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Abstract—The application of adversarial learning for semi-
supervised semantic image segmentation based on convolutional
neural networks can effectively reduce the number of manually
generated labels required in the training process. However,
the convolution operator of the generator in the generative
adversarial network (GAN) has a local receptive field, so that
the long-range dependencies between different image regions can
only be modeled after passing through multiple convolutional
layers. The present work addresses this issue by introducing
a self-attention mechanism in the generator of the GAN to
effectively account for relationships between widely separated
spatial regions of the input image with supervision based on
pixel-level ground truth data. In addition, the adjustment of
the discriminator has been demonstrated to affect the stability
of GAN training performance. This is addressed by applying
spectral normalization to the GAN discriminator during the
training process. The proposed stable self-attention adversarial
learning semi-supervised semantic image segmentation network
is demonstrated to provide superior image segmentation perfor-
mance compared with the results of current semi-supervised and
fully-supervised semantic image segmentation techniques.

Index Terms—Self-Attention, Adversarial Learning, Semi-
Supervised, Spectral Normalization

I. INTRODUCTION

Image segmentation is an essential task in the fields of

image processing and computer vision. Such tasks conducted

at the pixel level are generally referred to as semantic image

segmentation, which has seen significant progress in recent

years due to the development of convolutional neural networks

(CNNs) [1]–[7]. This progress has led to the wide application

of semantic segmentation to various fields such as autonomous

driving [8] and image editing [9]. However, practical appli-

cations of semantic segmentation generally require a large

number of object classes and ground truth label data annotated

at the pixel level for each class to convey the relationships

between object boundaries and their components when con-

ducting fully-supervised CNN training, and these data are

generally derived manually at great effort and expense. Efforts

have been made to reduce the number of manually generated

labels required in the training process, the most common of

which has been the application of semi-supervised and weakly-

supervised training methods to semantic image segmentation.

The key aspect of semi-supervised learning methods is

that they employ weakly tagged data indicating only the

existence of objects of a certain class, but provide no ground

truth information about the location or boundaries of objects.

Naturally, these annotations are weaker than pixel-level labels,

but are readily available in a large volume of visual data or can

be obtained manually at relatively low cost. Therefore, semi-

supervised learning provides an attractive method for training

semantic image segmentation models with a limited volume

of labeled training data and a large volume of unlabeled data.

Various semi-supervised training methods have been proposed

for semantic image segmentation. For example, Kalluri et al.

[10] combined semi-supervised learning with unsupervised

domain adaptation. Stekovic et al. [11] implemented geometric

constraints between multiple views of a three-dimensional

(3D) scene. Consistency regularization [4], which represents a

class of semi-supervised learning algorithms for training deep

neural network classifiers, has also been developed to produce

state-of-the-art semi-supervised classification results that are

conceptually simple and often easy to implement. Finally, we

note that the use of image level annotation in semantic image

segmentation relies on location maps obtained by a classi-

fication network to bridge the gap between image-level and

pixel-level annotations [12]. However, these maps focus only

on a small part of objects without an accurate representation

of their boundaries. As a result, currently available image

segmentation methods adopting semi-supervised learning have

been demonstrated to produce poor results relative to fully

supervised network training methods.

The development of generative adversarial networks

(GANs) [13] has led to significant progress in the application

of semi-supervised and weakly-supervised learning to seman-

tic image segmentation. This may prevent the learning of long-

range dependencies because the optimization algorithm may

not find the parameter values that appropriately coordinate the

multiple convolutional layers to capture these dependencies.

While increasing the size of the convolution kernel can in-

crease the representation capabilities of the network, this also

results in a loss of computational and statistical efficiency

through the use of local convolutional structures. Contextual

dependencies have been addressed in numerous manners. For

example, learning contexts have been demonstrated to rely on

local features and also contribute to feature representation. A

recurrent neural network (RNN) was employed in DAG-RNN

[14] to create a directed acyclic graph model for capturing

rich contextual dependencies. Pixel-level relationships were
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captured by PSANet [15] through relative position information

in convolutional and spatial dimensions. In addition, EncNet

[16] introduced a channel attention mechanism to capture

the global context. The capability of attention modules for

modeling long-range dependencies has been demonstrated, and

these modules have been widely used in many tasks [2], [17]–

[19]. At the same time, it is noted that the application of at-

tention modules has become increasingly extensive in the field

of computer vision. For example, a self-attention mechanism

was applied for training better classification generators [19].

However, these efforts have not been effectively applied to

semi-supervised semantic segmentation methods.
The performance control of the discriminator is another

continuing challenge in GAN training. Here, the density ratio

estimation by the discriminator in high dimensional space is

often inaccurate and unstable during training. Optimization

seeks to obtain a discriminator that can well distinguish the

model distribution from the target distribution [20]. However,

once such a discriminator is obtained, the training of the

generator is completely stopped. Various efforts have been

made to improve the stability of GAN training. For example,

the DCGAN model [21] was developed to find a set of better

network architecture settings from the perspective of architec-

tural design, and has carried out rich experimental verification

in the field of image generation. The Wasserstein GAN model

[22] was developed to solve the GAN training instability

problem from a theoretical point of view by introducing the

concept of Wasserstein distance. The Wasserstein GAN model

proposed that the parameter matrix of the discriminator must

satisfy Lipschitz constraints. However, the constraint method

adopted is relatively simple and crude, and directly restricts

the elements in the parameter matrix so that it is not larger

than a given value. While this method can guarantee Lipschitz

constraints, it also destroys the proportionality relationships

between the parameters.
The present study addresses the above-discussed challenges

by proposing a stable semi-supervised adversarial learning

method for semantic image segmentation. The basis of the

segmentation network employed in the present work is the

DeepLabv2 [1] framework and the ResNet-101 model pre-

trained on the MSCOCO dataset [23]. The presented work

makes the following contributions.

• A self-attention mechanism is introduced in the segmen-

tation network of the GAN to directly capture long-range

dependencies by calculating the interaction between any

two positions of the feature map during semi-supervised

adversarial training with supervision based on pixel-level

ground truth data.

• Spectral normalization [24] is applied to stabilize the

training of the discriminator network. The proposed al-

gorithm requires no intensive adjustment of the hyper-

parameters to achieve satisfactory discriminator training

performance. Moreover, this new normalization technique

is less computationally intensive and easy to integrate into

existing implementations than other commonly employed

methods.

• The proposed stable self-attention adversarial learning

semi-supervised semantic image segmentation network

is demonstrated to provide superior image segmentation

performance compared with the results of current semi-

supervised and fully-supervised semantic image segmen-

tation techniques based on applications to the PASCAL

VOC 2012 [25] and Cityscapes [26] datasets. The com-

pared semi-supervised method includes the AdvSemiSeg

method proposed by Hung et al. [27], while the fully

supervised method is the DeepLabv2 [1] network, which

is trained only for specific image regions of the datasets.

In addition, we consider the performance of the proposed

network without the application of spectral normalization

(i.e., only the self-attention modules are applied).

The remainder of this article is organized as follows. Sec-

tion 2 reviews related work, and the proposed framework

is described in detail in Sections 3 and 4. The results of

the empirical assessment are presented in Section 5, and a

summary is given in Section 6.

II. RELATED WORK

The application of deep CNNs for semantic image segmen-

tation tasks over the past few years has achieved excellent

results. Many segmentation methods have employed migration

learning, particularly using VGG neural networks [28] with the

convolutional layer of the ResNet [29] classification network

as the backbone. The effectiveness of deep neural networks in

semantic image segmentation has been demonstrated by the

application of the full convolutional network (FCN) introduced

by Long et al. [3], which linked the convolutional 21-way

classifier to the VGG-16 backbone network. Chen et al. [30]

applied atrous convolution in the later layers of the VGG-

16 network to improve the spatial resolution of the predic-

tion while maintaining the receive domain. Encoder-decoder

networks [31] have been newly applied to semantic image

segmentation. The encoder is a special neural network used

for feature extraction and data dimensionality reduction to

generate feature images with semantic information. The role

of the decoder network is to map the low resolution feature

image output by the encoder network back to the size of

the input image for pixel-by-pixel classification. Finally, U-

nets [32] uses a permutation convolutional layer to increase

resolution, and its jump connection carries a complete feature

map.

Goodfellow et al. [13] reintroduced the concept of adver-

sarial learning for conducting image generation tasks, and

employed GANs to successfully generate images such as

handwritten numbers and faces from random noise. However,

random noise and meaningful images apparently derive from

different data domains, and the distribution is inconsistent.

Accordingly, the GAN model can solve the problem of in-

consistent distributions among different data domains.

III. MODEL OVERVIEW

As shown in Figure 1, the primary modules employed in the

proposed framework include a segmentation network G and a



discriminator D. Given a color input image Xn of dimensions

H×W×3, the feature map in G models the long-range, multi-

level dependencies of the image region through the introduced

two-layer self-attention modules. This enables the generator to

model the rich contextual relationships based on local features,

so that the details of each location and the details of the far

ends are well coordinated when generating images. The output

probability is a class probability map of dimensions H×W ×
C, where C is the number of semantic categories.

The discriminator network is based on the FCN, which

accepts inputs of different sizes. The input of D is either the

class probability map output by G (i.e., G(Xn)) or a thermally

encoded ground truth label map In, and the final output is

a confidence map of dimensions H × W × 1. Here, each

pixel i of the confidence map is set to 0 if it derives from

G, and is set to 1 if it derives from the ground truth label

map. Accordingly, the confidence map represents regions of

the probabilistic prediction output of G that are closer to

the ground truth label distribution. Spectral normalization is

applied within D to ensure that its mapping function satisfies

the Lipschitz constraint.

Semi-supervised training is conducted using both unlabeled

and labeled images. Unlabeled data is applied for training G
throughout the training process, while our self-attention mod-

ules effectively account for the relationships between widely

separated spatial regions of the input image. When using

labeled data, the training of G is simultaneously supervised

according to the spatial multi-class cross entropy loss Lce

based on In and the adversarial loss Ladv obtained from D.

Then, the confidence map is employed as a supervisory signal

for training G in conjunction with a masked cross entropy

loss Lsemi in a self-learning manner based on the trusted

predictions given in the confidence map.

IV. SEMI-SUPERVISED TRAINING

A. Loss Functionst

The segmentation network is trained by minimizing the

following multi-task loss function.

LG = Lce + λadvLadv + λsemiLsemi (1)

Where, λadv and λsemi are the weights applied to adjust the

significance of the corresponding loss function components in

the minimization process, and thereby minimize multitasking

losses. The first loss component in (1) is defined as follows.

Lce = −
∑
h,w

∑
c∈C

I(h,w,c)
n log

(
G (Xn)

(h,w,c)
)

(2)

Here, we convert the discrete labels of In into a C-channel

probability map by applying a hot coding scheme, where the

map entry I
(h,w,c)
n for the (h,w)th pixel and the cth class is

assigned a value of 1 if the pixel X
(h,w,c)
n belongs to class

c, and is otherwise assigned a value of 0. The second loss

component is defined as follows.

Ladv = −
∑
h,w

log
(
D (G (Xn))

(h,w)
)

(3)

Here, D (G (Xn))
(h,w)

is the confidence map value of Xn

for the (h,w)th pixel. We note that unlabeled data incurs no

loss associated with Lce because unlabeled data includes no

ground truth annotation. Therefore, only Ladv is applicable

under these training circumstances. Finally, we define the third

loss component in (1) using an index function F (·) and a

threshold Tsemi to binarize the confidence map, such that the

trusted area can be better displayed. This is given as follows.

Lsemi = −
∑
h,w

∑
c∈C

F
(
D (G (Xn))

(h,w)
> Tsemi

)

· Î(h,w,c)
n log

(
G (Xn)

(h,w,c)
)

(4)

Here, the self-taught, one-hot encoded ground truth În
is an element-wise set with Î

(h,w,e∗)
n = 1 if c∗ =

argmaxc G (Xn)
(h,w,c)

. In the training process, the product

of the self-learning target În and the value of F (·) is regarded

as a constant. Experiments have demonstrated that a value of

Tsemi = 0.2 yields good robustness in the training process.

The discriminator network is trained by minimizing the

spatial cross-loss function LD, which is given as follows.

LD = −
∑
h,w

(1− yn) log
(
1−D (G (Xn))

(h,w)
)

+ yn log
(
D (In)

(h,w)
)

(5)

Here, yn = 0 if the discriminator input is G (Xn) and yn =

1 if the discriminator input is In, while D(In)
(h,w)

is the

confidence map value of In for the (h,w)th pixel.

B. Self-attention Module

The framework of the proposed two-layer self-attention

module is illustrated in Figure 2. The module takes the local

feature map X ∈ R
H×W×C of the previous layer as its

input, and generates two feature maps Q,K ∈ R
H×W×C ,

performs matrix multiplication after transposing Q and K, and

calculates the attention map S ∈ R
N×N with a softmax layer,

where N = H×W is the number of pixels. Here, the elements

of S provide the following measure of the dependency of the

ith pixel on the jth pixel.

Sji =
exp (Qi ·Kj)∑N
i=1 exp (Qi ·Kj)

(6)

Additional non-local features are determined by adding a

convolution map to X to obtain a new feature map V ∈
R

H×W×C , and S and V are subjected to matrix multiplica-

tion after transposition. Then, the product is multiplied by a

proportional parameter α to form an attention-weighted feature

map, which is added to the original feature map X as follows.

Oj = α
N∑
i=1

(sjiVi) +Xj (7)

We initialize α as 0, and α is adjusted to assign more weight

to non-local features in a self-learning manner. Thus, the

final self-attention feature map O is the weighted sum of the

features at all locations and the original features. This models



Fig. 1. An overview of the proposed system for semi-supervised semantic image segmentation, where the segmentation network G outputs a class probability
map, SA represents the self-attention modules, SN represents the application of the spectral normalization technique, the discriminator network D outputs a
confidence map, Lce is the spatial multi-class cross entropy loss based on the ground truth label map, Ladv is the adversarial loss of D, and Lsemi is the
masked cross entropy loss.

H×W×C

H×W×C

Fig. 2. Schematic illustrating the two-layer self-attention module framework. Here, the symbol
⊗

represents matrix multiplication, which is conducted after
transposing the feature maps Q, K, V , and S, as indicated by the transposition symbol T .

the long-range semantic dependencies between feature maps,

and thereby helps to improve the distinguishability of features.

C. Spectral Normalization

The optimal form of D for a standard GAN is determined

as follows.

D∗
G(x) =

qdata (x)

qdata (x) + pG(x)
= sigmoid (f∗(x)) (8)

Here, qdata is the distribution of data x, pG is the distribution

of the generated model corresponding to x that is learned

through the confrontational minimum-maximum optimization

process, and f∗(x) = log qdata (x) − log pG(x) , where its

derivative is given as follows.

∇xf
∗(x) =

1

qdata (x)
∇xqdata (x)−

1

pG(x)
∇xpG(x) (9)

However, this derivative term is unbounded or even incal-

culable, and regular restrictions must be added in practice.

Therefore, a mechanism is needed to define the derivative of

f∗(x). We first note that, if the bias added to each layer of

D is omitted, the upper bound of f∗(x) can be determined

according to the following inequality.

‖f‖Lip ≤
∥∥(hL �→ WL+1hL

)∥∥
Lip

· ‖aL‖Lip ·
∥∥(hL−1 �→ WLhL−1

)∥∥
Lip

· · · ‖a1‖Lip ·
∥∥(h0 �→ W 1h0

)∥∥
Lip

(10)

=
L+1∏
l=1

∥∥(hl−1 �→ W lhl−1

)∥∥
Lip

=

L+1∏
l=1

σ
(
W l

)

Here, ‖ · ‖Lip represents the Lipschitz norm, spectral nor-

malization controls the Lipschitz constant of the discriminant

function f by strictly constraining each layer g: hin → hout,{
W1, . . . ,WL,WL+1

}
is the learning parameters set, α1 is

an element-wise non-linear activation function, and σ(W )
represents the two-norm of W , which is regarded as a constant.



Using the linearity of properties, where, for any coefficient

β and matrix A with the property ‖βA‖ = |β| · ‖A‖.

Therefore, the upper bound of f is 1. Accordingly, the spectral

normalization of matrix W is given as follows.

W̄SN(W ) := W/σ(W ) (11)

Then, applying the spectral normalization in (11) within the

inequality (10) for each layer weight W of D ensures that D
can be regarded as a function of the implicit function f , and

its Lipschitz norm can be constrained to be less than 1, which

achieves the required limiting effect during the training of the

discriminator.

V. EXPERIMENTS

A. Experimental Setup

The PASCAL VOC 2012 dataset contains 21 object classes.

We included the labeled image segmentation boundary dataset

(SBD) [33] to obtain a total of 10,582 training images. The

testing set included 1,449 verified images. The Cityscapes

dataset contains 50 videos in driving scenes from which 2975,

500, and 1525 images were extracted and annotated with 19

classes for training, validation, and testing, respectively. The

average crossover (mean IU) was applied as the evaluation

index for both datasets. The image segmentation performances

of all trained networks were evaluated for both datasets with

different proportions of labeled data, including 1/8, 1/4, 1/2,

and the full set of labeled data, with the remainder being un-

labeled data. Both unlabeled and labeled data were randomly

extracted, and the same data were used for all networks.

Random scaling and cropping operations of size 321× 321
were employed during the training process for the PASCAL

VOC dataset. Each iteration was 20k times and the batch size

was 8. For the Cityscapes dataset, we adjusted the size of the

input images to 512× 1024 without random clipping/scaling,

and applied 40k times per iteration with a batch size of 2.

For semi-supervised training, the training process began after

5,000 iterative training of labeled data to avoid the model

being affected by the initial noise mask and prediction. The

discriminator network and the segmentation network were

trained jointly. In each iteration, only the batch containing the

ground truth data are used for training the discriminator.

Training was conducted using a PyTorch toolbox operating

on a Titan X GPU with 12 GB of memory. A stochastic

gradient descent (SGD) optimizer was used with a momentum

of 0.9 and a weight decay of 10−4. The initial learning rate was

set to 2.5× 10−4, which decreased according to a polynomial

decay with a power of 0.9. The Adam optimizer [12] was

used for training the discriminator, and the learning rate was

set to 10−4. When conducting training using both unlabeled

and labeled data, λadv and λsemi were set to 0.001 and 0.1,

respectively, while Tsemi was set to 0.2.

B. Result

Table 1 gives the results of the semi-supervised and full-

supervised evaluations on the Cityscapes dataset. In the case

TABLE I
IMAGE SEGMENTATION PERFORMANCE RESULTS (MEAN IU) FOR THE

CITYSCAPES DATASET WITH DIFFERENT PROPORTIONS OF LABELED DATA

RANDOMLY SAMPLED FOR TRAINING

Methods
Labeled Data

1/8 1/4 1/2 Full
FCN-8s [3] - - - 65.3
Dilation10 [5] - - - 67.1
CutMix [34] 63.4 65.2 67.7 -
DeepLabv2 55.5 59.9 64.1 66.4
AdvSemiSeg [27] 58.8 62.3 65.7 67.7
Ours(SA) 61.2 63.7 67.5 70.4
Ours(SA+SN) 62.0 64.6 68.3 71.1

TABLE II
IMAGE SEGMENTATION PERFORMANCE RESULTS (MEAN IU) FOR THE

PASCAL VOC DATASET WITH DIFFERENT PROPORTIONS OF LABELED

DATA RANDOMLY SAMPLED FOR TRAINING

Methods
Labeled Data

1/8 1/4 1/2 Full
FCN-8s [3] - - - 67.2
Dilation10 [5] - - - 73.9
Mittal S et al. [35] 71.4 - - 75.6
DeepLabv2 66.0 68.3 69.8 73.6
AdvSemiSeg [27] 69.5 72.1 73.8 74.9
Ours(SA) 70.3 72.7 75.9 78.4
Ours(SA+SN) 71.8 73.5 76.3 78.9

of self-attention alone (i.e., Ours (SA)), the performance in-

creased by 1.4% to 2.4% over that of the AdvSemiSeg model,

which serves as a baseline, and the performance increased by

2.3% to 3.2% after adding spectral normalization (i.e., Ours

(SA+AN). We observed a 3.2% increase in the segmentation

performance for the 1/8 proportion of labeled data compared

to that of the baseline. It is speculated that the two-stage

GAN training is poor under the condition of low-labeled data,

in which the discriminator is only updated according to the

labeled samples. This reduces the amount of data seen during

training, resulting in overfitting.

The mean IU performance results of the semi-supervised

and fully-supervised networks for the PASCAL VOC dataset

are presented in Table 2. In the case of self-attention alone,

the performance increased by 0.6% to 2.1% over that of the

AdvSemiSeg model, and the performance increased by 1.4%
(for a 1/4 proportion of labeled data) to 2.5% (for a 1/2

proportion of labeled data) after adding spectral normalization.

Figure 3 presents a comparison of the ground truth (GT) image

segmentation data and the segmentation results obtained by the

proposed network under different proportions of labeled data

during training.

The mean IU performance results of the semi-supervised

and fully-supervised networks for each class in the PASCAL

VOC dataset with different proportions of labeled data are

presented in Table 3. In addition, the mean IU values for

all classes originally reported in Table 2 are included in the

final column. We note from the results that the proposed

self-attention modules and spectral normalization significantly



Fig. 3. Comparisons of the ground truth (GT) image segmentation data and the segmentation results obtained by the proposed network under different
proportions of labeled data for selected images in the PASCAL VOC dataset. It can be seen that a better segmentation effect is achieved when 1/2 of the
labeled data is randomly selected for training.

TABLE III
IMAGE SEGMENTATION PERFORMANCE RESULTS (MEAN IU) FOR THE PASCAL VOC DATASET WITH DIFFERENT PROPORTIONS OF LABELED DATA

RANDOMLY SAMPLED FOR TRAINING

Models | bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk prsn plnt sheep sofa train tv | mIoU
1/8 Labeled Data
AdvSemiSeg 0.93 0.82 0.40 0.82 0.63 0.71 0.90 0.84 0.84 0.30 0.72 0.40 0.76 0.73 0.79 0.83 0.52 0.75 0.43 0.79 0.71 | 69.5
Ours(SA) 0.93 0.85 0.41 0.85 0.67 0.74 0.88 0.82 0.86 0.27 0.80 0.42 0.78 0.78 0.77 0.83 0.42 0.77 0.42 0.78 0.73 | 70.3
Ours(SA+SN) 0.93 0.87 0.42 0.85 0.67 0.76 0.91 0.82 0.87 0.32 0.79 0.45 0.80 0.74 0.76 0.82 0.52 0.82 0.45 0.80 0.70 | 71.8
1/4 Labeled Data
AdvSemiSeg 0.93 0.88 0.40 0.85 0.67 0.76 0.91 0.83 0.86 0.31 0.79 0.45 0.79 0.75 0.78 0.84 0.56 0.79 0.47 0.79 0.74 | 72.1
Ours(SA) 0.94 0.87 0.42 0.86 0.69 0.78 0.92 0.84 0.89 0.32 0.76 0.48 0.81 0.74 0.80 0.85 0.53 0.78 0.44 0.82 0.72 | 72.7
Ours(SA+SN) 0.94 0.89 0.41 0.87 0.70 0.74 0.93 0.85 0.89 0.35 0.82 0.45 0.80 0.83 0.80 0.84 0.55 0.80 0.44 0.81 0.74 | 73.5
1/2 Labeled Data
AdvSemiSeg 0.94 0.88 0.41 0.86 0.67 0.79 0.91 0.85 0.87 0.34 0.81 0.52 0.80 0.80 0.82 0.84 0.57 0.82 0.47 0.81 0.73 | 73.8
Ours(SA) 0.94 0.88 0.42 0.87 0.67 0.82 0.93 0.88 0.89 0.40 0.86 0.59 0.84 0.84 0.81 0.86 0.60 0.81 0.48 0.84 0.75 | 75.9
Ours(SA+SN) 0.94 0.89 0.42 0.85 0.67 0.83 0.92 0.86 0.89 0.39 0.86 0.61 0.85 0.82 0.81 0.86 0.60 0.88 0.46 0.84 0.75 | 76.3
Full Labeled Data
AdvSemiSeg 0.94 0.89 0.41 0.87 0.67 0.81 0.91 0.85 0.88 0.36 0.83 0.53 0.82 0.80 0.83 0.85 0.59 0.83 0.49 0.83 0.74 | 74.9
Ours(SA) 0.94 0.89 0.43 0.88 0.73 0.82 0.94 0.87 0.90 0.41 0.85 0.59 0.86 0.83 0.86 0.87 0.66 0.87 0.56 0.88 0.74 | 78.4
Ours(SA+SN) 0.95 0.90 0.43 0.87 0.75 0.82 0.93 0.86 0.91 0.42 0.87 0.57 0.86 0.86 0.85 0.90 0.65 0.89 0.55 0.86 0.77 | 78.9

improved the segmentation performance for the 21 classes

of the PASCAL VOC dataset. Clearly, the addition of the

self-attention modules to the segmentation network has a

good effect on capturing the long-range contextual information

between any two pixels of the feature map, and thereby

improves the feature representation of the model. In addition,

adding spectral normalization to the discriminator is further

beneficial for training the GAN network. This is further

illustrated by the image segmentation results presented in

Figure 4, which compare the GT image segmentation data

and the segmentation results obtained by the AdvSemiSeg

model and the proposed model when using 1/2 of the labeled

data during training. The segmentation results obtained by

the proposed model after introducing either self-attention or

spectral normalization are both better qualitatively than those

of the AdvSemiSeg model, and particularly after introducing

both self-attention and spectral normalization components.

From this we can see the effectiveness of the self-attention

module for capturing the global dependence of the input and

the spectrally normalized stable GAN.

The image segmentation results presented thus far were

based on the DeepLabv2 framework and the ResNet-101

model pre-trained on the MSCOCO dataset. In addition, we

substituted the DeepLabv2 framework with the DeepLabv3



Fig. 4. Comparisons of the GT image segmentation data and the segmentation results obtained by the AdvSemiSeg model and the proposed model for
selected images in the PASCAL VOC dataset when using 1/2 of the labeled data during training. The proposed model is qualitatively observed to provide
better segmentation results after introducing self-attention (SA) and spectral normalization (SN) than the AdvSemiSeg model.

TABLE IV
IMAGE SEGMENTATION PERFORMANCE RESULTS (MEAN IU) OBTAINED

FOR THE PASCAL VOC DATASET USING DIFFERENT BACKBONE

ARCHITECTURES WITH DIFFERENT PROPORTIONS OF LABELED DATA.

Methods 1/8 1/4 1/2 Full
Deeplabv2 (v2) 66.0 68.3 69.8 73.6
Ours v2 71.8 73.5 76.3 78.9
Deeplabv3 (v3) unstable 69.4 70.9 75.2
Ours v3 72.8 75.3 77.0 79.5

TABLE V
IMAGE SEGMENTATION PERFORMANCE RESULTS (MEAN IU) OBTAINED

BY THE PROPOSED MODEL UNDER DIFFERENT INCLUSIONS OF MODEL

COMPONENTS FOR THE PASCAL VOC DATASETS WITH 1/2 AND THE

FULL SET OF LABELED DATA DURING TRAINING.

Labeled Data

SA1 SA2 SN 1/2 Full
73.82 74.98

� 74.52 76.72
� 75.17 77.69
� � 75.94 78.45
� � 76.13 78.68

� � 76.20 78.74
� � � 76.36 78.93

framework, and the image segmentation performances ob-

tained with different proportions of labeled data are listed

in Table 4. Interestingly, the DeepLabv3 framework was

found to be unstable when training with a 1/8 proportion of

labeled data, although the training process was stable under

larger proportions of labeled data, and the image segmentation

performances were always better than those obtained using

the DeepLabv2 framework. We also note that the training

instability observed with a 1/8 proportion of labeled data was

well mitigated by the application of spectral normalization.

At the same time, our semi-supervised model performed even

better using the Deeplabv3 backbone.

The effects of the different components included within the

training framework were evaluated by conducting an ablation

study of our proposed method using 1/2 and the full set of

labeled data during training, and the results are listed in Table

5. It can be observed from the table that the inclusion of

spectral normalization during training definitely enhances the

image segmentation performance of the model. In addition,

the inclusion of SA2 appears to have a somewhat more

profound effect on the segmentation performance than SA1,

although both modules definitely improve the segmentation

performance. Overall, our approach is demonstrated to be very

effective for improving the image segmentation performance

of semi-supervised GAN networks.

VI. CONCLUSIONS

This study presented an improved process for conducting

semi-supervised training of GAN frameworks for seman-

tic image segmentation. First, we introduced self-attention

modules in the segmentation network to effectively account

for relationships between widely separated spatial regions of



the input image and thereby capture long-range contextual

information. In addition, we applied spectral normalization

in the discriminator network to enhance the stability of the

GAN training process, making the generated examples more

diverse than those obtained using conventional weight normal-

ization. The proposed stable self-attention adversarial learning

semi-supervised semantic image segmentation network was

demonstrated to provide superior image segmentation perfor-

mance compared with the results of current semi-supervised

and fully-supervised semantic image segmentation techniques

based on applications to two datasets.
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