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Abstract—In order to improve the efficiency of software
testing and save the costs, a series of machine learning methods
are used to build software defect prediction models with the
existing project data. However, the class imbalance problem
has posed a leading challenge in software defect prediction
(SDP). To alleviate the impact of class imbalance in SDP, we
firstly propose a weighted broad learning system (WBLS), which
assigns weight to each module and adopts a general weighting
scheme to emphasize the defective modules. Further, we design a
density based weight generation scheme and propose an adaptive
weighted BLS (AWBLS). This mechanism considers both the
inter-class and intra-class distance simultaneously to explore the
prior distribution information of the original data. Extensive
comparative experiments on NASA data sets verify that AWBLS
tends to be an effective and efficient model in the area of software
defect prediction.

Index Terms—imbalance learning, broad learning system, soft-
ware defect prediction

I. INTRODUCTION

Software defect prediction (SDP) is an important way
to improve software testing efficiency and ensure software
reliability, which has become a research hotspot in the field
of software engineering [1], [2]. Software defects arise from
the coding process of software developers. In the development
life cycle of a software project, the later the internal defect is
detected, the higher the repairing cost is needed. SDP can
predict the number and type of defects in software projects
based on the historical software development data, and has
attracted attention from academia to industry. The dominant
method in the area of SDP is machine learning. In the process
of SDP by machine learning, data in the software historical
repositories including bug reports, source code log files and
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interaction between developers is explored, and models are
built to predict new unseen software modules [3]–[5].

Software defect prediction in the real world usually face the
imbalance problem. That is, the number of defective modules
is very small, while non-defective modules occupy the vast
majority of the software defect data set [6]. The conventional
machine learning algorithms are proposed under the assump-
tion that data follow a balanced distribution, it is easy to
sacrifice the classification effect of defective modules for the
overall accuracy. As a result, prediction models developed for
SDP using traditional classification methods may be biased
and inaccurate. Various approaches have been investigated to
address the imbalance issue, including data-oriented methods
and model-oriented methods [7]. By decreasing the majority
class samples or increasing the minority class samples to get
relatively balanced training set, data-oriented methods aim
at modifying the distribution of original data. As the most
typical type of the model-oriented methods, cost-sensitive
learning provides different misclassification costs for different
samples. In the case of imbalance problem, samples from the
minority class will be easily misclassified. The cost matrices
are explored to adjust the cost of misclassification and balance
the data from another aspect [8], [9].

As an effective and efficient machine learning technique,
broad learning system (BLS) [10] has been developed in the
past few years, which has attracted attention from academia
to industry. BLS is designed by the inspiration of random
vector functional-link neural network (RVFLNN) [11], [12].
The hidden layer of BLS is composed of feature nodes and
enhancement nodes in a broad manner. Feature nodes are
firstly obtained from the input data with random initialized
weights, and enhancement nodes are mapped again by a
linear combination of feature nodes with random weights
to expand the features from the width level. The output
weights of hidden nodes are calculated by pseudo-inverse. BLS
achieves comparable performances to existing DNNs in terms
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of accuracy with extremely fast training speed on MNIST and
NORB [13]. Besides, it provides a reasonable mathematical
proof of universal approximation property.

In response to the class imbalance problem in SDP, com-
bined with the effective and efficient performance of broad
learning system, we propose a weighted BLS (WBLS) that
assigns a weight to each training sample. WBLS adopts a
general weighting scheme, which augments the weight of
samples from the minority class. To further explore the prior
distribution information of original data, we design a density
based weight generation scheme to guide the specific weight
matrix generation and propose the adaptive weighted broad
learning system (AWBLS). The corresponding weights are
assigned automatically based on the inter-class and intra-
class information simultaneously. The experimental results
on real-world data sets against other imbalance classification
approaches verify the effectiveness and superiority of our
proposed method.

The contributions of this paper are summarized as follows:
1) We propose a weighted broad learning system (WBLS)

with a general weighting scheme using information of
imbalance class distribution to tackle imbalance problem
in SDP.

2) We design a density based weight generation scheme
to guide specific weight matrix generation and propose
an adaptive weighted broad learning system (AWBLS),
which considers both the inter-class and intra-class dis-
tances simultaneously in the density calculation.

3) We use non-parametric tests to compare multiple ap-
proaches over different data sets in SDP.

The remainder of this paper is organized as follows. Section
II reviews related works on software defect prediction, broad
learning system and imbalance learning. In Section III, we
introduce the weighted broad learning system and an adap-
tive density based weight generation mechanism. Section IV
presents the performance and analysis of experiments. Finally,
we draw the conclusion in Section V.

II. RELATED WORK

This section describes three focal points of this paper. First,
we introduce the newly proposed machine learning technique
broad learning system (BLS) and its variants. Subsequently, we
describe the research progress of imbalance learning. Finally,
we review the related work on SDP associated with machine
learning and imbalance learning.

Differing from deep learning, BLS is established in the
form of a flat network. The input data are transformed first by
random weights and biases to construct feature nodes, and then
enhancement nodes are formed based on connection of feature
nodes with random parameters and linear activation function.
Finally, feature nodes and enhancement nodes are connected
to the output layer, and output weights are calculated by
a fast pseudo-inverse learning. Existing work has confirmed
that such structure can accelerate the model training process
[10]. BLS has gained widespread attention for its outstanding
performance, and different variants have also been developed.

For example, [14] shows some structural variations of BLS
and details the corresponding mathematical proof. A fuzzy
broad learning system (Fuzzy BLS) is designed with the fusion
of fuzzy system and BLS [15]. A feature selection algorith-
m for orthogonal broad learning system based on mutual
information is proposed in [16]. Reference [17] presents a
novel regularized robust broad learning system to deal with
uncertain data. With flexible structure, high efficiency and
good generalization, the BLS gradually becomes a promising
alternative approach.

Imbalance learning can be divided into: data-level methods,
algorithm-level methods and hybrid approaches. Data-level
methods modify the original distribution to get balanced data
set and improve the classification performance. Among them,
the simplest and non-heuristic techniques are random over-
sampling (ROS) and random under-sampling (RUS). ROS
duplicates the minority class samples randomly, which will
cause the information redundancy and model over-fitting.
RUS randomly deletes the samples of majority class, which
will lead to the information loss and affect the classifica-
tion performance. To enhance the rationality, universality and
generalization of re-sampling, heuristic techniques have been
proposed. The synthetic minority over-sampling technique
(SMOTE) is the typical one. By randomly generating synthetic
samples between the minority class instance and its neighbors
[18], SMOTE alleviates the overfitting problem of ROS. Some
variants of SMOTE have also been proposed to improve the
generation of synthetic data from different aspects, including
adaptive synthetic sampling (ADASYN) [19] and Safe-Level-
SMOTE [20]. In ADASYN, the density information of mi-
nority class samples is used to assist the synthetic sample
generation of SMOTE. Safe-Level-SMOTE applies different
sample generation strategies based on different safe level ratios
of the minority class samples. Another classic under-sampling
technique is cluster-based [21], the main idea of which is
to identify and preserve class space through the clustering
methods to guide re-sampling process. For hybrid approaches,
the typical way is combining multiple techniques at the data
and algorithm level by adopting ensemble learning [22].

Algorithm-level approaches address imbalance problems by
modifying or designing algorithms. Specifically, cost-sensitive
learning methods consider different costs for misclassifying
different samples. In the case of imbalance, the minority class
samples can be easily misclassified and the misclassification
costs of them worth further exploration. By constructing spe-
cific cost matrices, cost-sensitive learning methods minimize
the overall misclassification cost instead of the overall error
to address the imbalance issues from another perspective [23].
Empirical researches explore and compare the characteristic-
s between re-sampling methods and cost-sensitive learning
methods [24]. In [25], a cost-sensitive decision tree ensemble
approach is investigated for effective imbalanced classification.
Weighted ELM (WELM) [26] is designed to handle imbal-
anced data with the combination of ELM and cost-sensitive
learning. Another classical cost-sensitive algorithm is AdaCost
[27], which inherits the framework of adaboost and modifies



the weight update strategy to focus on minority samples.
Existing software defect methods can be divided into stat-

ic defect prediction methods and dynamic defect prediction
methods [1]. Among them, the static prediction method is
based on defect-related measurement data to analyze and pre-
dict the defect tendency, defect density and number of defects
of program modules. The dynamic defect prediction method
is used to predict the distribution of system defects over time,
so as to discover the distribution rule of the software defect
with its life cycle. A variety of machine learning methods
have been widely used in the field of SDP, such as support
vector machines [28], neural networks [29], [30], Naive Bayes
[31] and ensemble learning. In software defect prediction
problems, the number of defective modules is very small. Tra-
ditional machine learning algorithms will easily sacrifice the
classification effect of defective modules for overall accuracy,
resulting in biased and inaccuracy performance. To address
the class imbalance problem of SDP, different strategies have
been investigated by researchers. In [32], a dynamic version of
AdaBoost.NC is proposed to address the imbalance problem in
SDP, which adjusts parameters automatically during the train-
ing process. In [33], three cost-sensitive boosting approaches
are proposed to boost neural networks for SDP. The effect
of different classifier types combined with different imbalance
learning methods are explored in the application of SDP [6].

III. METHODOLOGY

In this section, we describe the Weighted Broad Learning
System (WBLS) and the Adaptive Weighted Broad Learning
System (AWBLS) in detail. AWBLS includes the weighted
broad learning system and the adaptive weight generation
scheme. Fig.1 shows an overview of AWBLS and Algorithm
1 presents the corresponding pseudo code.

Fig. 1: An overview of adaptive weighted broad learning
system.

A. Weighted Broad Learning System
Assume the input Tr = {(x1,y1), (x2,y2), ..., (xN ,yN )},

where N is the total number of samples, and M is the
dimensionality of features. The ground-truth labels yi =
[yi1, yi2, ..., yiK ] are one-hot vectors, where K is the number
of categories.

With random generated parameters {We1 , ...,Wen} and
{βββe1 , ...,βββen}, the input data will be mapped into a new
feature space by:

Zi = φi(XWei + βββei), i = 1, 2, ..., n. (1)

where φi denotes the transformation function. The mapping
feature nodes (Z1,Z2, ...,Zn) are concatenated to construct
the feature layer Zn.

The enhancement layer is generated with Zn by specific
nonlinear transformation, which can be represented as:

Hj = ζj(Z
nWhj

+ βββhj
). (2)

where ζj denotes a nonlinear transformation. Whj
and βββhj

are randomly generated and used to connect the feature layer
and the enhancement layer.

The feature nodes and enhancement nodes are connected
to the output layer, i.e., there is one hidden layer in the
weighted broad learning system (WBLS). The hidden layer
can be denoted by:

A = [Z1,Z2, ...Zn,H1,H2, ...,Hm] (3)
= [Zn Hm]. (4)

Algorithm 1 Adaptive Weighted Broad Learning System

Require:
Input: the training set Tr, the label set Y;

transformation function φ and ζ, parameter C
Ensure:

1: Generate the weights {We1 , ...,Wen} and the biases
{βββe1 , ...,βββen} randomly;

2: For i in 1, ..., n:
3: Calculate Zi = φi(XWei + βββei);
4: end For;
5: Concatenate the feature mapping nodes:

Zn = [Z1,Z2, ...Zn];
6: Generate m pairs of random weights {Wh1 , ...,Whm}

and biases {βββh1
, ...,βββhm

};
7: For j in 1, ...,m:
8: Calculate Hj = ζi(XWhj

+ βββhj
);

9: end For;
10: Concatenate the enhancement nodes:

Hm = [H1,H2, ...Hm];
11: Concatenate the feature nodes and enhancement nodes:

A← [Z H];
12: Call the adaptive weight generation process in Algorithm

2 to generate the weight matrix Cw;
13: Calculate the output weight W via equation (5)

Output: W.

Assume that the weight of output layer is denoted as W,
the optimization problem below can be considered to find the
solution for W:

arg min
W

: Cw ‖AW −Y‖22 + λ ‖W‖22 , (5)

where Y is the label set, and λ is the trade-off parameter.
The weight matrix Cw is a N×N diagonal matrix associated
with each input sample, which is used to address imbalance
problem. Samples from the majority class are usually assigned
smaller weights than samples from the minority class.



The pseudo-inverse method can be used to solve the above
problem. Consequently, we have:

W = (λI+ATCwA)−1ATCwY. (6)

When the output weight W is obtained, the training process
is finished without fine-tuning, which is an important factor of
the high efficiency of WBLS. Algorithm 1 includes a detailed
description of WBLS. With the predicted labels denoted as
Y∗, the result can be obtained by:

Y∗ = AW. (7)

The weight matrix Cw considers misclassifying examples
and provides different weights to different samples in classi-
fication. Cii represents the specific weight of data xi in Cw.
For the imbalance classification task, we can adopt a general
weighting scheme for WBLS:

Cii = 1/Nik, (8)

where Nik represents the number of samples in class k which
the i-th sample belongs to.

B. Adaptive Density Based Weight Generation Process

Noise and outliers often exist in the software defect data,
which will obviously affect the performance of the prediction
model. To adaptively adjust the weight matrix for different
software defect data sets and reduce the impact of noise
or outliers, we propose an adaptive density based weighted
broad learning system (AWBLS), which improves WBLS by
adopting an adaptive weight update mechanism based on
the distribution information of original data. Samples around
decision boundaries are always difficult to distinguish, which
can provide more information for model construction. Besides,
weights of noisy or outlier samples in the software defect
data should be small. Based on these criteria, we design a
density based weight calculation scheme to adaptively ac-
quire the prior distribution information and generate more
appropriate weight matrix. Algorithm 2 presents the adaptive
weight generation process (AWGP), which pays more attention
on samples around decision boundary and reduces negative
impacts of noise or outlier samples. AWBLS improves the
density assessment by evaluating both the inter-class and intra-
class density simultaneously.

Given the input data xi, the class which xi belongs to is
defined as Tp and the rest class is defined as Tn. Specifically,
for xi, we firstly calculate the distance Dp

i = {dpi1, d
p
i2, ..., d

p
ik}

as the k nearest neighbors of data xi in Tp, and the distance
Dn

i = {dni1, dni2, ..., dnih} as the h nearest neighbors f data xi
in Tn. The densities of xi in Tp and Tn are defined as follows:

δpi =
1

E [Dp
i ]

=
1

1
k

k∑
j=1

dpij

, (9)

δni =
1

E [Dn
i ]

=
1

1
h

h∑
j=1

dnij

. (10)

The mixed density of xi is calculated by:

Ri = ωδpi + (1− ω) δni , (11)

where ω is a trade-off parameter. The mixed density of each
sample can be normalized as follows:

γi =
Ri∑

xi∈Tr
Ri

(12)

Considering the imbalance rate IR of the data set, the weight
of data xi will be calculated by:

Cii = γi ∗ (1/Nik) (13)

The weight matrix Cw is obtained by calculating each
sample with formula (9) - (13). Compared to formulation
(8), Cw allows paying more attention on difficult samples
while reducing impacts of noisy and outlier samples in the
classification.

Algorithm 2 Adaptive weight generation process

Require:
Input: the input data set Tr = {x1, x2, ..., xN}

Ensure:
1: for i in 1, ...N :
2: Divide Tr into two components as T = Tp ∪ Tn,
3: Compute the local density of xi by Eq.(9);
4: Calculate the global density of xi via Eq.(10)
5: Get the density weight γi by Eqs.(11)-(12);
6: Compute the regulatory factor ηi = 1/Nik;
7: Update the weight: Cii = ηiγi;
8: end For;
9: Output: the weight matrix Cw

IV. EXPERIMENTS

In this section, we compare performances of AWBLS and
other approaches on NASA software defect prediction data set
selected from the PROMISE database [34]. The NASA data
sets are public data sets released by the National Aeronautics
and Space Administration (NASA), which are used to build
software defect prediction models. The measurement attributes
include Halstead [35], McCabe [36], and lines of code. The da-
ta sets cover three programming languages. TABLE I presents
the detailed description of the data sets.

A. Evaluation measure and Parameter setting

Considering the class imbalanced distribution of software
defect prediction data sets and the different requirements
of software systems, multiple evaluation criteria are used to
measure the performance of the prediction model. The evalu-
ation measures in the experiments include G-mean, AUC and
balance. TABLE II defines a confusion matrix for performance
evaluation. The probability of detection PD and the probability
of false alarm PF are used to measure the performance on the
defect class are defined as follows:

PD = TP/(TP + FN) (14)



TABLE I: Summary description for software defect data
sets, where e denotes the number of samples, m denotes
the attribute number, d m denotes the number of defective
modules and d r denotes the defective ratio

Dataset language e m d m d r(%)
mc2 C++ 161 39 44 32.29
kc2 C++ 522 21 107 20.49
jm1 C 10885 21 2106 19.35
kc1 C++ 2109 21 36 15.45
pc4 C 1458 37 326 12,20
pc3 C 1563 37 134 10.23
cm1 C 498 21 178 9.83
kc3 java 458 39 27 9.38

mw1 C 403 37 49 7.69
pc1 C 1109 21 77 6.94

PF = FP/(FP + TN) (15)

G-mean is one widely-used criterion for imbalanced data,
which achieves a better balance by maximizing the accuracy
of each category. It is an evaluation criterion that calculate the
geometric means of those accuracies within each class. The
G-mean value is calculated by:

G-mean =
√
PD × (1− PF ) (16)

The area under receiver operating characteristic (AUC) mea-
sures performance of the classifier as a whole, which can be
obtained by summing the area under the ROC curve [37]. AUC
is not sensitive to the distribution between different classes
evaluation metric and is a general evaluation metric of SDP.

Considering that the point (PF = 0, PD = 1) is the most
ideal point in the ROC curve, which represents all the modules
can be correctly identified. A comprehensive indicator balance
is frequently used in software engineering. This indicator
calculates the Euclidean distance from the (PF, PD) point to
(0,1) as follows:

balance = 1−
√

(0− PF )2 + (1− PD)2√
2

(17)

For the algorithms associated with BLS, the number of
feature nodes and enhancement nodes are both set in the
range (50, 1000) by grid search. For WELM, we follow
[26]. The optimal result is explored by the grid search of
C {2−18, 2−16, · · · , 248, 250} and L {10, 20, · · · , 990, 1000}.
The results of DNC are referenced from [32]. We employ
10-fold cross-validation (CV) to evaluate the performances of
different models. The average value and the corresponding
standard deviation of evaluate metrics are used as the final
results by repeating the above procedure 10 times.

TABLE II: Confusion matrix of SDP

Actual Class Predicted Class
Defective(positive) Non-defective(negative)

Defective(positive) TP FN
Non-defective(negative) FP TN

B. Experimental Analysis

To show the effectiveness of our proposed method, com-
parisons are conducted by AWBLS and other approaches.
The counterparts include RUS-BLS, SOMTE-BLS, DNC [32],
WELM1 [26] and WELM2 [26]. Among them, RUS-BLS
represents the combination of random under-sampling strategy
and BLS, while SOMTE-BLS represents sampling method
SMOTE [18] combined with BLS. Table III - Table V present
the comparison results between AWBLS and other methods
by AUC, G-mean and balance, respectively.

According to the AUC results depicted in Table III, we
can observe that AWBLS obtains the best performance on
8 out of 10 data sets. AWBLS is improved over other
re-sampling based imbalance learning algorithms and two
WELM algorithms, and it is also better than the DNC method
based on ensemble learning. The G-mean results in Table IV
demonstrate that AWBLS achieves best or comparable results
on these data sets. For balance, the commonly used evaluation
metric by software engineers, the results in Table V indicate
that AWBLS performs best on most data sets.

To further analyse the experimental results, Friedman test
[38] is conducted to evaluate the difference of multiple ap-
proaches. The average rankings of AUC, Balance and G-
mean are denoted as RankingA, RankingB and RankingG,
respectively. As the results shown in Tables VI, the average
rankings of AWBLS are the highest among all the three
measurements, which indicates the superior performance of
AWBLS. There are two reasons: (1) The weight matrix in-
corporated into BLS alleviates the impact of class imbalance
problem in SDP. (2) The weight update mechanism combined
with the prior distribution information further improves the
prediction model, while reducing the negative impact of noise
and outliers.

TABLE VI: Average rankings of the algorithms (Friedman
test).

Algorithm RankingA RankingG RankingB
AWBLS 1.40 1.90 1.40

DNC 2.40 2.99 3.09
WELM1 3.59 3.59 3.59
WELM2 3.59 2.40 2.90

SMOTE-BLS 5.49 5.79 5.79
RUS-BLS 4.49 4.20 4.20

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an adaptive weighted broad learn-
ing system for software defect prediction. First, to alleviate
the impact of imbalance in SDP, we design a weighted BLS
which assigns a weight to each module. Next, a density based
weight generation mechanism considering both the inter-class
and intra-class information is adopted to guide the weight
matrix generation adaptively, which aims at reducing negative
effects of noise or outlier modules. We conduct experiments
on NASA software defect prediction data sets and draw the
following conclusions: i) the weighted BLS can deal with
the imbalance problem of SDP ; ii) the adaptive weight



TABLE III: A comparison of AWBLS and other methods by AUC
Dataset SMOTE-BLS RUS-BLS WELM1 WELM2 DNC AWBLS

mc2 0.729±0.025 0.715±0.023 0.619±0.031 0.646±0.031 0.649±0.142 0.743±0.025
kc2 0.525±0.025 0.666±0.009 0.798±0.012 0.792±0.015 0.828±0.074 0.836±0.005
jm1 0.626±0.007 0.602±0.014 0.689±0.019 0.699±0.016 0.766±0.016 0.744±0.013
kc1 0.551±0.027 0.601±0.013 0.786±0.004 0.793±0.033 0.818±0.034 0.829±0.002
pc4 0.720±0.021 0.829±0.009 0.868±0.009 0.867±0.006 0.917±0.031 0.927±0.001
pc3 0.575±0.026 0.682±0.029 0.803±0.006 0.795±0.008 0.816±0.056 0.827±0.001
cm1 0.677±0.064 0.738±0.025 0.730±0.023 0.732±0.021 0.787±0.097 0.813±0.006
kc3 0.566±0.042 0.657±0.040 0.817±0.011 0.819±0.012 0.797±0.102 0.773±0.005

mw1 0.587±0.033 0.668±0.044 0.750±0.019 0.749±0.025 0.714±0.139 0.764±0.018
pc1 0.597±0.026 0.799±0.014 0.789±0.008 0.788±0.012 0.866±0.081 0.872±0.004

TABLE IV: A comparison of AWBLS and other methods by G-mean
Dataset SMOTE-BLS RUS-BLS WELM1 WELM2 DNC AWBLS

mc2 0.613±0.048 0.644±0.037 0.575±0.042 0.617±0.029 0.571±0.152 0.654±0.026
kc2 0.574±0.033 0.659±0.009 0.721±0.005 0.728±0.007 0.777±0.071 0.762±0.003
jm1 0.601±0.008 0.619±0.025 0.633±0.019 0.637±0.012 0.672±0.017 0.679±0.012
kc1 0.611±0.024 0.626±0.012 0.707±0.005 0.726±0.026 0.734±0.040 0.747±0.002
pc4 0.677±0.025 0.767±0.020 0.815±0.010 0.819±0.009 0.859±0.047 0.815±0.006
pc3 0.590±0.017 0.651±0.017 0.730±0.011 0.734±0.007 0.745±0.061 0.762±0.003
cm1 0.591±0.071 0.693±0.026 0.665±0.034 0.671±0.025 0.659±0.133 0.740±0.018
kc3 0.524±0.061 0.619±0.053 0.733±0.014 0.729±0.011 0.662±0.160 0.707±0.009

mw1 0.449±0.073 0.592±0.061 0.631±0.044 0.668±0.032 0.647±0.272 0.657±0.032
pc1 0.596±0.019 0.740±0.019 0.693±0.016 0.747±0.008 0.698±0.145 0.750±0.006

TABLE V: A comparison of AWBLS and other methods by balance
Dataset SMOTE-BLS RUS-BLS WELM1 WELM2 DNC AWBLS

mc2 0.606±0.047 0.633±0.035 0.580±0.033 0.611±0.025 0.569±0.134 0.644±0.022
kc2 0.562±0.027 0.654±0.008 0.721±0.019 0.713±0.027 0.777±0.071 0.755±0.005
jm1 0.591±0.008 0.618±0.013 0.628±0.009 0.629±0.011 0.672±0.017 0.679±0.010
kc1 0.593±0.023 0.620±0.013 0.704±0.006 0.710±0.022 0.733±0.042 0.741±0.002
pc4 0.664±0.026 0.762±0.020 0.810±0.011 0.814±0.008 0.850±0.043 0.819±0.006
pc3 0.585±0.018 0.648±0.017 0.723±0.011 0.729±0.008 0.739±0.064 0.758±0.005
cm1 0.591±0.061 0.681±0.025 0.658±0.029 0.661±0.022 0.653±0.117 0.726±0.017
kc3 0.557±0.039 0.615±0.039 0.703±0.017 0.706±0.012 0.655±0.143 0.709±0.007

mw1 0.514±0.043 0.588±0.048 0.642±0.026 0.664±0.025 0.623±0.177 0.669±0.025
pc1 0.592±0.018 0.730±0.019 0.684±0.015 0.738±0.009 0.682±0.133 0.743±0.008

generation mechanism with the prior distribution information
of original data can further improve the prediction model; iii)
Experimental results on real-world SDP data sets reveal the
superiority of AWBLS over other methods. As a future work,
we will explore the properties of AWBLS and investigate
the scalability on cross-project defect prediction and semi-
supervised software defect prediction.
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