN test set. This 
phenomenon occurs when one of the early layers settles too 
quickly (its LCS reaches 1 too soon), which seems to be very 
common for DenseNet-BC trained on SVHN. 

C. Results Obtained With Modified Ascension Stage 

Normally, there are two ways in which the ascension stage 
can end: either when one of the layers’ LCS reaches 1, or when 
the network’s accuracy on the validation set has not changed 
much in the latest epochs. 

Since the previous experimental results showed that the 
first of these requirements makes the ascension stage end too 
soon in some cases (i.e. DenseNet-BC trained on the SVHN 
dataset), a version of the algorithm without this requirement 
was tested. 

The previous (self-structuring) tests were run again on a 
version of the algorithm that used a modified ascension stage. 
The results obtained with CIFAR-10 for this version of the 
algorithm are found in Table V, and those obtained with 
SVHN are found in Table VI.  

In the case of CIFAR-10, the differences between the 
accuracies obtained in these tests and those obtained in the 
original algorithm are not significant, although the p-value for 
DenseNet-BC with reduce LR #1 was of 0.0544. For that case, 
the mean accuracy on the test set increased slightly (78.29% 
for the standard algorithm vs. 81.81% for the version with the 
modified ascension stage). 

This increase is probably due to a greater number of layers 
obtained with the new ascension stage (an average of nearly 
12 layers rather than 10). Nevertheless, although there is also 
an increase in the layer count for DenseNet-BC with reduce 
LR #0 (11 layers rather than 8), for this combination and all 
the other ones the differences in accuracy are not statistically 
significant. 

When it comes to SVHN, the results of the ANOVA show 
that the differences in accuracy are highly significant for all 
the tests with DenseNet-BC (a p-value of 0.0027 for reduce 
LR #1, and one of 3 * 10-9 for reduce LR #0). Once again, the 
most likely explanation for this is a higher number of layers: 
the new ascension stage does not tend to get stuck at three 
layers anymore, and therefore is able to reach higher levels of 
accuracy (91.29% for reduce LR #1, and 92.22% for reduce 
LR #0). The difference is also almost significant for the tests 
with DenseNet and reduce LR #1 (the p-value was 0.0561). 

TABLE V.  SELF-STRUCTURING TESTS USING CIFAR-10 (MODIFIED 

ASCENSION STAGE) 

Self-Structuring Tests 

Using CIFAR-10 

(Modified Ascension 

Stage) 

Test Results 

Number 

of 

Layers 

End 

Epoch 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

Reduce 

LR #1 

Mean 7.00 331 76.82 0.75 76.61 0.75 

STD 0.71 86 3.61 0.18 3.68 0.19 

Reduce 

LR #0 

Mean 6.80 316 77.86 0.68 76.60 0.71 

STD 0.45 48 4.01 0.14 4.38 0.15 

Dense

Net-

BC 

Reduce 

LR #1 

Mean 12.20 535 82.57 0.58 81.81 0.60 

STD 2.17 195 2.03 0.10 1.76 0.10 

Reduce 

LR #0 

Mean 11.00 531 83.19 0.53 82.26 0.56 

STD 0.71 128 1.96 0.07 1.90 0.07 

 



TABLE VI.  SELF-STRUCTURING TESTS USING SVHN (MODIFIED 

ASCENSION STAGE) 

Self-Structuring Tests 

Using SVHN (Modified 

Ascension Stage) 

Test Results 

Number 

of 

Layers 

End 

Epoch 

Validation Set Test Set 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Dense

Net 

Reduce 

LR #1 

Mean 15.00 347 99.96 0.00 92.11 0.34 

STD 2.92 27 0.04 0.00 0.53 0.02 

Reduce 

LR #0 

Mean 13.80 335 99.95 0.01 91.83 0.35 

STD 2.59 26 0.06 0.00 0.33 0.02 

Dense

Net-

BC 

Reduce 

LR #1 

Mean 13.80 334 99.63 0.02 91.29 0.34 

STD 4.44 44 0.30 0.01 1.03 0.04 

Reduce 

LR #0 

Mean 18.00 378 99.90 0.01 92.22 0.31 

STD 3.39 34 0.10 0.00 0.66 0.03 

V. CONCLUSIONS AND FUTURE WORK 

A new self-structuring algorithm has been developed that 
is able to select DenseNet and DenseNet-BC structures for a 
given problem, and build them at the same time as they are 
being trained. The CNN architectures generated by this 
algorithm are able to obtain very good accuracy in some of the 
most popular image classification datasets (CIFAR-10 and 
SVHN). It is expected that future versions of this algorithm 
will be able to produce state-of-the-art CNN, capable of 
competing with handcrafted topologies in terms of their 
accuracy and simplicity. 

After examining the experimental results obtained from 
this algorithm, one likely route for future work has been 
identified: adding some form of pruning mechanism after the 
current two stages (ascension and improvement). In this stage, 
the connections with lowest CS would be pruned away, thus 
simplifying the network and perhaps allowing it to reach a 
higher accuracy. 

A version of the algorithm that builds more than one dense 
block could also be beneficial in terms of accuracy, but this 
could make networks undesirably deep and complex. 
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