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Abstract—Clustering algorithms have wide applications and
play an important role in data analysis fields including time
series data analysis. However, in time series analysis, most of
the algorithms used signal shape features or the initial value of
hidden variable of a neural network. Little has been discussed on
the methods based on the generative model of the time series. In
this paper, we propose a new clustering algorithm focusing on the
generative process of the signal with a recurrent neural network
and the variational Bayes method. Our experiments show that the
proposed algorithm not only has a robustness against for phase
shift, amplitude and signal length variations but also provide a
flexible clustering based on the property of the variational Bayes
method.

Index Terms—Time series analysis, Clustering, Recurrent neu-
ral network, Variational Bayes

I. INTRODUCTION

The rapid progress of IoT technology has brought huge data
in wide fields such as traffic, industries, medical research and
so on. Most of these data are gathered continuously and accu-
mulated as time series data, and the extraction of features from
a time series have been studied intensively in recent years. The
difficulty of time series analysis is the variation of the signal
in time which gives rise to phase shift, compress/stretch and
length variation. Many methods have been proposed to solve
these problems. Dynamic Time Warping (DTW) was designed
to measure the distance between warping signals [1]. This
method solved the compress/stretch problem by applying a
dynamic planning method. Fourier transfer or wavelet transfer
can extract the features based on the frequency components
of signals. The phase shift independent features are obtained
by calculating the power spectrum of the transform result.

In recent years, the recurrent neural network (RNN), which
has recursive neural network structure, has been widely used in
time series analysis [2], [3]. This recursive network structure
makes it possible to retain the past information of time
series. Furthermore, this architecture enables us to apply
this algorithm to signals with different lengths. Although
the methods mentioned above are effective solutions for the
compress/stretch, phase shift and signal length variation issues,
little has been studied about these problems comprehensively.

Let us turn our attention to feature extraction again. Unsu-
pervised learning using a neural network architecture autoen-
coder (AE) has been studied as a feature extraction method

[4]–[6]. AE using RNN structure (RNN-AE) has also been
proposed [7] and it has been applied to real data such as
driving data [8] and others. RNN-AE can be also interpreted
as the discrete dynamical system: chaotic behavior and the
deterrent method have been studied from this point of view
[9], [10].

In this paper, we propose a new clustering algorithm for
feature extraction focusing on the dynamical system aspect
of RNN-AE. In order to achieve this, we employed a multi-
decoder AE to describe different dynamical systems as a gen-
erative model. We also applied the variational Bayes method
[11]–[13] as the clustering algorithm.

This paper is composed as follows: in Section III, we
explain AE from a dynamical system view, then we define
our model and from this, derive its learning algorithm. In
Section V, we describe the application of our algorithm to an
actual time series to show its robustness, including experiments
using periodic data, complex periodic data and driving data.
Finally we summarize our study and describe our future work
in Section VII.

II. RELATED WORK

A lot of excellent clustering/representation algorithms of
data using AE have been studied so far [14]. Song et al.
[15] integrated the distance between data and centroids into an
objective function to obtain a cluster structure in the encoded
data space. Pineau and Lelarge [16] proposed a generative
model based on the variational autoencoder (VAE) [17] with
a clustering structure as a prior distribution, VAE was also ap-
plied to the hierarchical clustering method of time series data
[18]. Wang et al. [19] achieved a high separability clustering
result by adding a regularization term for the orthogonality
and balanced clusters of the encoded data. These, however, are
regularization methods of the objective function, and focused
on only the distribution of the encoded data as the initial value
of decoder.

They did not give the clustering policy based on the decoder
structure, namely, the reconstruction process of the data. From
dynamical system point of view, one decoder of RNN-AE
corresponds to a single dynamics in the space of latent
representation. Hence, it is natural to equip RNN-AE with
multiple decoders to implement multiple dynamics. Such an
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extension of RNN-AE, however, has yet to be proposed in
related works to the best of our knowledge. It can also possibly
be incorporated into the framework of VAE by treating the
output of the RNN encoder as a latent random variable [17].

III. RECURRENT NEURAL NETWORK AND DYNAMICAL
SYSTEM

A. Recurrent Neural Network Using Unitary Matrix
RNN is a neural network designed for time series data. The

architecture of the main unit is called cell, and mathematical
expressions are shown in Fig. 1 and Eq. (1).

Fig. 1. RNN Cell

Suppose we are given a time series,

X = (X1, · · · ,Xn, · · · ,XN ), Xn = (x1
n, · · · ,xt

n, · · · ,xT
n ),

xt
n ∈ RD, n = 1, · · · , N, t = 1, · · · , T,

where D denotes data dimension. RNN, unlike the usual feed-
forward neural network, operates the same transform matrix
to the hidden valuable recursively,

zt = V ht−1 +Uxt + b, ht = σ(zt), (1)

where σ(·) is an activation function and zt, ht, b ∈ RL. This
recursive architecture makes it possible to handle signals with
different lengths, although it is vulnerable to the vanishing
gradient problem as with the deep neural network (DNN) [2],
[3]. Long short-term memory (LSTM) and gated recurrent
unit (GRU) are widely known solutions to this problem [20]–
[22]. These methods have the extra mechanism called a gate
structure to control output scaling and retaining/forgetting of
the signal information. Though this mechanism works effec-
tively in many application fields [23], [24], the architecture of
network is relatively complicated. As an alternative simpler
method to solve this problem, the algorithm using a unitary
matrix as the transfer matrix V was proposed in recent years
[25]–[29]. Since the unitary matrix does not change the norm
of the variable vector, we can avoid the vanishing gradient
problem. In addition, the network architecture remains un-
changed from the original RNN.

In this paper, we focus on the dynamical system aspect
of the original RNN. We employ the unitary matrix type
RNN to take advantage of this dynamical system structure.
However, to implement the above method, we need to find
the transform matrix V in the space of unitary matrices
U = {U(L) ∈ GL(L)|U(L)∗U(L) = I}, where GL(L) is
the set of complex-valued general linear matrices with size
L × L and ∗ means the adjoint matrix. Several methods to
find the transform matrix from U has been reported so far
[25]–[29]. Here, we adopt the method proposed by [26].

B. RNN Autoencoder and Dynamical System

The architecture of AE using RNN is shown in Fig. 2. AE
is composed of an encoder unit and a decoder unit. The pa-
rameters (Venc ,Uenc ,Vdec ,Udec) are trained by minimizing
∥X −Xdec∥2F =

∑T
t=1 ∥xt − xt

dec∥2, where X is the input
data and Xdec is the decoded data.

The input data is recovered from only the encoded signal
h using the matrix (Vdec ,Udec), therefore h is considered as
the essential information of the input signal. When focusing

Fig. 2. Architecture of RNN Autoencoder

on the transformation of the hidden variable, this recursive
operation has the same structure of a discrete dynamical
system expression as described in the following equation:

ht = f(ht−1), (2)

where f is given by Eq. (1). From this point of view, we
can understand that RNN describes the universal dynamical
system structure which is common to the all input signals by
the reconstruction process in Fig. 2.

IV. DERIVATION OF MULTI-DECODER RNN AE
ALGORITHM

In this section, we will give the architecture of the Multi-
Decoder RNN AE (MDRA) and its learning algorithm. As
we discussed in the previous section, RNN can extract the
dynamical system characteristics of the time series. In the
case of the original RNN, the model expresses just one
dynamical system, hence all input data are recovered from
the encoded result h by the same recovery rule. Therefore
h is usually used as the feature value of the input data. In
contrast, in this paper, we focus on the transformation rule
itself. For this purpose, we propose MDRA which has multiple
decoders to extract various dynamical system features. The
architecture of MDRA is shown in Fig. 3. Let us put Wk

dec =
(V k

dec ,U
k
dec) for k = 1, · · · ,K, Wenc = (Venc ,Uenc), and

W = (Wenc ,W1
dec , · · · ,W

K
dec). We will derive the learning

algorithm to optimize the whole set of parameters W in the
following section.

A. Decomposition of Free Energy

We applied a clustering method to derive the learning
algorithm of MDRA. Many clustering algorithms have been
proposed: here we employ the variational Bayes (VB) method,
because the VB method enables us to adjust the number of
clusters by tuning the hyperparameters of a prior distribution



Fig. 3. Architecture of MDRA

[13], [30]. We first define free energy, which is negative log-
marginal-likelihood, by the following equation,

FX(W) = − log

∫ ∫ { N∏
n=1

∑
yn

pW(Xn|yn,hn, β)p(yn|α)

}
· p(α)p(β)dαdβ, (3)

where X is data tensor defined in Section III and W is parame-
ter tensor of MDRA defined above. Y = (y1,y2, · · · ,yN ) is
the set of latent variables each of which means an allocation
for a decoder. That is, yn = (yn1, · · · , ynK)T ∈ RK , where
ynk = 1 if Xn is allocated to the k-th decoder and otherwise
ynk = 0. pW(Xn|yn,hn, β) is the probability density function
representation of MDRA parametrized by tensor W, p(α)
and p(β) are its prior distributions for a probability vector
α = (α1, · · · , αK) and a precision parameter β > 0.
We applied the Gaussian mixture model as our probabilistic
model. Hence p(α) and p(β) were given by Dirichlet and
gamma distributions respectively which are the conjugate prior
distributions of multinomial and Gaussian distributions. These
specific distributions are given as follows:

pW(X,Y ,α, β|H) = pW(X|Y ,H, β)p(Y |α)p(α)p(β),

p(α) =
Γ (θ0K)

Γ(θ0)K

K∏
k=1

αθ0−1
k , p(β) =

λν0
0

Γ(ν0)
βν0−1 exp(−λ0β),

pW(X|Y ,H, β) =

N∏
n=1

pW(Xn|yn,hn, β),

pW(Xn|yn,hn, β) =

K∏
k=1

{(
β

π

)TnD
2

exp(−β∥Xn − g(hn|Wk
dec)∥2F )

}ynk

,

p(Y |α) =

N∏
n=1

p(yn|α), p(yn|α) =

K∏
k=1

αynk

k .

Here, θ0 > 0, ν0 > 0 and λ0 > 0 are hyperparameters and
g(hn|Wk

dec) = Xn
dec,k denotes decoder mapping of RNN from

the encoded n-th data hn, H = (h1, · · · ,hN ) and TnD is the
total signal dimension of input signal Xn including dimension
of input data. To apply the variational Bayes algorithm, we

then derive the upper bound of the free energy by applying
Jensen’s inequality,

FX(W) = − logEq̄

[
pW(X|Y ,H, β)p(Y |α)p(α)p(β)

q(Y )q(α)q(β)

]
≤ DKL(q(Y )q(α)q(β)∥p(Y ,α, β|X)) + FX(W)

= DKL(q(Y )q(α)q(β)∥p(Y |α)p(α)p(β))

−
N∑

n=1

Eq̄′ [log pW(Xn|yn,hn, β)]

≡ F̄X(q,W), (4)

where DKL(·∥·) is the Kullback−Leibler divergence and
Eq̄[·] = Eq(Y )q(α)q(β)[·],Eq̄′ [·] = Eq(yn)q(β)[·]. The upper
bound F̄X(q,W) is called the variational free energy or
(negated) evidence lower bound (ELBO). The variational free
energy is minimized with respect to the variational posterior
q(Y ,α, β) = q(Y )q(α)q(β) using the variational Bayes
method under the fixed parameters W. Furthermore, it is also
minimized with respect to the parameters W by applying the
RNN learning algorithm to the second term of F̄X(q,W),

−
N∑

n=1

Eq(yn)q(β) [log pW(Xn|yn,hn, β)] ∝

N∑
n=1

Eq(yn)

[
K∑

k=1

ynk∥Xn − g(hn|Wk
dec)∥2F

]
+ const..

(5)

B. Minimization of the Variational Free Energy

In this section, we derive the variational Bayes algorithm for
MDRA to minimize the variational free energy. We show the
outline of the derivation below (for a detailed derivation, see
Appendix A and B ). The general formula of the variational
Bayes algorithm is given by

log q(Y ) = Eq(α,β)[log pW(X,Y ,H,α, β)] + const.,

log q(α, β) = Eq(Y )[log pW(X,Y ,H,α, β)] + const..

By applying the above equations to the above probabilistic
models (see Appendix A), we obtained the specific algorithm
shown in Algorithm 1. Then we minimize the following
weighted reconstruction error using RNN algorithm:

N∑
n=1

K∑
k=1

{
rnk∥Xn − g(hn|Wk

dec)∥2F
}
, (6)

where rnk = Eq(yn)[ynk] as detailed in Appendix B. We de-
note R = (r1, · · · , rN ), where rn = (rn1, · · · , rnK)T ∈ RK .
From the above discussion, we finally obtained the following
Algorithm 2. We apply these two algorithms iteratively to
minimize F̄X(q,W). Fig. 4 describes the relation of the VB
and RNN steps of MDRA algorithm.



Algorithm 1 VB part of MDRA
Input: X: set of input signals
Output: R: allocation weights
for i← 0 to I do

VB E-step:

log ρnk=ψ(θ̄k)−ψ

(
K∑

k=1

θ̄k

)
−∥Xn−g(hn|Wk

dec)∥2F ν̄λ̄−1

+
TnD

2
(ψ(ν̄)−log λ̄)− TnD

2
log π, rnk=

ρnk∑K
k=1 ρnk

VB M-step:

Nk =

N∑
n=1

rnk, θ̄k = θ0 +Nk, ν̄ = ν0 +
1

2

N∑
n=1

TnD

λ̄ = λ0 +

K∑
k=1

N∑
n=1

rnk∥Xn − g(hn|Wk
dec)∥2F

end for

Algorithm 2 MDRA
Input: X: set of input signals
Output: W: weight tensors, R: allocation weights, H:
encoded signals
Set hyperparameters θ0, ν0, λ0 and the initial value of W
randomly.
repeat

Calculate W that minimizes the following value by RNN
algorithm:

N∑
n=1

K∑
k=1

{
rnk∥Xn − g(hn|Wk

dec)∥2F
}
.

Calculate R = (rnk) by the algorithm VB part of
MDRA (Algorithm 1).

until the difference of variational free energy
F̄X(q,W) < Threshold

V. EXPERIMENTS

A. Periodic Signals

We first examined the basic performance of our algorithm
using periodic signals. Periodic signals are typical time series
signals expressed by dynamical systems. Input signals have 2,
4, and 8 periods respectively in 64 steps. Each signal is added a
phase shift (maximum one period), amplitude variation (from
50% to 100% of the maximum amplitude), additional noise
(maximum 2% of maximum amplitude) and signal length
variation (maximum 80% of the maximum signal length).
Examples of input data are illustrated in Fig. 5.

We compared LSTM-AE and RNN-AE to MDRA on its
feature extraction performance using the above periodic sig-
nals. Fig. 6 and Fig. 7 show the results of LSTM-AE, RNN-
AE and MDRA, respectively. We set the same dimension of

Fig. 4. MDRA algorithm

Fig. 5. Examples of periodic signals

hidden variable hn in all algorithms. Note here that RNN-
AE and MDRA use a complex-valued hidden variable while
LSTM-AE uses real-valued one. Therefore LSTM-AE has
twice the hidden variable dimension of RNN-AE and MDRA.
The parameter setting is listed in Table II in Appendix D.

We used multi-dimensional scaling (MDS) as the dimension
reduction method to visualize the distributions of features in
Fig. 6 and Fig. 7.

Fig. 6 shows the distribution of the encoded data hn which
is the initial value of the decoder unit in Fig. 2.

We found that RNN-AE can separate the input data into
three regions corresponding to each frequency (Fig. 6:right).
However distribution on the hidden variable of LSTM-AE has
complicated shape, each frequency overlapped each other. We
guess this result was caused by the complex architecture of
LSTM cell.

Fig. 6. Visualization of features extracted by RNN-AE: left, LSTM-AE: right

Fig. 7 shows the distributions of the encoded data hn

and the clustering allocation weight rn extracted by MDRA.
The distribution of rn shown in the left figure of Fig. 7 is
completely separated into each frequency component without
overlap. The distribution of hn was given as the initial value



of the corresponding decoder. This result shows that the
distribution of rn as the feature extraction has robustness for
phase shift, amplitude and signal length variation.

Fig. 7. Visualization of features extracted by MDRA (left: rn, right: hn)

B. Complex Periodic Signals

Next we applied our algorithm to more complicated signals.
The input signals were all length 32 steps and created by the
following steps.

1) Give θi ∈ [0, 2π], i = 1, 2 randomly.
2) Set h0

n = (eiθ1 , eiθ2).
3) Create ht

n ∈ C2 by the rule ht+1
n =(

eiω1 0
0 eiω2

)
ht
n, (t = 1, 2, · · · , 31).

4) Obtain the signal xtn by projecting ht
n to the vector

(1, 1, 1, 1) as the real value vector ht
n ∈ R4

We created two types of signals (5000 for each type) with
A:(ω1, ω2) = (55.0, 20.0) and B:(ω1, ω2) = (50.0, 25.0),
respectively. We found that it is not very easy to separate the
two types of signals from Fig. 8 visually.

Fig. 8. Examples of complex periodic signals

Fig. 9 shows the result of each algorithm applied to the
complex periodic signals. We used the same hidden variable
dimension for all algorithms. Further information on the
parameters are listed in Table III in Appendix D. Unlike
the experiment V-A, although RNN-AE could not separate
the two types of signals completely, LSTM-AE was able to
separate them. Furthermore rn of MDRA classified the signals
based on the periodicity without any influence from the phase
shift. The phase shift was expressed by hn similarly to the
experiment V-A.

In this experiment, the MDRA estimated the number of
clusters and data ratios correctly in spite of the setting of the

Fig. 9. Visualization of features extracted by RNN-AE: top left, LSTM-AE:
top right and MDRA: bottom left and right (complex periodic signals)

number of decoders K = 5. The distribution ratios calculated
from rn for 2 major clusters were 49.8% and 49.0%. Fig.
10:left is the MDS expression of hidden variable trajectories.
Fig. 10:right shows the first eight signals with successive data
connected by lines. We found that these two types of signals
were completely expressed as different periodic signals in the
hidden space.

Fig. 10. Trajectory of hidden variable of MDRA (signal A: red, signal B:
blue)

C. Experiment of Real Driving Data

We applied our algorithm to a real driving data clustering
problem. We use the driving data consisting of speed, accelera-
tion, braking and steering angle signals.1 The input signal was
about 1 minute differential data, which was cut out from the
original data by a sliding window.2 The detailed information
of the input data is shown in Table I.

The feature extraction results by MDRA are shown in Fig.
11. The parameter setting of this experiment is listed in Table
IV in Appendix D. The left figure is the route clustering
result based on the driving behavior by the MDRA (K = 10).

1This data was created by HQL (Research Institute of Human Engineering
for Quality Life: https:// www.hql.jp/ howhql/ spirit.html).

2We use only the data of which the maximum acceleration difference is
more than a certain threshold.



TABLE I
DRIVING DATA CLUSTERING

#Training Signal length Sampling pitch Slide
4644 512 0.1 sec. 8

This figure shows the actual trajectory of a driven car, each
point of which is colored by RGB based on 3 dimensional
representation of rn given by the MDS. The right figures
(No.1-No.4) show the typical driving behavior extracted from
the major clusters. Blue, green, orange and red lines are speed,
acceleration, brake and steering angle, respectively. From these
results, the interpreted driving feature of each cluster and its
ratio are as follows:

• No.1: moderate acceleration 14.0%
• No.2: stable travel (high speed) 7.5%
• No.3: moderate deceleration 3.5%
• No.4: stable travel (middle speed) 13.7%

In addition, we can extract the complicated driving operation
such as No.5 by choosing the low ratio data point which is
significantly different from the surrounding data points.

Fig. 11. Clustering result of driving data (K = 10)

Although we showed the result in the case of K = 10
here, we can adjust the clustering size by changing K and the
hyparparameters.

VI. DISCUSSION

We verified the feature extraction performance of the
MDRA using actual time series data. In Sections V-A and
V-B, we saw that MDRA algorithm can achieve more stable
clustering than LSTM-AE and RNN-AE by using decoder
weight rn for periodic and complex periodic data. In addition,
we also showed that MDRA has the function to reduce the
unnecessary clusters using the property of the variational
Bayes method. In Section V-C, we confirmed that above
variational Bayes property provides the flexible clustering and
uncommon data extraction using the actual driving data. There
are a lot of research on the variational Bayes method [31],
therefore we can apply these algorithms and knowledges to
improve the performance of MDRA. Especially the phase tran-
sition phenomenon of the variational Bayes learning method,
depending on the hyperparameters, has been reported in [32]．

The hyperparameter setting of the prior distribution has a great
effect on the clustering result.

VII. CONCLUSION

In this paper, we proposed a new clustering algorithm,
MDRA, which can extract features of time series data based
on the data generating process expressed by decoders. We con-
ducted experiments using periodic signals and actual driving
data to verify the advantages of MDRA. The results show
that our algorithm has not only robustness for the phase shift,
amplitude, signal length variation, and signal synthesis but
also flexibility on the clustering performance. We intend to
undertake a detailed study of the relation between the feature
extraction performance and hyperparameter setting of the prior
distributions in the future.
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APPENDIX

A. Minimization of Variational Free Energy with Respect to
the Variational Posterior for the Fixed RNN Parameter

Initially, we suppose that the posterior is expressed by
q(Y ,α, β) = q(Y )q(α, β). Then

log q(Y )=Eq(α,β)[log pW(X,Y ,H,α, β)] + const.

=Eq(α,β)[log pW(X|Y ,H, β)]+Eq(α,β)[log p(Y |α)]

+Eq(α,β)[log p(α)] + Eq(α,β)[log p(β)] + const.

=Eq(α)[log p(Y |α)] + Eq(α)[log p(α)]

+Eq(β)[log pW(X|Y ,H, β)]+Eq(β)[log p(β)]+const..

In addition,

Eq(α)[log p(Y |α)] = Eq(α)

[
log

N∏
n=1

K∏
k=1

αynk

k

]

=

N∑
n=1

K∑
k=1

ynkEq(α) [logαk] ,

Eq(β) [log pW(X|Y ,H, β)]

=

N∑
n=1

K∑
k=1

ynkEq(β)

[
−β∥Xn − g(hn|Wk

dec)∥2F +
TnD

2
log

β

π

]
,

where TnD means total signal dimension. Therefore, we
obtain

log q(Y ) =

N∑
n=1

K∑
k=1

ynk log ρnk + const..

We here put

log ρnk = Eq(α) [logαk] + Eq(β) [G] , (7)

where G = G′ + TnD
2 (log β − log π), G′ = −β∥Xn −

g(hn|Wk
dec)∥2F . Hence q(Y ) ∝

∏N
n=1

∏K
k=1 ρ

ynk

nk , by putting
rnk = ρnk∑K

k=1 ρnk
, we obtain

q(Y ) =

N∏
n=1

K∏
k=1

rynk

nk .

Next we calculate log q(α, β),

log q(α, β) = Eq(Y )[log pW(X,Y ,H,α, β)] + const.

= Eq(Y )[log p(Y |α)] + log p(α)

+Eq(Y)[log pW(X|Y ,H, β)]+log p(β)+const..

Above equation can be divided into the two terms including
α and β respectively,

log q(α) ∝ Eq(Y )[log p(Y |α)]+log p(α)+const.

=

N∑
n=1

K∑
k=1

logαkEq(yn) [ynk] + (θ0 − 1)

K∑
k=1

logαk + const..

Substituting Eq(yn)[ynk] = 1 · q(ynk = 1) + 0 · q(ynk = 0) =
q(ynk = 1) = rnk to the above equation, we obtain

log q(α) =

N∑
n=1

K∑
k=1

logαkrnk + (θ0 − 1)

K∑
k=1

logαk + const..

On the other hand,

log q(β) = Eq(Y )[log pW(X|Y ,H, β)] + log p(β) + const.

=

N∑
n=1

K∑
k=1

[
Eq(yn) [ynk] ·G

]
+ (ν0 − 1) log β + λβ + const..

By applying Eq(yn)[ynk] = rnk, we obtain

log q(β)

=

N∑
n=1

K∑
k=1

[rnk ·G] + (ν0 − 1) log β + λβ + const..

We finally calculate log ρnk in Eq. (7). We first calculate
Eq(β) [G],

log q(β) = βf+

(
ν0 +

1

2

N∑
n=1

TnD − 1

)
log β−λβ+const.,



where we put f =
∑K

k=1

∑N
n=1−rnk∥Xn − g(hn|Wk

dec)∥2F .
In addition, putting λ̄ = λ0 − f , ν̄ = ν0 +

1
2

∑N
n=1 TnD,

q(β)=eβfβν0+
1
2

∑N
n=1 TnD−1e−λ0β ·const.=e−λ̄ββν̄−1 ·const.

=
λ̄ν̄

Γ(ν̄)
βν̄−1e−λ̄β = Gamma(β|ν̄, λ̄).

By using the expectations of β and log β by gamma distribu-
tion Eq(β)[β] = νλ−1,Eq(β)[log β] = ψ(ν)− log λ (Appendix
C), we obtain

Eq(β) [G] = −∥Xn − g(hn|Wk
dec)∥2F ν̄λ̄−1

+
TnD

2
(ψ(ν̄)− log λ̄)− TnD

2
log π.

Similarly, q(α) turns out to be the Dirichlet distribution
with parameters (θ̄1, · · · , θ̄K), and Eq(α)[logαk] = ψ(θ̄k) −
ψ
(∑K

k=1 θ̄k

)
is calculated by the same way in the general

mixture model [11]–[13]. Therefore we finally obtain

log ρnk = ψ(θ̄k)− ψ

(
K∑

k=1

θ̄k

)
− ∥Xn − g(hn|Wk

dec)∥2F ν̄λ̄−1

+
TnD

2
(ψ(ν̄)− log λ̄)− TnD

2
log π.

From the above results, the following variational Bayes algo-
rithm is derived.

B. Minimization of Variational Free Energy with Respect to
the RNN Parameter for the Fixed Variational Posterior

We minimize

−Eq(Y )q(β)

[
N∑

n=1

log pW(Xn|yn,hn, β)

]
to minimize the free energy Eq. (3) with respect to W. More
specifically, we minimize

−
N∑

n=1

Eq(yn)q(β)

log


K∏
k=1

{(
β

π

)TnD
2

eG
′

}ynk



= −
N∑

n=1

Eq(yn)q(β)

[
K∑

k=1

ynk

{
TnD

2
(log β − log π)G′

}]

= Eq(β)[β]

N∑
n=1

K∑
k=1

rnk∥Xn − g(hn|Wk
dec)∥2F

−
N∑

n=1

K∑
k=1

rnk
TnD

2
(Eq(β)[log β]− log π)

∝
N∑

n=1

K∑
k=1

rnk∥Xn − g(hn|Wk
dec)∥2F + const.

where we used rnk = Eq(yn)[ynk].
We achieve this by applying RNN algorithm. From the

above discussion including Appendix A, we obtain the MDRA
algorithm.

C. Derivation of EGamma(β|ν,λ)[log β]

By putting β = ex, we obtain x = log β, dβ = exdx,

EGamma(β|ν,λ)[log β] =

∫ ∞

0

log β
λν

Γ(ν)
βν−1e−λxdβ

=

∫
x
λν

Γ(ν)
(ex)ν−1e−λexexdx

=

∫
x
λν

Γ(ν)
ex(ν−1)e−λexexdx

=

∫
x
λν

Γ(ν)
exν−λexdx.

We here use
d

dν
exν−λex = xexν−λex ,

then the above equation is

EGamma(β|ν,λ)[log β] =

∫
λν

Γ(ν)

d

dν
exν−λexdx

=
λν

Γ(ν)

d

dν

∫
exν−λexdx.

In addition,
∫∞
0
xν−1e−λexdx is the normalization constant of

gamma distribution, therefore it equals to Γ(ν)/λν . Hence we
finally obtain

EGamma(β|ν,λ)[log β] =
λν

Γ(ν)

d

dν

Γ(ν)

λν

=
λν

Γ(ν)

Γ′(ν)λν − Γ(ν)λν log λ

λ2ν

= ψ(ν)− log λ.

D. Parameter Setting
In this section, we show the parameter setting of the

experiments in Section V.

TABLE II
PARAMETER SETTING (PERIODIC SIGNALS)

L
EUNN VB

cap. fft cpx K θ0 ν0 λ0

RNN-AE 4 8 T F - - - -
MDRA 4 5 0.5 1.0 0.01

LSTM-AE 8 - - - - - - -

TABLE III
PARAMETER SETTING (COMPLEX PERIODIC SIGNALS)

L
EUNN VB

cap. fft cpx K θ0 ν0 λ0

MDRA 4 8 T F 5 1.0 1.0 0.01

TABLE IV
PARAMETER SETTING (ROUTE CLUSTERING)

L
EUNN VB

cap. fft cpx K θ0 ν0 λ0

MDRA 4 8 T F 10 10.0 1.0 5.0

Here L is the dimension of hidden variable h, capacity, fft
and cpx are parameters of EUNN [26], K is the number of the
decoders, θ0, ν0, λ0 are hyperparameters of prior distributions.




