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Abstract—For quite a long time, effective Beyond-Visual-Range
(BVR) air combat tactics can only be discovered by human pilots
in the actual combat process. However, due to the lack of actual
combat opportunities, making new air combat tactics innovation
was generally considered quite difficult. To address this challenge,
we first introduced a solely end-to-end Reinforcement Learning
(RL) approach for training competitive air combat agents with
adversarial self-play from scratch in a high fidelity air combat
simulation environment during training. Furthermore, a Key
Air Combat Event Reward Shaping (KAERS) mechanism was
proposed to provide sparse but objective shaped rewards beyond
episodic win/lose signal to accelerate the initial machine learning
process. Experimental results showed that multiple valuable air
combat tactical behaviors emerged progressively. We hope this
study could be extended to the future of air combat machine
intelligence research.

Index Terms—air combat, reinforcement learning

I. INTRODUCTION

BVR air combat has several fascinating key features: En-
gagements involve multiple aircrafts, operating in a contested
airspace, strategic maneuvers and weapon operations within
a long-term decision horizon. Therefore, BVR air combat AI
has always been a hot topic in research. The existing AI air
combat methods include rule-based system methods [1, 2],
probabilistic model/fuzzy logic and computational intelligence
hybrid methods [3–5], machine learning, especially reinforce-
ment learning methods [6–8]. Significant progress and lots
of achievements have been made by the aforementioned
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approaches. However, all existing methods depend on prior
knowledge of human beings more or less. Rule-based methods
rely on pilots to pre-define air combat rule databases [9].
Probabilistic model/fuzzy logic and computational intelligence
hybrid methods require experts to establish a probabilistic
reasoning network or to design a particular heuristic objective
function [3, 5, 10]. Machine learning methods require a
large number of data samples marked by human experts,
while existing reinforcement learning air combat methods rely
on dense reward functions designed by human experts [7].
Moreover, expert data sets are often expensive, unreliable or
simply unavailable. Even when reliable data sets are available,
they may impose a ceiling on the performance of systems
trained in this manner [11].

In this paper, we aim to address this challenge. The main
contributions of this work are summarized as follows:

• We first introduced an end-to-end RL approach to BVR
air combat tactics auto-generation, which was solely
based on self-play RL training without any supervision
from human. Furthermore, a Key Air combat Event
Reward Shaping (KAERS) mechanism was proposed to
solve the cold start problem in the early stage of air
combat neural network training [12]. Compare with pre-
vious solutions based on human knowledge, our method
exceeds the human congnition limitation, thus prevents
AI agents from overfitting to prior knowledge of human
beings.

• It was observed that plenty of complex and meaningful
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air combat tactical behaviors have been progressively
generated during the training process. To the best of our
knowledge, this is the first air combat AI with tactical
creativity and evolution ability.

All these accomplishments inspire confidence that RL could
eventually enable air combat agents to acquire an unbounded
number of expert human-level tactical skills.

II. RELATED WORKS

A. Reinforcement Learning

Recently, many RL approaches have been proposed to scale
to interactive decision-making problems that were previously
intractable, i.e., settings with high-dimensional state and action
spaces. Amongst recent work in the field of RL, there is
one story with outstanding success-AlphaGo. that defeated a
human world champion in Go [13], paralleling the historic
achievement of IBM Deep Blue in chess two decades earlier
[14]. Unlike the hand crafted rules that have dominated chess-
playing systems, AlphaGo was composed of neural networks
that were trained using both supervised learning (SL) and RL,
in combination with a traditional heuristic search algorithm.
A few months later, AlphaGo Zero was announced to defeat
AlphaGo without any human prior knowledge or trained from
scratch by only self-play [11]. After this, several breakthroughs
in AI have been made in these domains by combining deep
reinforcement learning (DRL) with self-play, achieving su-
perhuman performance. Challenging collaborative-competitive
multi-agent environments have only recently been addressed
using end-to-end RL by Jaderberg et al. [15], which learns
visually complex first-person 2v2 (2 players versus 2 players)
video games to human level, as well as in continuous real-time
domains e.g., Dota2 [16] and Starcraft2 [17].

B. AI Air Combat

Beyond the aforementioned traditional AI aircombat meth-
ods [3–8], RL based AI air combat algorithms present the
potential of simplifying the development and maintenance of
complex autonomous systems by learning optimal behaviors
from continuous simulations. Such learning can be done
without supervision and simply need processor time during
learning. Towards this particular air combat AI solution,
Vinberg first introduced guided reinforcement learning applied
to air combat simulation [6]. McGrew used approximate
dynamic programming to solve a fixed velocity, one-on-one
air combat maneuvering problem in two-dimensional space
[7]. In addition, Kurniawan et al. proposed an empirical study
of reward structures for actor-critic reinforcement learning in
air combat maneuvering simulation [8].

All these aforementioned works that used RL focused on
human expert-designed dense reward approaches. By contrast,
our research is different from previous works as it trains two
adversarial air combat agents with solely self-play in end-to-
end RL manner with highly sparse and objective key event
(shown in Table II) based rewards. All training results are
accomplished without any human handcrafted rules. Moreover,
this particular approach induced a sequence of challenges

for the adaptive process that was proved to emerge plenty
of complex and meaningful air combat tactical behaviors
progressively.

III. PROPOSED METHOD

A. Problem Formulation

One-on-one BVR air combat, a.k.a., controlling one aircraft
to fight against its opponent in the air. Each air combat
scenario can be considered as a competitive game between
two adversarial agents. In this paper, we formulate it as a
multi-agent extension of Markov Decision Processes(MDPs)
called Marcov Games for air combat tactics auto-generation
[18]. A Markov game for N agents is defined by a set of
states

{
S i
}
i=0
N and a set of joint actions

{
A i
}
i=0
N for each

agent. Each agent i observes a private system state S i and
selects actions through its policy πi : Si × Ai → [0, 1],
producing the next state according to the state transition
function P : S ×A 1× · · · × AN ×S → [0, 1]. Each agent
i aims to maximize its won total expected sum of rewards
Rt = E

{∑t=0
T γtrti

}
, where γ is a discount factor and T is

the time horizon, rt is reward received t steps into the future.
The agents’ joint policy induces a state-value function, i.e., an
expectation over Rt, V πi (st) = E [Rt | st], while the action-
value function is defined as Qπi

(
st, a

i
t

)
= E

[
Rit | st, ait

]
.

The advantage function Aπi
(
st; a

i
t

)
= Qπi

(
st, a

i
t

)
−V πi (st)

describes whether taking action ait is better or worse for agent i
when in state st than average action of policy πi, which is V πi
actually. Especially, a Markov Game is called two player zero-
sum Markov Game when all two players acts fully-competitive
and the sum of reward is zero for these agents.

B. Air Combat States, Actions and Rewards Definition

System states are composed as follows: Adversarial air-
crafts’ global position x and xb, velocity v and vb, attitude
ψ, θ, φ, normal load factor nn, range r, closing rate ṙ and
height advantage ∆h. Furthermore, to be successful in air
combat, the agent’s aircraft needs to be in specific relative
aircraft geometry with the opponent. We adopted McGrew’s
geometry annotation as a baseline [7], and defined the relative
state observation calculation as follows: The aircraft centers of
mass are connected by the line of sight (LOS) line, which is
also used to calculate the range between the two aircraft. The
aspect angle (AA) is the angle between the LOS line and the
tail of the opponent aircraft. The antenna train angle (ATA) is
the angle between the nose of the agent aircraft and the LOS
line. The elevation angle (EL) is the vertical angle between
the LOS line and the horizontal plane. AA, ATA and EL
help the pilot to make maneuvering decisions. By convention,
angles to the right side of the aircraft are considered positive
and angles to the left negative. Then we added-up radar lock
on signal lo, RWR status warn, mid-range missile left mleft

and time to missile seeker activation Tgo to the end of the



whole state vector, the total air combat state definition can be
described as below:

Si = [x, xb, v, vb, ψ, θ, φ, nn, r, ṙ,∆h,

AA,ATA,EL, lo, warn,mleft, Tgo]
T (1)

We then carefully designed 14 offensive and defensive Basic
Fighter Maneuvering (BFM) macro actions for this particular
full BVR game, as summarized in Table I. BFMs have been
described as the art of maneuvering a combat aircraft in order
to obtain a position from which an attack can be made on
another aircraft and representing the primary elements that
can be viewed as the building blocks for air combat maneu-
vers [19]. They are composed of accelerations/decelerations,
climbs/descents, and turns that can be performed in combi-
nation relative to other aircraft. Therefore the total combat
strategy consists of composition or series of atomic BFM
operations. With such an abstraction in action space, it be-
comes easier for agents to learn a high-level strategy for the
full game becomes easier. Thus RL driven agents could use
their training and experience of combat tactics, along with
their knowledge of aircraft capabilities, to determine which
BFM macro actions to be performed at the proper time [20].
We supposed the combination of BFM macro actions could
emerge rich and varied BVR air combat tactics, which have
not been realized by human beings. Moreover, maneuvering
and shooting operations are all considered as discrete softmax
actions described in Figure 1.

TABLE I
BASIC FIGHTER MANEUVERING (BFM) MACRO ACTIONS

Category Serial Macro Action

Offense

1 Guided Level Flight
2 +30◦ Climbing and Accelerating
3 +60◦ Climbing and Accelerating
4 −30◦ Offensive Descending
5 −60◦ Offensive Descending
6 ±30◦ Single Side Off(SSO)1

7 ±60◦ Single Side Off(SSO)
8 Horizontal Snake Maneuvering

Defense 9 Split-S
10 Turn ±90◦ from LOS

Retreat

11 Level Turning
12 Fast Turning
13 Descending −30◦ after Turning
14 Descending −60◦ after Turning

Due to previous works relied on per step dense reward
signals tuned by human experts [7, 8], We proposed a method
to solve the prohibitively hard credit assignment problem of
learning from sparse and delayed episodic win/loss signal
(Optimizing hundreds of actions based on a single final reward
with some sparse and objective key events). Refer to Table II.
We believe this assumption will lead to a bias less solution to
the true wining policy rather than over fitted to some human
expert crafted potential functions. In these solutions, the causal

1The ± symbol denotes aircraft will automatically maneuvering to the
smaller angle offset direction.

relationship with the true combat result is mathematically
ambiguous.

C. Policy Optimization

The agent’s objective is to learn a policy that maximizes
the expected sum of discounted rewards, Conversely, the
opponent’s joint policy is to minimize the expected sum.
Correspondingly, we have the following minimax zero-sum
Markov Game:

Q∗
(
st, a

i
t, a
−i
t

)
=r
(
st, a

i
t, a
−i
t

)
+ max
ai∈πi

min
a−i∈π−i

Q∗
(
st+1,

〈
ait+1, a

−i
t+1

〉)
(2)

Where Q∗
(
st, a

i
t, a
−i
t

)
is the optimal action-state value

function, which follows the Bellman Optimal Equation, For
solving such kinds of games, agent policies are trained against
each other by self-play, which means fictitious players choose
the best responses to their opponents’ average behavior. The
average strategies of fictitious players were proven converging
to Nash equilibrium in this particular kind of game [21–23],
furthermore, self-play acts as a natural curriculum as agents
always play opponents of an appropriate level [24].

We utilized decentralized execution and centralized training
paradigm [25]. At execution time, each agent acts given only
its own observations and memory state. At optimization time,
we used a centralized global value function for each agent,
which has access to the full environment state without any
imperfect information due to visibility [25–27]. In this training
paradigm, maximizing/minimizing the agent’s/opponent’s ex-
pected rewards simultaneously is equivalent to maximizing all
separate agents’ expected rewards, which leads our adversarial
training into a minimax pattern. Agent policies are approxi-
mated by one unified neural network with shared parameters
θ. The neural network constructed an approximation to both
the policy distribution π (a|s, θ) and a value function V (s, θ)
which predicts the discounted future returns. The parameters of
the policy are learned by Proximal Policy Optimization (PPO)
algorithm.

PPO that utilized by us is a state-of-the-art synchronous
policy gradient method [28], Policy gradient techniques
aim to estimate the gradient of expected returns with
respect to the parameters of its policy ∇θJ (πθ) =
Ea∼πθ [∇θ log (πθ (at|st))V (st)]. where J(πθ) is the accu-
mulated expected return. The aim of PPO is to prevent training
instabilities by penalizing large changes to the policy. The
policy network parameters θ could be updated according the
gradient of PPO loss function listed below:

Q (st, at) = E [rt+1 + γV (st+1)] (3)

A (st, at) = Q (st, at)− V (st)

= rt+1 + γVθ (st+1)− Vθ (st)
(4)

J (πθ) =Ea∼πθ [min (lt (θ)A (st, at) ,

clip (lt (θ) , 1− ε, 1 + ε)A (st, at))]

− Es∼πθ [αH (st, ·, θ)]
(5)



Where lt (θ) = πθ(at|st)
πold(at|st) denotes the likelihood ratio be-

tween new and old policies and clip (lt (θ) , 1− ε, 1 + ε) clips
lt (θ) in the interval [1− ε, 1 + ε]. αH (st, ·, θ) is an entropy
regularization penalty for encouraging policy exploration and
α is scaling factor. Both policy and value are adjusted towards
an lookahead value, thus value function loss could be defined
as follows and value network could be updated according the
loss:

Lv = Es∼πθ

[
(rt+1 + γnV (st+1, θ)− V (st, θ))

2
]

(6)
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Fig. 1. Agent neural network architecture

The details of network structure is shown in Figure 1. The
input of our neural network could be splited into 3 semantical
parts:
• Agent and Radar/RWR input layers contain fully-

connected hidden units aligned with agent and
Radar/RWR state input vector saf and sar , taking
Tanh as activation function.

• Opponent state input sof then be calculated as relative
observation based on agent state [7], which has the same
network structure with agent layer.

• For the 4 missiles mounted, each one is embedded with
a unified entity embeddings layer where parameters are
shared between missiles.

Next, we concatenated all outputs together to a centralized
hidden layer with 512 units and activated also via Tanh
function. Finally, we treated policy and value function as
joint distribution by pulling out amaneuver, ashoot and V (s)
function heads separately. For maneuvering and shoot policy
heads, we represented the overall policy in an auto-regressive
manner, utilising the chain rule πθ (a|s) =

∏L
l=0 πθ

(
al|a<l, s

)
[29] where l represents different kinds of actions. This rep-
resentation is arguably simpler as it transforms the problem
of choosing a full action a to a sequence of decisions for
each argument al. For all discrete actions, an exponential

softmax distribution πθ (a|s) =
e
h(s,a)
θ∑
b e
h(s,b)
θ

was adopted in

action selection, where h (s, a) and h (s, b) indicates previous
layer output logits.

D. Key Air combat Event Reward Shaping (KAERS)

The main purpose of one-on-one BVR air combat is to
kill or drive out opponents within a specified time. Effective

killing depends on a series of precise operations, including
aiming, locking, firing, guidance, and avoiding missiles fired
by enemy [20]. In case of only win/lose signal as an episodic
reward, the probability of these series of effective actions
occurring simultaneously is obviously close to zero. However,
the success of agents in the competitive games requires the
agents to occasionally solve the task (i.e. win the competition)
by random actions. In RL theory, we called this kind of
problem a long-term sparse reward time credit assignment
problem. In such a scenario, since the neural network of the
agent is initialized randomly by Xavior method [30], and the
basic skills related to air combat at the very beginning are
deficient, the problem of cold start could impact seriously
[12]. In order to address this problem, we proposed a method
called Key Air combat Event Reward Shaping (KAERS). The
main idea is providing relatively sufficient signal stimulation
at beginning of agent training by discrete key events during air
combat as described in Table II. We can use these eventually
shaped rewards to allow the agents to learn basic air combat
skills initially.

rt = λeTt w + repisodic (7)

Where rt is the t step total reward, et is key event, w is
reward scale weight according to the corresponding event, as
described in Table II. The key event shaped reward is gradually
annealed to zero linearly after 100th iteration, in favor of the
true end game episodic reward repisodic, to allow the agents to
train for the majority of the training using the sparse episodic
reward. This is achieved using a linear annealing factor of λ.
Follow-up experiments will show that the KAERS method can
effectively solve the cold start problem in the early stage of
air combat agent training, thereby sufficiently accelerating the
total training process.

TABLE II
KEY AIR COMBAT EVENT REWARD SHAPING (KAERS)

Category Event Name (et) Polarity Weight (w)

Episodic Rewards

Kill + 500
Be killed - 500

Crash - 500
Drive Out + 500

Be driven out - 500

Key Event based Rewards

Shoot - 25
Stall - 50
Out - 10

Lockon + 2
Be Locked - 2

Missile Lock + 5
Missile Alert - 5
Lock Escaped + 5

Missile Escaped + 10

E. Training Process

In self-play training, we initialized both red and blue agents’
neural networks by Xavier initialization method for producing
brand-new networks [30], which means no human air combat
knowledge is adopted by our approach. In the adversarial



training scenario, we truncated the trajectory and calculated
advantage function A (s, a) after n = 30 forward steps of a
network or if a terminal signal is received. The optimization
process runs 16 asynchronous processes using shared Adam.
For each parallel process, we ran experiments till the total
episode replay buffer(overcomed the correlation of empirical
data and improved data utilization) gathered a specified batch
size of samples [31]. The learning rate was set to 1e−4. We
used an independent entropy penalty of 4e−5 for the action
heads. The environment performed a fixed updating rate as
one step per second, we acted every 4 game steps, which is
equivalent to 4 seconds per action.

IV. EXPERIMENTS

A. WUKONG: Air Combat Simulation

The experimental environment used in this paper is
WUKONG1, a RL oriented air combat simulation framework
currently under development by Northwestern Polytechnical
University(NPU). WUKONG is designed for simulating teams
of aircraft in BVR n-versus-m style air combat. The envi-
ronment is designed for air combat operation and AI-driven
combat behaviors research.

Fig. 2. Dive and retreat tactics emerged

Fig. 3. Loft shoot and crank tactics emerged

Fig. 4. Drag and re-engage tactics emerged

The scenario we considered in this paper consists of one
red and one blue fighter2 aircraft. Each aircraft consists of four
components-aircraft flight dynamics, radar and Radar Warning
Receiver(RWR), mid-range missiles and expert level built-in
AI bot. The only purpose of our BVR air combat scenario is

1WUKONG means ”Zen of Aerospace” in Chinese.
2Also denoted as agent and opponent for convenience.

to shoot the enemy down or to drive away from them. The
environment also offers the state of both aircrafts’ radar/RWR
sights which includes information on the orientation of entities
list that radar/RWR has detected and could track. We leave the
radar target searching procedure out of the discussion as we
assuming perfect observation of opponent’s states. Thus, radar
is only used for locking on the opponent before a shoot and
performing missile mid-guidance procedures.

B. Auro-Generated Air Combat Tactics

With the progress of continuous air combat agent training
in WUKONG simulation environment, it can be observed
that adversarial agents had gradually produced a series of
brand-new tactical behaviors. Although these behaviors are not
hard-coded by human experts, they are highly consistent with
the performance of expert-level jet pilot [20, 32]. The agent
learned from nothing but only episodic rewards and sparse key
air combat event based shaped rewards. Therefore, adversarial
agents actually constructed an adaptive course learning mech-
anism through self-play. Such mechanism gradually generated
brand-new air combat tactical behaviors as training progresses
thus forces opponents to adapt to accordingly, which indicates
for the first time, we have endowed air combat AI with the
ability of continuous evolution.

At the very beginning, agents just spun around without
showing any meaningful tactical behavior. As agents gradually
enhanced the accuracy of aiming and shooting skills through
self-play, we noticed that adversarial agents began to shoot
down each other. Once shooting down key events occurred,
the opponent was enforced to evade incoming missiles by
exploring and mastering defense dragging tactics. The auto-
generated tactics could be classified into three main categories:

• Dive and retreat tactics, refer to Figure 2.
• Loft shoot and crank tactics, refer to Figure 3.
• Drag and re-engage tactics, refer to Figure 4.

Each category is also consist of some concrete-tactics which
will be discussed in Table III. This interaction between agents
along with the training process effectively promoted the con-
tinuous progress of adversarial evolution.

As described in Table III, we found that training batch
size adopted in each iteration performed a critical impact on
behavior emergence. When batch size was set to smaller than
16000, agents could not learn any semantically tactical behav-
iors by simply increasing the training iteration. When batch
size reached 16000, agents could only learn basic shooting
and turning behaviors through self-play since 210th iterations,
but from empirical study, learned behaviors always showed
up with a non-ignorable uncertainty, rather than converging
to specific behaviors for particular situations. Finally, when
batch size achieved 32000, agents could spontaneously emerge
all above tactical behaviors since 75th iterations. Due to
computation resource limitation, we did not conduct larger-
scale distributed sampling-training iterative experiments.



TABLE III
PROGRESSIVELY EMERGENCE OF AIR COMBAT TACTICS

Tactics Category Concrete-Tactics
Iteration

Batch Batch
16000 32000

Dive and Retreat
Turn-Out Retreat 210 75

Precise Retreat Timing 360 120
Turn-Out and Dive —— 230

Loft Shoot and Crank
Precise Shoot Timing 290 110

Climb and Shoot —— 270
Shoot and Crank —— 380

Drag and Re-Engag Precise Drag Timing —— 200
Re-Engage Timing —— 430

C. Comparison with Baseline Algorithms

To show the effectiveness of our approach, we compared
our proposed PPO with KAERS architecture with four state-
of-the-art RL algorithms with aforementioned expert-crafted
shaped dense rewards including PPO with McGrew Score,
vanilla PPO, A2C with McGrew Score, and TRPO with
McGrew Score, in which actor-critic manner RL with McGrew
Score is a widely-used paradigm in air combat agent training
[7, 8].

The experiment was set to collect 960000 self-play samples
for training five independent air combat agents, and then reveal
the average rewards training effectiveness and the battle result
statistics between our approach with other algorithms.

Comparison of the training results are shown in Figure 5
(The shaded region denotes a standard deviation of average
evaluation over five trials). With the training procedure pro-
cessed, all algorithms achieved relatively high scores from
large negative starting points, which demonstrated that all
algorithms had learned some air combat knowledge solely
from self-play. Compared with the other four state-of-the-art
baselines, the average reward of PPO with KAERS mechanism
performed lowest during training. On the contrary, PPO and
TRPO with McGraw score performed much better than the
others, vanilla PPO and A2C with McGraw score performed
mediocrely.

Since McGraw score is a dense human-crafted per step
shaped reward mechanism [7], it was easier to get higher
training scores via this approach. PPO and TRPO both utilized
importance-sampling and experienced more training epochs
than A2C thus performed better than it. From air combat
replay visualization, it was demonstrated that agents trained by
McGrew score quickly converged to approaching opponent’s 6
o’clock aspect, which was exactly consistent with the McGraw
score principle. Therefore, it could be determined that although
this approach gained more rewards but also overfitted to
some type of human-crafted strategy. Moreover, vanilla PPO
achieved higher scores than our approach. By using replay
visualization, it was revealed that in the early stage of training,
vanilla PPO only learned conservative spinning around strat-
egy. Such behaviors ensured both sides gained approximately
0 scores, but obviously, it was helpless to discover new air
combat tactics. In the later period of training, as the adversaries

slowly began to launch some missiles randomly with ±500
rewards after mastering simple flight skills, which induced
larger reward variance as demonstrated.

Although the training reward curve of our method looks
lower than the others, it was revealed in replay visualization
that KAERS mechanism encouraged the willingness of adver-
saries to fight each other at the early stage of training. e.g.,
a successful radar lock-on operation gained +2 score, which
drove the agent to lock opponents more incentively. Moreover,
since successful radar lock-on is the premise of a missile
launch, it enlarged the probability of successful shots, which
produced more opportunities for adversaries to discover the
necessity of evading incoming missiles launched by opponents
in the early stage of training. Therefore, we could infer that our
PPO with KAERS approach revealed the causality of specific
tactical behavior with more objective end-game results, which
refrained the proposed method from overfitting to some certain
kind of expert knowledge.

In order to prove this conclusion, we carried out 100 air
combat battles between agents trained by PPO with KAERS
approach with other algorithms right after training ended.
The experimental results were shown in figure 6. From the
confrontation result, it could be clearly found that our method
achieved the highest winning rate even if the draw game ratio
is ignored. Consequently, PPO with KAERS method could
objectively and efficiently accelerate the self-play training
process.
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Fig. 5. Training rewards comparison

V. CONCLUSION

In this paper, we focused on solving a fully autonomous
BVR air combat problem. Firstly, we took the lead in introduc-
ing an end-to-end RL air combat AI approach without human
prior knowledge. Moreover, we also proposed a mechanism
named KAERS for accelerating the initial air combat training
process by providing objective key air combat event based
shaped rewards. Consequently, experimental results showed
that multiple valuable air combat tactical behaviors emerged
by self-play manner training process spontaneously. In a sense,
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we endowed air combat AI with continuous tactics evolution
capacity.

However, this work has preliminarily assumed that fully-
observed information about all WUKONG air combat envi-
ronment could be acquired accurately. In the future, we will
work towards a Partially-Observed Markov Decision Process
(POMDP) version of one-on-one BVR air combat simulation
and trying to investigate on solutions for highly uncertainty
nature of the BVR air combat.
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influence diagram approach to one-on-one air combat,”
in Proceedings of the 10th International Symposium
on Differential Games and Applications, St. Petersburg,
Russia, vol. 2, 2002, pp. 859–864.

[4] K. Virtanen, J. Karelahti, and T. Raivio, “Modeling air
combat by a moving horizon influence diagram game,”
Journal of guidance, control, and dynamics, vol. 29,
no. 5, pp. 1080–1091, 2006.

[5] N. Ernest, D. Carroll, C. Schumacher, M. Clark, K. Co-
hen, and G. Lee, “Genetic fuzzy based artificial in-
telligence for unmanned combat aerial vehicle control
in simulated air combat missions,” Journal of Defense
Management, vol. 6, no. 1, pp. 2167–0374, 2016.

[6] D. Vinberg, Guided Reinforcement Learning applied to
Air-Combat Simulation. Citeseer, 2009.

[7] J. S. McGrew, J. P. How, B. Williams, and N. Roy,
“Air-combat strategy using approximate dynamic pro-
gramming,” Journal of guidance, control, and dynamics,
vol. 33, no. 5, pp. 1641–1654, 2010.

[8] B. Kurniawan, P. Vamplew, M. Papasimeon, R. Dazeley,
and C. Foale, “An empirical study of reward structures
for actor-critic reinforcement learning in air combat ma-
noeuvring simulation,” in Australasian Joint Conference
on Artificial Intelligence. Springer, 2019, pp. 54–65.

[9] K. Goodrich and J. McManus, “Development of a tactical
guidance research and evaluation system (tgres),” in
Flight Simulation Technologies Conference and Exhibit,
1989, p. 3312.

[10] T.-H. Teng, A.-H. Tan, Y.-S. Tan, and A. Yeo, “Self-
organizing neural networks for learning air combat ma-
neuvers,” in The 2012 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2012, pp. 1–8.

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton et al., “Mastering the game of go without
human knowledge,” nature, vol. 550, no. 7676, pp. 354–
359, 2017.

[12] N. Ding and R. Soricut, “Cold-start reinforcement learn-
ing with softmax policy gradient,” in Advances in Neural
Information Processing Systems, 2017, pp. 2817–2826.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, p. 484, 2016.

[14] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,”
Artificial intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[15] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris,
G. Lever, A. G. Castaneda, C. Beattie, N. C. Rabi-
nowitz, A. S. Morcos, A. Ruderman et al., “Human-
level performance in first-person multiplayer games with
population-based deep reinforcement learning,” arXiv
preprint arXiv:1807.01281, 2018.

[16] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dke-
biak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme,
C. Hesse et al., “Dota 2 with large scale deep reinforce-
ment learning,” arXiv preprint arXiv:1912.06680, 2019.

[17] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev et al., “Grandmaster level in starcraft ii using
multi-agent reinforcement learning,” Nature, vol. 575, no.
7782, pp. 350–354, 2019.

[18] M. L. Littman, “Markov games as a framework for multi-
agent reinforcement learning,” in Machine Learning Pro-
ceedings 1994, W. W. Cohen and H. Hirsh, Eds. San
Francisco (CA): Morgan Kaufmann, 1994, pp. 157 – 163.

[19] “Air combat maneuvering,” 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Air combat manoeuvring

[20] P. Bonanni, The art of the kill. Spectrum HoloByte,
1993.

[21] D. S. Leslie and E. J. Collins, “Generalised weakened



fictitious play,” Games and Economic Behavior, vol. 56,
no. 2, pp. 285–298, 2006.

[22] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-
play in extensive-form games,” in International Confer-
ence on Machine Learning, 2015, pp. 805–813.

[23] J. Heinrich and D. Silver, “Deep reinforcement learning
from self-play in imperfect-information games,” arXiv
preprint arXiv:1603.01121, 2016.

[24] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mor-
datch, “Emergent complexity via multi-agent competi-
tion,” arXiv preprint arXiv:1710.03748, 2017.

[25] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel,
and I. Mordatch, “Multi-agent actor-critic for mixed
cooperative-competitive environments,” in Advances in
Neural Information Processing Systems, 2017, pp. 6379–
6390.

[26] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba,
and P. Abbeel, “Asymmetric actor critic for image-based
robot learning,” arXiv preprint arXiv:1710.06542, 2017.

[27] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and
S. Whiteson, “Counterfactual multi-agent policy gradi-
ents,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[29] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S.
Vezhnevets, M. Yeo, A. Makhzani, H. Küttler, J. Aga-
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