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Abstract—With the emergence of low cost 3D sensors, the focus
is moving towards the recognition and scene understanding of
tridimensional data. This kind of representation is really chal-
lenging in terms of computation, and it needs the development
of new strategies and algorithms to be handled and interpreted.

In this work, we propose NurbsNet, a novel approach for 3D
object classification based on local similarities with free form
surfaces modeled as Nurbs.

The proposal has been tested in ModelNet10 and ModelNet40
with results that are promising with less training iterations than
state-of-the-art methods and very low memory consumption.

Index Terms—3d object recognition, neural networks, Nurbs

I. INTRODUCTION

Scene understanding is one of the main challenges for
autonomous robots. In this respect, object recognition is one
of the key tasks to be performed to accomplish this quest [1].

Until 2012, all the proposals submitted to the Large Scale-
Visual Recognition Challenge, an object recognition challenge
with ImageNet images database [2], were based on handcrafted
features and classical classifiers. However, that year appeared
the first Deep Learning approach [3], that outperformed the
previous techniques.

Since that time, the research focus changed to Deep Learn-
ing, with a great and rapid evolution and an enormous set
of new architectures and learning strategies. For the 2D
object recognition task, several approaches have achieved high
classification rates, as explained in the survey [4]. However,
3D object recognition is still an underexplored research field
compared to its counterpart in 2D.

In this work, we propose NurbsNet, a novel approach for
3D object recognition based on the search of local similarities
between the object and internal free form surfaces.

This paper is structured as follows. Section II reviews the
state of the art for 3D object recognition, focusing on the
new deep learning methods. Then, Section III describes the
fundamentals of our proposal, with a brief introduction to
Nurbs surfaces, an explanation of our proposed similarity
metric and the description of our end-to-end architecture. Next,
Section IV reports experiments carried out with ModelNet10
and ModelNet40 and the methodology to test the proposal.
Finally, Section V draws some conclusions about the project
and establishes future lines of research.

II. RELATED WORKS

In this section, we present a review of recent deep learning
methods for 3D object classification. Following the classifica-
tion presented in [1], we divide the methods in terms of the
most used data representation.

• Pointcloud representation. These techniques use the
3D data represented as a unordered set of points in 3D
space. They extract spatial features directly using nearest-
neighbours and radius search, so it can be computa-
tionally expensive. PointNet [5] calculates features over
the points and apply transformations to the data until it
builds a global feature vector, that feeds a neural network
for classification or segmentation purposes. PointNet++
[6] is an extension of the previous method that learns
hierarchical features from the points, introducing layers of
sampling and grouping. Our work can be included in this
classification, as it works with the point clouds directly.

• Voxel representation. In this case, the input data is
represented as a discretization of the space around the
data as an approximation of the original form. Every
voxel usually contains a 0 or 1 indicating the presence
of points, or a value stating the density of points that
lie inside it. The original proposal from the creators of
ModelNet, 3D ShapeNets [7], represents the data as a
cubic voxel and apply 3D convolutions with restrictions to
obtain the vector representation. Further works take this
idea with variants. VoxNet [8] applies a 3D Convolutional
Neural Network to this volumetric representation for
classification purposes. However, not only CNNs have
been used, but also novel deep learning architectures:
Vconv-dae [9] employs a convolutional denoising auto-
encoder as a feature learning network, [10] uses a Vari-
ational auto-encoder and [11] a Generative Adversarial
Network. The main issue of these techniques is the lack
of precision when discretizing an object, which can lose
fine details, and the enormous space requirements of the
3D convolutions in memory.

• Image slices representation. This family of techniques
does not use the 3D data directly, but they transform it
into 2D projections, slices, that can be processed using
Convolutional Neural Networks for 2D images. These are
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the most common approaches, that use a single or mul-
tiple views of the object to feed a Convolutional Neural
Network, as presented in [12]. Some works have focused
on grouping views and training a boosting classifier to
improve their performances [13]. Other approaches are
based on the selection of the best views of the object
to make the inference, as presented in [14], that uses
3 orthogonal views that feed 3 independent neural net-
works. This group of techniques has the best classification
performances, based on the ModelNet benchmark [15],
but they need a full reconstruction of the object in order
to generate multiple views, so they are not so reliable in
real-world applications when dealing with occlusions and
partial views.

III. APPROACH

Our method receives a point cloud as input and generates
a probability distribution of labels for the received object.
Our proposal introduces two new approaches: a Nurbs layer
that learns free form surfaces and calculates the similarity
between every Nurbs and local shapes of the input cloud, and
a Voxelization layer that uses a spherical grid that selects the
best activations and generates a feature vector to feed the Fully
Connected layer.

In Section III-A we explain the fundamentals of the Nurbs
surfaces, the fitting process and the similarity calculation. In
Section III-B, we present the architecture of our proposal with
an extensive explanation of our novel layers.

A. Nurbs surfaces

Fig. 1. Representation of a Nurbs surface. Extracted from [16]

We have chosen Nurbs to represent freeform surfaces in a
parametric form. This mathematical model has been widely
used by the CAD industry and the academic community as
a 3D representation due to its expressiveness and relative
simplicity. This kind of representation allows modifying the
local geometry of an object by moving a few control points,
so it favors surface optimization.

A Nurbs surface is represented by Equation 1, where Pi,j

are the 3D control points, wi,j the weights for every control
point and Np,q are the normalized B-spline basis functions of
degree p. Every Np,q function affects the surface in a limited
range, defined by the knot vectors [17].

S(u, v) =

k∑
i=1

l∑
j=1

Ri,j(u, v)Pi,j

Ri,j(u, v) =
Ni,n(u)Nj,m(v)wi,j∑k

p=1

∑l
q=1Np,n(u)Nq,m(v)wp,q

(1)

1) Nurbs fitting: Nurbs fitting consists of the reconstruction
of a complete surface from a limited set of 3D data, calculating
its parameters iteratively.

The simplest method to minimize the distance between
the pointcloud and the generated surface is least mean
squares minimization. The measure for the distance can be
the Euclidean distance, known as point-distance minimization
(PDM), the tangent distance minimization (TDM) [18] or the
squared distance minimization (SDM) [19].

The surface is initialized using Principal Component Analy-
sis (PCA), using the plane formed by the two eigenvectors with
the greatest eigenvalues of the data, where the initial control
points will lie. Then, in every iteration the distance between
the points and the surface is calculated according to some
distance criteria (as mentioned above) and the control points
are updated in the direction where the distance decreases.

The fitting method was proposed in [20] and the implemen-
tation has been taken from the Point Cloud Library, carried
out by Thomas Moerwald [21].

Fig. 2. Red, green and grey nurbs surfaces in the top have the same shape but
different scale, rotation and translation. They are represented in the bottom
with the same sample points in euclidean space after the use of the techniques
explained in Section III-A2

2) Similarity metric between two Nurbs surfaces: There
are some works like [22] and [23] that propose a similarity
measure of Nurbs using the Nurbs Warping method [17] for
image retrieval purposes. However, these techniques are only
applicable to 2D images because the shape of a 3D object
is far more complex and cannot be approximated by simply
fitting their borders.

To solve the similarity problem between Nurbs surfaces in
3D, we propose a pointwise approach, using the following
method:

1) Sampling of the surface. Using the Nurbs equation and
iterating over the parameters u and v we can obtain a
set of points from the surface. There are some studies
[24] and [25] that investigate this topic in order to choose
the proper parameters that generate the points that better
represent the surface.

2) Normalization. We want identical surfaces at different
scales to be able to have minimum distance, so we



have to make the sample point representation invariant
to scale. First, we normalize for translation by aligning
the centroids of the two surfaces. Then we calculate the
median distance of the points from the centroid. Then,
we carry out the normalization step by dividing every
coordinate by the median. Dividing by the maximum
distance could be an alternative, but the median is less
affected by noise.

3) Principal Components Analysis. Similar surfaces with
equivalent but rotated principal axes should have lower
distances. In order to achieve the rotation invariance,
we do Principal Component Analysis (PCA) on the
pointcloud to obtain the axis that capture the maximum
variability, and apply the transformation matrix that
changes its basis, as explained in [26]. PCA does not
ensure the orientation of the axis (only the direction), so
we save the four possible permutations of the sign of two
principal vectors, because the third axis is calculated via
vector product. We will use the four representations of
every surface to calculate the distance to another figure.

4) Distance measuring. We calculate the distance of every
sampled point of the first surface to the other surface.
This distance can be measured in several ways, with the
euclidean distance to the nearest neighbour in the other
surface the most common, simple, and good enough for
our purposes, as shown in Equation 5. The resulting
distance between the surfaces is the maximum of the two
minimum unidirectional distances (Equation 3). Finally,
the similarity is calculated from the resulting distance
using Equation 2. Notice that in Equation 4, when we
calculate the distance from one surface to another, we
only iterate over the permutation of the axis of one of the
surfaces to exploit the symmetries of the representations
and reduce computational costs.

As the output of this process, we obtain a similarity score
that will be 1 when the surfaces represent the same shape, and
will decrease as their differences grow. In this way, we have
represented the points of the Nurbs with scale, translation and
rotational invariance.

similarity(s1, s2) = 1− d(s1, s2) (2)

d(s1, s2) = max(d unidir(s1, s2), d unidir(s2, s1)) (3)

d unidir(s1, s2) = min
∀i∈s1

d sing(s1i, s21) (4)

d sing(s1i, s2j) =
1

|s1i|
∑
∀pi∈s1i

d(pi, n neigh(pi, s2j))

(5)

B. Network architecture

The scheme of our end-to-end architecture is depicted
in Figure 3. The Nurbs layer receives the point cloud of

Fig. 3. End-to-end network scheme of out proposal

the segmented object. It calculates the activations for every
point with every internal Nurbs in the layer and sends this
information to the Voxelization layer. This layer discretize the
space around the object with a spherical mesh divided in prism
sections, and calculates the best activation for every Nurbs that
lies in every sector. Finally, it flattens the output as a vector
and sends it to the Fully connected layer, which calculates a
classification probability for every class.

The Nurbs layer is explained in Section III-B1 and the
Voxelization layer in Section III-B2.

1) Nurbs layer: This layer is directly connected with the
pointcloud input of the network. As a preprocessing step,
we perform a normalization of the cloud similar to the one
explained in Section III-A2 for Nurbs. Additionally, we can
apply a voxel grid filter to reduce the dimensionality and
favour the generalization of the learning process.

The Nurbs layer contains a set of internal Nurbs and
replaces the classical convolutional layer of a CNNs by cal-
culating similarity scores between surfaces. It is important to
notice that this layer can work with unordered point clouds of
variable size.

The main task carried out by this layer is the calculation
of the similarity score between the internal Nurbs and every
local Nurbs of the input, following these steps:

1) Fit local Nurbs for the input. For every point in the
input point cloud, extract its neighbors using a fixed
radial neighbourhood. Then, apply the fitting process
explained in Section III-A1. The result of this process
is a local Nurbs for every point in the cloud.

2) Calculate activations. For every local Nurbs generated
in the previous step, calculate their similarity score with
all the internal Nurbs of this layer, as explained in
Section III-A2.

This layer has some hyperparameters that must be set: the
radius of search for neighbors, the number of internal Nurbs
and their number of control points. Furthermore, there are
some strategies for initializing the Nurbs control points: ran-
dom initialization (using a normal distribution), initialization
from geometric surfaces and initialization from real surfaces.

2) Voxelization layer: This layer receives the output from
the Nurbs layer, explained in Section III-B1, as a vector of



activations of every point in the point cloud with every internal
Nurbs in the Nurbs layer. The main goal of this layer is to
generate a descriptor that can be suitable for the input to the
fully connected neural network. In this case, we have chosen
a discretization technique of the space around the point cloud,
but in a different manner than usual.

Many approaches like [27] and [28] build a volumetric
ocupation grid, in form of cube voxels, to represent the shape
of the figure. However, point clouds are usually hollow in their
center, so this technique is not efficient for our purposes as it
produces so many holes in the final vector representation.

In this case, we propose another technique of discretization,
based on a spherical coordinate space, following these steps:

1) Convert points into spherical coordinates. Calculate
the centroid of the pointcloud and apply a translation
to convert the centroid to the origin of coordinates
(0,0,0). Convert the points from cartesian to spherical
coordinates following Equation 6.

R =
√
x2 + y2 + z2 φ = tan−1

(
y
x

)
θ = cos−1

(
z√

x2+y2+z2

)
(6)

2) Normalize. Normalize the radius component R dividing
it by the largest radius of the point cloud.

3) Discretize. Discretize every spherical coordinate using
the defined hyperparameters of resolution for every
coordinate. Radius R is defined in the range [0, 1], θ
in the range [0, π) and φ in the range [0, 2π). It’s
recommended to use a resolution of 1 for the radius
component to minimize the holes of the representation.
We divide the space into prism sections according to
the provided resolution, similar to the techniques used
in 3D descriptors like 3D Shape Contexts [29] or Unique
Shape Context [30].

4) Select activations. First, we identify which points lie
in every prism section. Then, for every data point in
that section and every internal Nurbs, we look for the
best activation based on some criteria like maximum,
minimum or average activation. This selection criteria
does a similar task to the pooling layers of the classical
convolutional networks.

5) Build representation Using the best activation of every
Nurbs in every prism section, build a linear vector with
these values given an order of sections.

As an output of this layer, we have a linear representation
of the input data that represents the local similarities of the
point cloud with the internal Nurbs of the Nurbs layer. This
vector of characteristics is fed to the fully connected layer to
perform the classification of the object.

IV. EXPERIMENTS

In order to test and compare our architecture with other
state-of-the-art methods, we have chosen the Princeton Mod-
elNet dataset [7]. It provides an extensive collection of 3D
CAD models of objects. There are two versions of the dataset,

ModelNet10 and ModelNet40 (not aligned and aligned ver-
sion), that have been widely used as benchmarks for 3D object
classification. ModelNet10 offers a set of more than 5000
CAD models from 10 different categories manually aligned,
and divided into training and test sets. Following the steps
explained in [27], we converted these models into Point Cloud
Data (PCD) clouds, compatible with the Point Cloud Library
(PCL). In [27] we can also see the the highly imbalanced
distribution of both training and test sets.

The experiments have been carried out using our own Deep
Learning framework, due to the novelty of our proposed
method and the use of C++ third party libraries (PCL).

A. ModelNet10

This experiment has been carried out using a Nurbs layer
with radius search of 0.10 (after cloud normalization) and 2
internal Nurbs, initialized randomly. In the voxelization layer,
we have chosen a resolution of (1,30,30) for R, φ and θ
respectively and a max pooling activation strategy. The fully
connected layer consists of an input layer of 1800 neurons
(1x30x30x2), an internal layer of 1800 neurons with a sigmoid
activation and a final softmax layer with 10 outputs. The
learning rate has been set to 0.01, adaptive, and the batch
size is 10.

Predicted
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Fig. 4. Confusion matrix of the classification test results achieved by Nurbsnet
after 50 training iterations using the ModelNet10 dataset with 2 Nurbs. The
values shown in the table are expressed as percentages. It is remarkable that
there is some confusion between the pair of classes desk-table and dresser-
nightstand, which are very similar.

The final classification precision for test set is 86.77%.
Despite the fact that this is a good result, this score is much
more interesting if we analyse the confusion matrix provided
in Figure 4. We can see that similar objects such as the pairs
desk-table and dresser-nightstand are getting confused, but this
kind of confusion is typical even for humans, because the
difference is more semantic (the use that we make of these
objects) than on their shapes. In Figure 6 we see an example
of these point cloud pairs. If we count the misclassification
between these pairs as a hit, the real precision would be
94.62%, which is similar to state-of-the-art methods, as shown
in the table presented in [15], with much less iterations over
the entire training dataset than another methods based on
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Fig. 5. Training and test precision achieved by Nurbsnet after 60 training
iterations using the ModelNet10 dataset with 2 internal Nurbs

Fig. 6. Pairs of confused objects. From left to right and top to down: desk
classified as table, table classified as desk, dresser classified as nightstand and
nightstand classified as dresser.

convolutions and only 6480000 parameters, which yields to
a minimum memory consumption of 200 MB.

B. ModelNet40

This experiment has been carried out using a Nurbs layer
with radius search of 0.10 (after cloud normalization) and 2
internal Nurbs, initialized randomly. In the voxelization layer,
we have chosen a resolution of (1,30,30) for R, φ and θ
respectively and a max pooling activation strategy. The fully
connected layer consists of an input layer of 1800 neurons
(1x30x30x2), an internal layer of 1800 neurons with a sigmoid
activation and a final softmax layer with 40 outputs. The
learning rate has been set to 0.01, adaptive, and the batch
size is 10.

The final classification precision for test set is 75.13%.
Despite the fact that this is not a bad result at all for 40
classes, this score is much more interesting if we analyse
the confusion matrix provided in Figure 7. We can see that
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Fig. 7. Confusion matrix of the classification test results achieved by Nurbsnet
after 60 training iterations using the ModelNet40 dataset with 2 Nurbs. The
values shown in the table are expressed as percentages.

there are also new similar pairs like cup-vase, flower pot-
vase, flower pot-plant and curtain-door that are quite similar
in many cases in the dataset and are confused. In Figure 9
we see an example of these point cloud pairs. If we count
the misclassification between these pairs as a hit, the real
precision would be 79.28%, which is about some of the state-
of-the-art methods, with much less iterations over the entire
training dataset and only 6480000 parameters, which yields to
a minimum memory consumption of 200 MB, much lighter
than other methods presented in [15].
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Fig. 8. Training and test precision achieved by Nurbsnet after 60 training
iterations using the ModelNet40 dataset with 2 internal Nurbs

Fig. 9. Pairs of confused objects. From left to right and top to down: cup
classified as vase, vase classified as cup, flower pot classified as vase, reference
of vase object, flower pot classified as plant, reference of plant object, curtain
classified as door, door classified as curtain

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed NurbsNet, a new approach for
tridimensional object recognition based on the local similar-
ities of the objects with a set of internal Nurbs surfaces.
It provides a fast convergence method, with few parameters
and memory consumption, and achieves very good precision
results with just a few iterations over the entire dataset.

Although the current results do not outperform the state-
of-the-art methods, we consider that this completely new
approach has a lot of room for improvement and can inspire
new different methods to handle the 3D recognition problem.

Moreover, the internal outputs of the Nurbs layer and
Voxelization layer can be inspected and easily analysed, giving
a first step towards the explainability of the decisions taken
by the system, a hot topic at this moment.

Following on this work, we are planning to add more Nurbs
layers with different values of radius search, even adaptive, in
order to learn characteristics of different levels of complexity
from the point clouds. Moreover, we will test this approach
with partial views of the objects and occlusions, from real 3D
sensors as the Kinect.
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