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Abstract—In this paper, we investigate how a large-scale
system of independently learning agents can collectively form
acceptable two-dimensional patterns (pattern formation) from any
initial configuration. We propose a decentralized multi-agent deep
reinforcement learning architecture MAPF-DQN (Multi-Agent
Pattern Formation DQN) in which a set of independent and
distributed agents capture their local visual field and learn how
to act so as to collectively form target shapes. Agents exploit their
individual networks with a central replay memory and target
networks that are used to store and update the representation of
the environment as well as learning the dynamics of the other
agents. We then show that agents trained on random patterns
using MAPF-DQN can organize themselves into very complex
shapes in large-scale environments. Our results suggest that the
proposed framework achieves zero-shot generalization on most
of the environments independently of the depth of view of agents.

Index Terms—deep reinforcement learning, multi-agent sys-
tems, pattern formation, self-organization, swarms

I. INTRODUCTION

Suppose, for an instance, that an instructor needs her n
students in the play area to form a 2D shape such as a circle
so that, for example, they can play a game. The instructor
may draw a guideline on the ground as a rule or even give
every student a particular position to move to. Now, imagine a
scenario where the instructor does not give such help. Indeed,
even without such help, the kids may, in any case, have the
option to form an adequately decent estimation of the circle if
every one of them moves depending on the movement of others
by directly observing their neighborhood region. If successful,
this method can be called a distributed solution to the circle
formation problem for children [1].

By analogy, we utilized a methodology based on the previ-
ous example [1] to control a large-scale multi-agent systems
of homogeneous teams. The principal idea is to give every
agent the opportunity to execute a straightforward estimation
of its states and accordingly plan its actions depending on
the actions and states of the remaining agents so that the
agents as a team will cooperatively and collectively form the
target pattern. This type of distributed control of cooperative
systems, in which mobile agents work together to perform

cooperative tasks, is one of the most challenging problems
in multi-agent and multi-robot systems. The challenge is that
such a system is expected to have the ability to self-organize
itself by learning cooperative behaviours without any human
intervention. It must be emphasized that, self-organization of a
real-world (drones, cars, ...) multi-agent system is much harder
to achieve as agents are required to learn more complex tasks.

Our framework could be applied to many realistic problems
such as coordinated multi-robot exploration [2], multi-robot
navigation [3], shape constraints in crowd simulation [4], and
multi-robot animation for entertainment [5]. In general, the
ability for the multi-agent team to cooperate appears to rely
enormously upon (1) the characteristics of the problem to
solve, (2) the global properties assigned to the team, and
(3) the distinctive capabilities of each agent. Instances of the
global properties are the capacity to recognize at any rate their
team members, to concur on a common global direction (sense
of direction), or to concede to a typical handedness [6].

In this paper, we investigate how a large-scale system of
independently learning agents can collectively form acceptable
two-dimensional patterns (pattern formation) from any initial
pattern and configuration. On our assumptions, an agent is
to be regarded as a point in the plane that autonomously
moves according to a given rule. In general, an agent observes
the environment, computes its next position with a given
algorithm, and moves to its next position until it finds its goal
position. We assume that the agents are homogeneous and
anonymous in the sense that they have no identifiers. We also
assume that the agents are uniform in the sense that all agents
synchronously execute a common algorithm. Each agent has
no access to the global state and its actions are solely done in
terms of its local observation [7].

This research proposes an end-to-end decentralized learning
architecture in which agents (1) do not explicitly communi-
cate; (2) use a centralized replay memory to share knowledge
among agents who share the same global goal; and (3) use a
centralized target network to take into account the dynamics
of others and provide a quantitative estimate of how each
agent perceives and is perceived by its team members. We
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call this method Multi-Agent Pattern Formation with Deep
Q-Network (MAPF-DQN). The goal is to control the overall
shape of a robot team by using only the local information
provided by agents’ sensors. Interestingly, the positions or
goals of the individual agents in the group are not explicitly
controlled. An agent should concurrently and independently
learn to locate its goal position and consequently plan a smooth
trajectory towards it. Our model is invariant to the number of
agents per team. This makes it easier to transfer the learned
behaviours of one team to another one with different a number
of agents. We further show that agents using MAPF-DQN
can learn complex cooperative strategies in environments with
progressively increasing complexities.

II. RELATED WORK

To date, the vast majority of current cooperative multi-agent
approaches have been based either on centralized methods in
which a lead agent predicts the behaviour of all agents or
on a distributed approach in which the agents have a full
view and understanding of their environment and dynamics
or sometimes on completely independent learning systems
that do not have anything in common [8]. The easiest way
to implement the decentralized method is to use Q-learning
to estimate independent Q-value functions of each agent by
considering that the other agents are part of the environment.
As the other agents are now also learning, the environment is
non-stationary and thus this uncertainty limits such approaches
from expanding to more than a few agents.

A handful of the latest works uses the centralized learning
and decentralized execution paradigm [9], [10]. This consists
of actor-critics methods in which the critic is centralized
and uses all the available information from the environment
during training. However, throughout execution, agents use
their independent network to compute their actions in a
completely distributed and independent fashion. For eample,
MADDPG [9] uses the joint actions and states with the critic
and establishes strategies for each actor by using DDPG [11]
and concatenating information from other agents.

Huttenrauch et al. [10] argued that most of the recent
multi-agent deep reinforcement learning algorithms are limited
when they are applied to swarm systems without special care.
One of their argument is that concatenating the information
received from different agents is not optimal when you have
an environment with a dynamic number of agents. They
also argued that this could disregard the inherent permutation
invariance of identical agents sine qua non to swarm systems
and that doing so would hardly scale to large-scale systems. To
remediate these limitations, Huttenrauch et al. [10] proposed
a method in which they treat the observation perceived from
nearby agents as samples of a random variable and then encode
the current distribution of the agents by using mean feature
embedding [12].

An alternative to learning systems would be optimization-
based algorithms. However, to control the strategies of agents,
optimization-based methods [13], [14] often oversimplify the
model of agents by assuming unrealistic assumptions in well

defined tasks or environments [13], [15], [16] or having a full
view of the environment [16].

On the swarm optimization side, Xu et al. [17] tackles
the problem of homogeneous multi-agent pattern formation
by using a natural swarm algorithm inspired by the particle
swarm optimization and by using a virtual pheromone as the
messaging protocols. This was proposed to limit the com-
plexity of communication channels as the number of agents
increases. In their method, the agents leave virtual pheromone
in the environment. The pheromone is updated based on their
local observations. However, agents still have to explicitly
communicate by broadcasting the pheromone density to other
agents located in their communication range.

Regardless, in many real-world applications, most of these
hypotheses are infeasible or superfluous. As an example, when
the number of agents is large, it then becomes apparent that
most of the centralized methods will not scale because agents
would have to share their data to the lead agent. Therefore,
in case of agents with communication abilities, we cannot
continually make sure that the communication channels are
maintained up-to-date and not congested.

III. PRELIMINARIES

A. Pattern formation problem

Given a pattern P = {p1, ..., pn}, or a set of points (given
by their Cartesian coordinates in the plane) on an environment
that is a two-dimensional grid, and R = {1, ..., n} a set of
n anonymous agents. Let F (t) = {f1(t), ..., fn(t)} be the
formed pattern by agents where fi(t) ∈ R2 are the coordinates
of the agent i at time t in the environment and R is the set
of real numbers. The goal of the pattern formation problem is
to find a near-optimal and decentralized algorithm to such an
extent that from any initial distributions of the agents positions,
they will, in the long run, organize themselves to form the
target shape.

In general, the initial configuration of the pattern in the
environment is unknown to the agents. Instead, they have to
explore the environment in its entirety in order to find the set
of coordinates of the goal positions before moving towards
them. However, they have no access to a global view of the
environment. A consequence of the approach just outlined is
that agents will eventually maximize their rate of success. We
say that the agents successfully form a target pattern P from
any initial position of agents F (0) when their final positions
F (T ) is 85% similar to the target pattern P , i.e. (F (T ) ≈ P )
where T is the terminal timestep of an episode. Note that each
agent can only observe a subset of P located in its local view
only.

B. Model

Most real-world problems can hardly be modeled as an
(PO)MDP because the agents have limited communication
and partial or noisy observations provided by their sensors.
Clearly, they would have to learn cooperative and coordinated
behaviours by using only their local information. For this
reason, we use the dec-POMDP framework [18].



Definition 1: A decentralized partially observable Markov
decision process (dec-POMDP) [18] is defined as a tuple
〈D,S,A, T ,R,Ω,O, h, I〉, where

• R = {1, ..., n} is a set of n agents;
• S a finite set of states s in which the environment can

be;
• A is the final set of joint actions of agents, where A =
A1 × ...×An and Ai is the action space of agent i;

• T is a probabilistic transition function;
• R is the immediate reward function of an agent;
• Ω is the finite set of joint observations, where Ω = O1×
... × On and Oi is the set of observations available to
agent i;

• O is the observation probability function;
• h is the horizon of the problem; and
• I is the initial state distribution at time t = 0.
At every step, the environment transits from st to st+1 with

a probability p(st+1|st,at) ∈ T when all agents execute a
joint action at = 〈a1t , . . . ant 〉. Then agent i receives a reward
rit = R(st+1|st, ait). The observation o can be approximated
by a zth order history approach which uses the last z obser-
vations and actions [19]. This is very important because the
agents no longer have a Markovian signal; they can’t neither
observe the state nor estimate the belief b as in POMDPs.
Therefore, this approach can manage any latent state infor-
mation compared to using directly the current observation as
the input of an agent. Note that doing so makes our agents
non-oblivious because each agent ri uses the same algorithm
ψ and the past observations and actions of ψ. This gives the
agents the ability to remember important information such as
the positions of teammates and/or the target pattern.

C. Deep Reinforcement Learning

In reinforcement learning, agent i learns an optimal control
policy πi. At each step t, i observes the current state s,
chooses an action a ∈ Ai using πi, receives a reward rit.
Then, the environment transits to a new state st+1. The goal
is to maximize a cumulative discounted future reward at time
t0 as

Rt =

T∑
t=t0

γt−t0rt, (1)

where T is the terminal time step and γ ∈ [0, 1] is the discount
factor that weights the importance of rewards. The action-
value of a given policy πi represents the utility of an action
a at a state s, where the utility is defined as the expected and
discounted future reward,

Qπ(s, a) = E [Rt|st = s, at = a] . (2)

The optimal Q∗ is defined as

Q∗(s, a) = max
π

Qπ(s, a). (3)

Q-learning [20] is an approach that iteratively estimates the
Q-function using the Bellman optimality

Q∗(s, a) = E
[
r + γmax

a
Q∗(st+1, a)|s, a

]
. (4)

We can use a parameterized value function Q(s, a; θt) when
the task is complex. Then, we update the parameters by using
the following formula:

θt+1 = θt + α(yQt (st, at; θt))∇θtQ(st, at; θt), (5)

where α is a scalar step size and yQt is the target value
function.

yQt = Rt+1 + γmax
a

Q(st+1, a; θt) (6a)

= Rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θt); θt) (6b)

DQN [21], [22] is an extension of Q-learning that uses a
stack of neural network to estimate Q(s, a; θ), where θ are
the weights of the network. We use a separate network to
estimate the target Q-values, yDQNt . The target network has
the same architecture as the DQN network but with frozen
parameters θ− that are updated after every τ from the online
network. This leads to more stable training because it keeps
the target θ− fixed for a while. Now, we can can rewrite Eq.
6 as:

yDQNt = Rt+1 + γmax
a

Q(st+1, a; θt) (7a)

= Rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θ); θ
−) (7b)

Then, we finally update the neural network weights by:

θt+1 = θt + α(yDQNt −Q(st, at; θt))∇θtQ(st, at; θt) (8)

IV. METHODS

A. General multi-team architecture

We propose a decentralized system (Figs. 1 and 2) that
can handle a dynamic number of homogeneous teams for the
problem of multi-agent pattern formation. This is a concurrent
team learning in which agents are divided into teams in the
two dimensional space. It is well-suited to cooperative multi-
agent systems in which a team needs to have information about
others in order to make their decisions, i.e., every team learns
to improve parts of the global team by sharing its experiences
with others and reusing others’ experiences at the same time
(Fig. 1). Each agent has a limited visible visual field of depth
k (shape = [2k + 1, 2k + 1]) in the two dimensional space
and an agent can observe its teammates, the obstacles and the
walls within its neighborhood area. However, the interactions
between the agents are not explicitly modelled; they instead
have to learn them by observing other agents’ movements and
reusing others’ experiences which are randomly sampled from
the centralized experience replay memory.

B. Distributed architecture of a team

The architecture of a team is shown in Fig. 2. Each agent
concurrently and independently learns its behaviour based only
on its local observations (Fig. 3). In this framework, every
agent has its own neural network which is shown in Fig. 3.
By using a centralized target network and replay memory, we
naively mimic the team modeling framework by learning about
other agents in the environment so as to make good estimates
of their actions. By doing so, we alter the dynamics such



Replay
Memory

Team	1

Team	2

Team	3

Team	n

sample

store

sample

store

store

store

sample

sample

Fig. 1. General architecture with one or more homogeneous teams.

(obs, ID)
Agent 1

Agent n

Q-values

every k steps

Network 1

Qvalues
(obs, ID)

every k steps

Network n

sample

sample

Replay
Memory

Agent 2

Agent 3

updatesCalculate avg
weights

Calculate loss function

Calculate loss function

Centralized
target net

Fig. 2. Distributed model with centralized replay memory and averaged target
network.

that every agent can perceive and co-adapt to the dynamics
of the environment. This also helps them estimate the current
policies of others and thus, achieve a better cooperation [23].
This is equivalent to providing to an agent the internal belief
representation required to cooperate with its teammate and
potentially avoid conflicts.

The goal positions of individual agents are not defined and
must be instead collaboratively learned by agents. By doing
that, agents learn to agree on their tasks or assignments in a
coordinated manner. We have already seen that the only way
they learn to coordinate is restricted to using only their local
observation which might contains the positions of other agents
and goal positions.

With our method the network continuously adapts and
updates the goals depending on the environment dynamics
until all agents reach their goals. An agent receives a reward
of +10 if it finds a landmark and decide to commit to
it and receives a punishment of −0.05 at every time step.
The last part should potentially demotivate them to spend
long time without finding goals. The key components of this
framework are: domain randomization, centralized experience
replay memory, and a common target network calculated by
the average of each agent’s weights.

C. Domain randomization

It is well known that transfer learning is hard with re-
inforcement learning policies. To avoid this trap, we use
some ideas from robotics domain randomization. The goal
of domain randomization is to train the agents on different
environments with random properties and dynamics. In our
case, the agents are trained to form themselves into randomly
generated shapes. In other words, the positions of the target

shapes are randomly generated and scattered all over the
environment at the beginning of every episode with a variant
number of targets up to 600 simulated agents during training.
This will help the system to adapt to different shape during
the test phase as they were trained on so many different and
variable shapess. Hence, the agents will learn to generalize
well to unseen pattern shapes.

D. Centralized experience replay memory and common target
network

Each agent of the team has its own main network to behave
autonomously. It stores and updates its representation of the
environment by randomly sampling from the replay memory.
As a consequence, each agent independently computes its
patrolling plan by taking advantage of other agents knowledge
without exchanging coordination messages. It is important to
combine this approach with a good sampling strategy because
the existence of multiple agents accessing and updating a
centralized memory may result in earlier memories of some
agents to be overwritten.

The centralized target network is updated by the average
weights of individual agents’ networks. In other words, the
target network θ− is a single network that combines the
individual agents’ networks (θ) of the same team by taking
the average of their weights.

θ− =
1

n

n∑
i=1

θi. (9)

Equation 7b becomes

yt = Rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θ);θ
−). (10)

By doing so, we also ensure that an agent can react to the
previous actions and rewards of others by taking into account
their dynamics. As a result, this somehow provides some sort
of communication to cope with the local view. Moreover, this
framework seems to provide the same characteristics of a
team with implicit communication and global view. This is
still better than most actor-critic methods such as MADDPG
[9] in which the central critic limits the ability of agents to
generalize their learned behaviours to different environments
or even the same environment with different number of agents
or action space. The agents are homogeneous and anonymous,
so they cannot be distinguished by their appearance. Besides,
our framework works in a completely distributed mode and
agents have no preference for their goal destinations.

E. Observation and network architecture of an agent

With this approach, agents rely on themselves to make
decisions instead of a centralized leader. However, without
centralized coordination, our framework works in a complete
distributed mode, using only the local environmental infor-
mation provided by the agents sensors. Agents do not have
a global knowledge of their environment and should achieve
good results with smooth motions in a relatively short time.
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The observation of an agent (Fig. 3) is encoded as a multi-
channel image in which every channel represents a different
feature from its view as in [24]–[26].

Every channel is a binary matrix with 1 indicating the
presence of an object and 0 otherwise. The first channel
represents positions of the wall and obstacle. The second
one represent the position of the agent itself, and the third
channel is the position of the goals in that local view. If
we have more than one team, we add a new channel for
each different team. Finally, the last channel contains all other
information such as the goal positions of all other teams. This
representation could be pushed further by using ideas from
neural-symbolic computing [27] that provides the ability to
learn from experiences and at the same time the ability to
reason from what has been learned.

The neural network architecture of each agent is shown in
Fig. 3. It consists of fully connected layers only. The inputs
are the spatial observations of agents (Fig. 3) at t and t −
1 and a feature vector f from the environment containing
the last action, last reward, relative position, number of goal
points in their local views. This is very similar to the state
representation in [24] with the only difference being that we
reused the history to make it conform to our dec-POMDP
model.

V. RESULTS

A. Experimental settings

The following results are average of 10 experimental runs
with different random seeds by using our proposed framework.
We assume that there is no noise in agents’ observations and
that the target shape is static during every episode. In all
experiments, the target network is updated after every 10, 000
steps which also means that the average target network is
calculated at the same time. We set the learning rate to 0.0001,
γ = 0.9, batch size of 128 samples, and used ε-greedy as the
exploration strategies. The values of ε are linearly decayed
from 0.5 to 0.01 during the first 5000 of the 10000 training
episodes. The maximum samples that the shared experience
replay memory can have at a time is 1, 000, 000.

We use a centralized system as a baseline, in which a team’s
strategy is computed by a central agent and subsequently
communicated to all teammates. We also compare our method
against a discrete action space version of MADDPG [9]. To
improve the effectiveness of our method and its ability to
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Fig. 4. Left: average success rate. Right: average reward.

generalize on completely random and unseen environment,
the agents were trained on a large 2-dimensional grid graph
(150 × 150) with utmost 700 randomly generated landmarks
at the beginning of each episode.

B. Results with one team

First, we trained our model with only one team of utmost
700 agents during training and a varying number of agents
during testing. Figure 4 shows the average reward and com-
pletion rate of agents with different visual field depths. We do
not provide the result of the centralized method when k = 1 as
that would generate an observation range of 3×3 which would
be too small for a convolutional layer with a 3×3 kernel. With
a smaller view range (k = 1), MADDPG achieved the highest
reward, followed by the centralized network while agents using
our method struggle to learn how to organize themselves into
the target shapes. As the view range increases (k ≥ 2), the
proposed method steadily improves while the performance of
MADDPG beomes less stable. The instability of MADDPG is
due to the exchange of observation during training. Moreover,
the centralized framework is not stable either for a smaller
view ranges. This is probably caused by the limited scope
of the information from their local observations. In summary,
with a large enough view range, agents can solve their tasks
by using either our proposed method or a centralized system
with a lead agent.

While our method has a similar average success rate as the
centralized method for k ≥ 4, it also achieved the highest
rewards among all of the tested methods. This means that
agents using MAPF-DQN take less time to learn acceptable
strategies. Surprisingly, we observe in all methods, agents do
prefer to finish most of their tasks during the first hundred
steps before slowly trying to complete and improve the global
shape (Fig. 9). In addition, MADDPG agents trained on
randomly generated patterns cannot generalize well on unseen
and structured patterns when the number of agents is large as
in Fig 9.

C. Results with many teams

To evaluate the robustness of our method, we train it with
a different number of homogeneous teams. The advantage of
a multi-team system is that we could eventually use MAPF-
DQN with heterogeneous teams with different action spaces,
velocities, and learning techniques. The number of agents per
team is equal to the number of landmarks divided by the
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number of teams. Figures 6 and 5 show that our method with
1 to 4 teams do also outperform all other methods during
training even though its performance keeps decreasing as the
number of teams increases. Surprisingly, we observe a sudden
performance drop when the number of teams is 5, which
becomes even worse than MADDPG [9].

Figure 7 shows the distribution of rewards for our frame-
work in environment with different number of teams. Our
method is more confident when we just have one group as the
dimension of the observation is smaller and contains less noise
as can be seen in the reward density estimation. The confidence
is slightly shrinking as the number of teams increases and the
distribution of the rewards starts varying in a larger range.
Finally, our method becomes less confident about its strategies
as the number of teams becomes larger. It also shows that
our method works better with smaller number of teams (up
to 4) and does not scale for teams of more than four teams.
Therefore, the behaviours become less predictable for a team
of five teams. Though, this is not surprising because we know
the dimension of the observation of an agent increases as the
number of teams increases. This make the dynamics of the
environment noisy and thus, very hard to predict. In addition,
Figure 8 shows that our method is robust up to 4 teams,
from which it becomes less stable and confident about its
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predictions.

D. Generalization

After evaluating the behaviours of our proposed method
with different team sizes with different number of agents,
and different observation range without any fine-tuning, our
results suggest that the proposed framework achieves zero-
shot generalization on all environments independently of the
depth of view of agents. Figure 9 shows 550 agents trying to
organize themselves into an X shape in a 150×150 grid-graph.
At the end of this episode, our proposed method achieves the
highest completion rate of 94%, followed by the centralized
architecture with 87% and finally MADDPG [9] with 73%.
Agents tend to finish the large chunk of their tasks during the
first few steps. However, agents with different techniques have
different behaviors of representing the shape. For example,
with our method, agents tend to start from the center of the
shape and progressively explore the rest of the environment
(Fig. 9), while with MADDPG [9], the agents, do not really
have any preferences, they start exploring the environment in
its entirety.

This difference can justify why MADDPG [9] agents do not
achieve a good result at the end in large-scale environment.
The other reason is that MADDPG [9] hardly scale in large
environment because agents have to share their information,
i.e., the more agents you have, the higher the complexity
of the observation of an agent is. In contrast, our agents
hardly explore the whole environment by starting from the
center, which often a good behaviour, but you could easily see



the limitations when you have a disconnected or discontinue
shape. However, we still think that the behaviour of MADDPG
[9] could be well-suited for small-scale environment with less
agents and simple target shapes.

Figure 10 shows n agents trying to organize themselves into
different shapes in a 150 × 150 grid-graph by using MAPF-
DQN. These shapes consist of an ”O” shape, a dolphin, a
house, and a mandala. As in Fig 9, the agents finish the bulk
of the tasks during the very first steps of an episode and then
subsequently try to improve their coverage. Even though all
teams have utmost 700 agents during training, we can see that
they can more or less generalize well in environment with
much larger number of agents during the test phase. We can
also see that the generalization is somewhat independent to the
number of agents but highly tied to the pattern themselves. For
example, the dolphin requires only 864 agents and mandala
1669, but our method has a better result with the later.

VI. CONCLUSION

We showed that agents using our method can organize
themselves into a complex 2-dimensional pattern even though
they were trained on random patterns. Our results showed that
the proposed framework achieved zero-shot generalization on
unseen environments without retraining the agents indepen-
dently of the depth of their views. We finally showed that our
framework can generate complex strategies when the team
is divided into independent homogeneous groups. However,
our method does not scale when we have a large number of
groups or teams. Finally, it would be interesting to investigate
our method for multi-pattern formations in which agents are
expected to achieve smooth transitions between given patterns.
Also, it would be interesting to investigate our framework with
heterogeneous instead of homogeneous groups and further
investigate the robustness of this framework.
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Fig. 9. 550 agents try to organize themselves into an X shape in a 150× 150 grid-graph.
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Fig. 10. n agents trying to organize themselves into different shapes in a 150× 150 grid-graph.




