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Abstract—Dynamic selection techniques aim at selecting
the local experts around each test sample in particular for
performing its classification. While generating the classifier on
a local scope may make it easier for singling out the locally
competent ones, as in the online local pool (OLP) technique,
using the same base-classifier model in uneven distributions may
restrict the local level of competence, since each region may
have a data distribution that favors one model over the others.
Thus, we propose in this work a problem-independent dynamic
base-classifier model recommendation for the OLP technique,
which uses information regarding the behavior of a portfolio of
models over the samples of different problems to recommend
one (or several) of them in a per-instance manner. Our proposed
framework builds a multi-label meta-classifier responsible for
recommending a set of relevant base-classifier models based
on the local data complexity of the region surrounding each
test sample. The OLP technique then produces a local pool
with the model that yields the highest probability score of the
meta-classifier. Experimental results show that different data
distributions favored different model types on a local scope.
Moreover, based on the performance of an ideal model type
selector, it was observed that there is a clear advantage in
choosing a relevant base-classifier model for each test instance
in particular. Overall, the proposed model type recommender
system yielded a statistically similar performance to the original
OLP with fixed base-classifier model. However, the proposed
framework struggled to recommend at least one relevant model
type specially for the samples with low labelset cardinality.
Given the novelty of the approach and the gap in performance
between the proposed framework and the ideal selector, we
regard this as a promising research direction.
Code available at github.com/marianaasouza/
dynamic-model-recommender.

I. INTRODUCTION

Multiple Classifier Systems (MCS) combine the responses
of several classifiers in the hopes that the combined system
outperforms each individual base-classifier [1], [2]. MCS are
usually divided into three phases [3]: generation, in which
the base-classifiers from the pool are generated, selection, in
which a subset of the classifiers may be selected to perform
the classification, and aggregation, in which the responses
of the selected base-classifiers are combined. The classifier
selection may be either static or dynamic, with the former
being performed during training and the latter during gener-
alization. The reasoning behind dynamic selection techniques
is that each classifier in the pool may be a local expert in
different regions of the feature space, so the dynamic selection

schemes aim at selecting the base-classifier(s) that are best
fit for labelling each test instance in particular. Dynamic
selection techniques were shown to outperform static selection
approaches specially on ill-defined problems [4].

Yet since most pool generation methods used in dynamic
selection schemes are classical techniques designed for static
selection [3], such as Bagging [5] and Boosting [6], they
generate the base-classifiers with a global perspective of the
problem, so producing a local expert in the vicinity of all
test instances is not guaranteed. Dynamic selection techniques
were also shown to have difficulty in selecting a locally
competent classifier even when it exists in the pool [7], [8].
In a previous work [9], it was proposed an online local pool
generation method (OLP). The OLP produces hyperplanes on
the fly in the area surrounding each test instance near class
borders, so as to guarantee the presence of locally accurate
classifiers in the region and thus facilitate their selection by
the dynamic selection techniques. Using the locally generated
pool was shown to increase the frequency at which the most
competent classifier is selected by the evaluated dynamic
selection schemes in comparison to using a globally generated
pool [9], and also to work well over imbalanced problems [10].

However, the production of local experts by the OLP
technique was restricted by the base-classifier model used in
the pool, which in this case are only two class Perceptrons. To
the best of our knowledge, the choice of base-classifier model
used in pool generation techniques is always done a priori in
the literature regarding ensemble methods. However, in uneven
distributions, each local region in the feature space may have
different characteristics, such as data topology, class balance,
class overlap and data density, among others. Since the idea is
to select the base-classifier(s) that are experts in a given region,
it would follow that the best model to learn the data from
that region depends on its local data distribution. For instance,
using the Perceptron as base-classifier may be far from ideal
when trying to label a query sample located near a non-linearly
separable local class border, while it would make sense to use
it when labelling an instance near a linearly separable one. So,
our hypothesis is that, by choosing a relevant base-classifier
model for each instance in particular, we may be able to
produce more locally competent base-classifiers in that region,
and thus yield an improvement in performance compared to
using a fixed base-classifier model for all samples.
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Thus, we propose a framework for base-classifier model
recommendation in order to, given a local data distribution,
indicate which model is most suitable to be used for each test
sample, with the purpose of yielding a pool of local experts
for the online local pool scheme. We wish to answer the fol-
lowing research questions with our model type recommender
system: (a) which data characteristics affect the performance
of each base-classifier model on a local scope?, and (b) can
we use this information to recommend a suitable model for
each given query sample and improve the online method’s
performance? To do so, we use a problem-independent multi-
label meta-classifier, which is obtained using information from
the behavior of the base-classifier models over instances from
previous datasets. We construct the multi-label set of the meta-
problem using the class probabilities of each base-classifier
model over several problems. We then associate its responses
for each sample to its meta-features, which are comprised of
local complexity measures obtained over the neighborhood of
the corresponding sample in the training set, and train the
multi-label meta-classifier afterwards. In generalization, the
meta-features of each query instance are first extracted using
its neighboring samples in the training set, which are then fed
into the meta-classifier, who outputs the relevant base-classifier
models for that instance.

Our proposed framework is closely related to the algorithm
recommendation area. Several recommender systems for al-
gorithm selection based on data complexity measures were
proposed in the literature. In [11], the authors use a meta-
regressor, built with the extracted data complexity measures
of several datasets, to select the best-performing classification
model for a given unknown problem. A somewhat similar
framework is proposed in [12], in which the authors propose
a set of meta-features based on data complexity extracted
from a kernel matrix generated from the data, in order to
recommend the most suitable classification model using an NN
rule. Another algorithm recommender system was proposed in
[13] for fault prediction in software projects. The meta-data
was obtained by extracting a set of meta-features, including
simple, statistical and data complexity measures, from the
data of previous software projects and assigning which model
in the portfolio yielded the best performance, according to
the balance criterion [14], over each project as the meta-
label. However, none of these recommender systems base their
model recommendation procedure on the local data charac-
teristics within a given dataset. Moreover, they recommend
the models for an entire problem, not for each instance in
particular. To the best of our knowledge, per-sample meta-
learning for algorithm recommendation was only explored in
certain fields, such as combinatorial search problems [15] and
collaborative filtering [16].

This work is divided as follows. Section II describes our
proposed base-classifier model recommender system. Experi-
mental results are presented in Section III. Lastly, we present
our concluding remarks in Section IV.

II. PROPOSED FRAMEWORK

A. Online local pool method

Before delving into the proposed model type recommender
system, we briefly present the OLP technique next. The OLP
technique attempts to exploit the properties of the Oracle [17]
on a local scope in order to guide the generation of the local
base-classifiers. The Oracle is an ideal selector which always
chooses the base-classifier in the pool that labels a given test
sample correctly, if such classifier exists. The OLP technique
was shown to yield a similar performance to state-of-the-art
ensemble methods [9], and also to perform quite well on
imbalanced distributions [10].

In the offline phase of the OLP, the K-Disagreeing Neigh-
bors (KDN) [18] estimates of each training sample is com-
puted, in order to identify which areas of the feature space
present a local class border. The KDN measure calculates the
proportion of samples from a different class in the neighbor-
hood of a given sample.

The online phase of the OLP is described in Figure 1, in
which ks is the dynamic selection neighborhood size, H is the
set of KDN estimates and LP is the local pool. It is divided in
three steps: region of competence estimation, local pool gen-
eration and generalization. In the first step, the neighborhood
θq of the query sample is first obtained using regular K-NN,
with size ks over the training set, and then evaluated based on
the KDN scores stored in H , obtained in the offline phase. If
none of the sample’s neighbors are borderline samples, that is,
if their KDN score is zero, then the procedure goes directly to
the third and last step, generalization, and the K-NN classifier
yields the predicted label ŷq . If, however, any of the neighbors
xi ∈ θq is a borderline sample, the region is identified as a
borderline area and the local pool (LP) is generated in the next
step.

In the second step, the LP is produced iteratively, and in
each iteration the most locally competent classifier produced
in that iteration is added to the final pool (Figure 2). In a
given m-th iteration, the query sample’s neighboring instances
in the training set T are obtained using a neighborhood size
of km, calculated based on ks. For two-class problems, the
K-Nearest Neighbors Equality (K-NNE) [19], which selects
the same amount of neighbors from each class, is used in this
step.

The query sample’s neighborhood θm is then used as input
to the Self-generating Hyperplanes (SGH) method [8], a pool
generation method that yields an Oracle accuracy rate of 100%
over the input dataset. The SGH then produces a local subpool
Cm in which the presence of at least one competent classifier
cm,k ∈ Cm for each instance in θm is guaranteed. The indexes
in the classifiers’ notation indicates that the classifier cm,k is
the k-th classifier from the m-th subpool.

Then, the most competent classifier cm,n from Cm in the
region delimited by the neighborhood θq is selected by a
DCS technique and added to the local pool. The selection
by a DCS technique is performed at this stage, and not after
the LP is completed, because the subpool generation by the



Fig. 1. Overview of the online phase of the online local pool generation method (from [10]). The symbols ks, H and LP mean the dynamic selection
technique’s neighborhood size, the set of KDN estimates, and the local pool, respectively.

Fig. 2. Local pool generation step (from [10]). The symbols ks and LP mean the dynamic selection technique’s neighborhood size and the local pool,
respectively.

SGH method yields too diverse classifiers [8], so not only
is it not fit for DES techniques, but also it may generate
classifiers that are near opposite to the local border [9]. Thus,
the dynamic selection is performed concurrently with the
generation. The same procedure using the SGH method is
performed in iteration m+1 with the neighborhood size km+1

increased by 2, in order to not only adjust the locality of the
classifiers but also to provide a different set of training samples
and produce slightly diverse base-classifiers. This process is
then repeated until the local pool contains a predefined amount
(M ) of locally accurate classifiers.

In the last step, generalization, the predicted label ŷq of
the query sample xq is produced (Figure 1). If the LP was
generated, the responses of the base-classifiers in LP are
combined using the majority voting rule. Otherwise, the K-
NN is used to obtain ŷq .

B. Dynamic model type recommendation system
Though the OLP yielded promising results reported in

previous works, it presents several limitations, one of the
greatest being its local pool generation procedure based on the
SGH method. Although the latter presents interesting qualities,
the base-classifier generation is done using an heuristic and,
for this reason, it can only produce two-class Perceptrons,
yielding hyperplanes that are not always well adjusted to

the border depending on the local data distribution around
the query sample. Since different classification model types
fit the data in different ways, our hypothesis is that locally
training a suitable base-classifier model according to the local
data distribution may be advantageous for producing a more
competent set of classifiers for the OLP. Thus, we propose
a dynamic base-classifier model recommender system which
indicates, for each test instance, the relevant base-classifier
models considering the data complexity around the sample.

The choice of a suitable base-classifier model to be trained
for each instance can be formulated as a meta-learning prob-
lem, in which:

• The meta-classes correspond to the model types that are
suitable for a particular instance xi.
Since more than one base-classifier model may be suit-
able for each given sample xi, it is associated with a
meta-labelset Ui, or its corresponding meta-label vector
ui, a binary vector indicating the relevant models.

• Each element vi,j of the meta-feature vector vi corre-
sponds to a different complexity measure extracted in the
neighborhood of the sample xi.

• A multi-label meta-classifier is trained on the meta-
dataset to predict which base-classifier models are rele-
vant for a given query sample xq, according to its meta-
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Fig. 3. Overview of the training phase of the proposed framework.
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feature vector vq extracted in its neighborhood.

C. Meta-training step

In the meta-training step (Figure 3), we obtain our meta-data
by evaluating the OLP technique with different model types
and associating, for each instance, the information regarding
which ones were successful (meta-labels) to the complex-
ity measures extracted in the sample’s neighborhood (meta-
features). We then join the meta-examples obtained from
several problems to form the meta-training set, which is used
to train our meta-classifier. It is important to note that, since
for each instance in a given problem there may be more than
one suitable base-classifier model, our meta-learning problem
is also a multi-label one. Thus, our meta-classifier must be
able to deal with this scenario. Figure 4 shows in more detail
the meta-feature extraction and the algorithm evaluation for
each dataset from Figure 3 individually.

a) Meta-feature extraction: In order to characterize the
local data complexity of each sample in the evaluation set
(Figure 4), we use 12 data complexity measures described in
[20]. Our reasoning for choosing these measures was based on
the sort of information each of them brings for characterizing
a local data distribution. We selected a subset of measures
that cover all data complexity aspects described in [20] with
the exception of dimensionality, which is problem-dependent
and would not help characterizing a local area in a problem-
independent manner. Most of the chosen complexity measures
were also shown to have a good discriminating power for

predicting algorithm performance on a global scope [11], [21],
specially the distance-based measures. The complexity mea-
sures selected as meta-features for the proposed framework
are:

• Maximum Individual Feature Efficiency (F3): This mea-
sure assesses the degree of ambiguity of the feature which
presents the smallest overlap of values between samples
from different classes.

• Collective Feature Efficiency (F4): The F4 measure gives
an insight on the degree of efficiency provided by a given
set of features, and is calculated using the F3 measure
iteratively over a given set of points.

• Error Rate of Linear Classifier (L2): The L2 measure is
defined as the error rate of a linear SVM trained over the
input dataset.

• Non-Linearity of a Linear Classifier (L3): The L3 mea-
sure tries to quantify the degree of linearity of a problem’s
class borders, and is defined as the error rate of a
linear classifier obtained with the original training set
over prototypes generated via interpolation of the training
points.

• Fraction of Borderline Points (N1): The N1 measure is
obtained by generating a minimum spanning tree (MST)
using the distance matrix from all points of the input
set and then calculating the proportion of samples that
are connected to a sample from a different class, thus
conveying the size and degree of complexity of the
decision boundary.
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Fig. 5. Example of meta-feature vector.

• Ratio of Intra/Extra Class Nearest Neighbor Distance
(N2): The N2 measure estimates the iter/intra class re-
lationship of the data by computing the ratio between
the sum of the distances between the nearest neighbors
(1-NN) of the same class and the sum of the distances be-
tween the nearest neighbors that possess different labels,
for the entire input set.

• Error Rate of the Nearest Neighbor Classifier (N3): The
N3 measure is defined as the error rate of the 1-NN
classifier over the input dataset, computed using a leave-
one-out procedure.

• Non-Linearity of the Nearest Neighbor Classifier (N4):
The N4 measure is similar to the L3 measure, in that it
generates a few prototypes via interpolation and evaluates
a classifier, trained with the original training samples,
over the newly generated prototypes. In the case of the
N4, the classifier used is the 1-NN.

• Local Set Average Cardinality (LSC): The LSC is defined
as the average number of samples within the local set
(LS) of each instance in the input set. The LS of a given
instance is the set of samples that share the same label as
the target instance while being closer to it than its nearest
enemy.

• Average density of the network (Den): The Density
measure is computed using a graph constructed so that
each node is a training instance and each edge is a
distance-based weighted connection between them, with
the edges with distance greater than a given threshold are
discarded, as well as all edges connecting samples from
different classes. The measure is then calculated as the
normalized number of edges in the graph.

• Entropy of class proportions (C1): The C1 measure
estimates the normalized entropy of the class sizes, giving
an insight into the class imbalance of the data.

• Imbalance ratio (C2): Also referred to as IR, the im-
balance ratio of binary problems is defined as the ratio
between the number of samples in the majority class and
the number of samples from the minority class.

In the meta-feature extraction step, we calculate for each
sample xi in the evaluation set (Figure 4) its neighborhood
over the training set using the K-NN, with neighborhood
size k′. We then extract the 12 complexity measures over
the neighborhood of xi, yielding the meta-feature vector vi

depicted in Figure 5.
b) Algorithm evaluation: All samples in the evaluation

set are tested using the OLP m times, with m being the number
of model types considered in the meta-learning framework’s
portfolio. So, for each sample xi, the base-classifiers used
in the executions that yielded the correct label yi with class
probability above a threshold t are referenced as relevant for

0 0 1 0 1 ... 1ui

Model 1 Model 2 Model 3 Model 4 Model 5 Model m

Fig. 6. Example of meta-label vector. The assigned value is 1 if the model
correctly classified the sample with output class probability above a threshold
t, or 0 otherwise.

that sample. The vector of meta-labels ui corresponding to the
sample xi is illustrated in Figure 6. Each column indicates
the relevance of the base-classifier model for that sample. A
relevant model for a given sample xi is one with which the
OLP technique was able to correctly label with output class
probability above a threshold t. If the OLP with the base-
classifier model was unable to classify the sample correctly,
or the class probability was below t, the model is deemed
non-relevant to that sample and its corresponding value in ui

is 0. That way, we indicate to the meta-classifier which base-
classifier models are indeed more likely to successfully learn
the local data distribution.

We then remove the samples for which all base-classifier
models yielded the same response, referred to in Figure 4 as
indistinctive samples. Since for these samples any model will
produce the same output, they do not help in discriminating
between the base-classifier models. Thus, similarly to [22],
we remove the indistinctive samples in order for the meta-
classifier to focus on the distinctive ones.

c) Meta-classifier training: Lastly, the meta-classifier is
trained with the meta-data. Since our meta-problem is a multi-
label one (Figure 6), we need a multi-label learning method
for dealing with it. For simplicity, we chose to use the
Binary Relevance (BR) method [23], a problem transformation
approach in which we transform the problem into several
binary datasets, one for each label. Though limited, in the
sense that it assumes the labels are independent, this approach
is simple and easily adapted to our problem. Thus, our
meta-classifier is a set of m classifiers, each one trained to
indicate whether its corresponding model is relevant for a
given input sample. However, since using the BR method
may yield highly imbalanced binary problems, we train the
meta-classifier applying class weights, with the weights being
adjusted inversely proportional to the class frequencies in order
to reduce the impact of the class imbalance.

D. Generalization step

In the generalization phase (Figure 7), the unseen training
data is first analyzed and the training samples qualified into
borderline (hard) or not (easy) using its KDN estimate. Then,
in generalization, if the unknown sample xq is considered
easy, it is labelled by the K-NN, as in the original OLP tech-
nique. Otherwise, the local complexity measures are extracted
over the neighborhood of the sample θ′q with size k′, the same
as in the meta-training step. The meta-feature vector vq is then
used as input to the meta-classifier, which returns which base-
classifier models are relevant for the sample xq. Among the
recommended models, the one whose meta-classifier (within
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the BR ensemble) outputs the highest class probability is
chosen to be used. The OLP technique is then applied to the
query sample with the chosen base-classifier model and yields
the predicted label ŷq . If no model is recommended, the class
probability rule is applied to all models (as in the T-Criterion
rule for the BR method [24]).

III. EXPERIMENTS

A. Experimental protocol

The impact on the performance of the OLP using our meta-
learning framework for choosing a relevant base-classifier
model according to the local data complexity is assessed
using a leave-one-dataset-out procedure, in order to achieve a
problem-independent approach to our model recommendation
scheme. That is, we use one dataset from our testbed in the
generalization step and the remaining ones in the meta-training
step for obtaining the meta-data. Within each dataset, we
use a 5-fold cross validation procedure, both for algorithm
evaluation and meta-feature extraction in the meta-training
step and for evaluating the performance of the method in test
in generalization.

a) Datasets: For facilitating the comparison with pre-
vious works, we use the same testbed of 64 two-class
datasets from the Knowledge Extraction based on Evolutionary
Learning (KEEL) repository [25], presented in Table I. Each
dataset was evaluated using a stratified 5-fold cross validation
procedure, one fold for test and the remaining for training,
using the same partitions provided in the KEEL website
for reproducibility. Due to the small-sized datasets, we use
the training set as the DSEL set for the dynamic selection
techniques evaluated, as in [10], [26].

TABLE I
MAIN CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Ref. Dataset # Feat. # Samples IR Ref. Dataset # Feat. # Samples IR

1 glass1 9 214 1.82 33 ecoli-0-2-6-7vs3-5 7 224 9.18
2 ecoli0vs1 7 220 1.86 34 glass-0-4vs5 9 92 9.22
3 wisconsin 9 683 1.86 35 ecoli-0-3-4-6vs5 7 205 9.25
4 pima 8 768 1.87 36 ecoli-0-3-4-7vs5-6 7 257 9.28
5 iris0 4 150 2 37 yeast-05679vs4 8 528 9.35
6 glass0 9 214 2.06 38 vowel0 13 988 9.98
7 yeast1 8 1484 2.46 39 ecoli-0-6-7vs5 6 220 10
8 haberman 3 306 2.78 40 glass-016vs2 9 192 10.29
9 vehicle2 18 846 2.88 41 ecoli-0-1-4-7vs2-3-5-6 7 336 10.59
10 vehicle1 18 846 2.9 42 led7digit-0-2-4-5-6-7-8-9vs1 7 443 10.97
11 vehicle3 18 846 2.99 43 glass-0-6vs5 9 205 11
12 glass0123vs456 9 214 3.2 44 ecoli-0-1vs5 6 240 11
13 vehicle0 18 846 3.25 45 glass-0-1-4-6vs2 9 205 11.06
14 ecoli1 7 336 3.36 46 glass2 9 214 11.59
15 new-thyroid1 5 215 5.14 47 ecoli-0-1-4-7vs5-6 6 332 12.28
16 new-thyroid2 5 215 5.14 48 ecoli-0-1-4-6vs5 6 280 13
17 ecoli2 7 336 5.46 49 cleveland-0vs4 13 177 12.62
18 segment0 19 2308 6 50 shuttle-c0vsc4 9 1829 13.87
19 glass6 9 214 6.38 51 yeast-1vs7 7 459 14.3
20 yeast3 8 1484 8.1 52 glass4 9 214 15.47
21 ecoli3 7 336 8.6 53 ecoli4 7 336 15.8
22 page-blocks0 10 5472 8.79 54 page-blocks-13vs4 10 472 15.86
23 ecoli-0-3-4vs5 7 200 9 55 glass-0-1-6vs5 9 184 19.44
24 yeast-2vs4 8 514 9.08 56 shuttle-c2-vs-c4 9 129 20.5
25 ecoli-0-6-7vs3-5 7 202 9.09 57 yeast-1458vs7 8 693 22.1
26 ecoli-0-2-3-4vs5 7 222 9.1 58 glass5 9 214 22.78
27 yeast-0-3-5-9vs7-8 8 506 9.12 59 yeast-2vs8 8 482 23.1
28 glass-0-1-5vs2 9 172 9.12 60 yeast4 8 1484 28.1
29 yeast-0-2-5-7-9vs3-6-8 8 1004 9.14 61 yeast-1289vs7 8 947 30.57
30 yeast-0-2-5-6vs3-7-8-9 8 1004 9.14 62 yeast5 8 1484 32.73
31 ecoli-0-4-6vs5 6 203 9.15 63 ecoli-0137vs26 7 281 39.14
32 ecoli-0-1vs2-3-5 7 224 9.17 64 yeast6 8 1484 41.4

b) Classifier models: We consider 5 base-classifier mod-
els to be chosen by the meta-learning framework: Percep-
tron, Decision Stump (DS), Decision Tree (DT), linear SVM
(LSVM) and SVM with Gaussian kernel (GSVM). We com-
pare the proposed framework with dynamic model type se-
lection against the original OLP method, which generates the
base-classifiers using the Self-Generating Hyperplanes (SGH)
[8] technique and uses a dynamic classifier selection technique
embedded (we chose the Multiple Classifier Behavior (MCB)
[27] due to its superior performance in previous experiments).
Moreover, we use the Decision Tree as our BR meta-learner in
the multi-label framework. We chose this classifier because of
its embedded feature selection, which allows us to analyze how
correlated the local characteristics (meta-features) are with the
relevance of each base-classifier model.

c) Parameter setting: The pool size of the OLP, re-
gardless of the base classifier used, is set to M = 5.
The neighborhood size for the KDN and the neighborhood
definitions within the OLP framework are set to kh = ks = 7.
For the version that uses the SGH and MCB, the similarity
and competence threshold of the latter are set to 0.7 and 0.1,
respectively.

For the meta-learning framework, we fix the class proba-
bilities threshold t at 0.7 in order to regard a base-classifier
model as relevant or not for a given sample. Moreover, the
neighborhood size for the meta-feature extraction is set to
k′ = 50, providing enough samples for reliably estimating
the measures with a local scope [28]. The meta-learner hy-
perparameters (maximum depth, minimum impurity decrease,
minimum samples per leaf) are obtained using a grid search
in a 10-fold cross-validation procedure over the meta-training
set.

d) Performance measures: In order to evaluate the im-
pact of the automatic choice of base-classifier model on
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Fig. 8. Mean feature importances of each component of the multi-label meta-classifier over all datasets from from Table I.

the performance of the OLP, we use the accuracy rate, the
area under the Receiver Operating Characteristic (ROC) curve
(AUC) [29], the F-measure [30] and the Geometric Mean (G-
mean) [31], the latter three being measures frequently used for
performance evaluation in imbalanced scenarios. Moreover, we
use the Precision measure [24] for evaluating the performance
of our multi-label meta-classifier, since for our scenario, it is
more important that the set of recommended base-models is
mostly comprised of suitable base-models than it contains a
high proportion of unsuitable base-models, albeit including all
suitable ones. In this sense, the precision of the meta-learner
is the lower bound of our framework accuracy rate.

B. Multi-label meta-classifier analysis

We first analyze which characteristics (complexity mea-
sures) are more pertinent for recommending each base-
classifier model. Figure 8 shows the mean meta-feature impor-
tances obtained from the multi-label meta-classifier (Decision
tree). The importance of a feature in a DT is the normalized
total reduction of the Gini impurity given by that feature. Since
we used the BR method, the recommendation of each base-
classifier model is given by an individual DT, so the feature
importances for each model are shown in Figure 8.

Unsurprisingly, the most important meta-feature for recom-
mending the LSVM is the L2 measure, which computes the
error rate of a linear SVM on the local region. For the DS,
the most important meta-feature appears to be the N1, which
indicates the size of the local border. The recommendation of
the Perceptron, on the other hand, was highly influenced by
the local class balance and level of overlap in the target region.
The level of class overlap and the linearity of the border is

(a)

(b)

Fig. 9. (a) Mean frequency of selection of the base-classifier models and (b)
mean individual accuracy of each component of the BR meta-classifier over
all datasets from Table I.

mostly regarded for recommending the GSVM. The recom-
mendation of the DT, on the other hand, is quite different,
with most meta-features being almost equally important.

Figure 9(a) shows the mean frequency of selection for
each base-classifier model by the multi-label meta-classifier



Fig. 10. Mean precision of meta-classifier for each dataset in Table I. The horizontal dashed line indicates the average performance over all datasets.

in generalization. It can be observed that the DS was overall
selected less often, with the most frequently selected model
being the DT. The individual mean accuracy rate of each
component of the BR meta-classifier is shown in Figure 9(b). It
can be observed that, while the DT was the most recommended
base-classifier model, its meta-classifier yielded the poorest
accuracy rate, wrongly recommending the model half of the
time, on average. The recommendation of the Perceptron was
also generally quite inaccurate. For the remaining models,
the mean accuracy rate was around 0.8, which suggests that
the meta-features used for characterizing their relevance in a
subproblem are indeed important.

The performance of the multi-label meta-classifier in gen-
eralization is depicted in Figure 10, which indicates the mean
precision of the meta-classifier per dataset. It can be observed
that the precision is quite high, especially for the highly
imbalanced datasets (large reference number). However, for
the first few datasets, the precision is quite low, reaching below
0.5 for the glass0, yeast1 and haberman (ref. 6, 7 and 8)
datasets. This may be explained by the labelset cardinality,
that is, the average number of relevant classifiers per sample,
which for these datasets, over which the meta-classifier yielded
a poor precision score, is very low. This suggests that the
multi-label meta-classifier struggles to recommend at least one
relevant base-classifier model for the samples with low labelset
cardinality.

a) Framework performance: We now analyze the per-
formance of the framework as a whole. Table II shows the
mean performance of the proposed framework (Proposed) and
the online scheme using its original fixed individual base-
classifier model (SGH+MCB) and an ideal base-classifier
model for each sample. The results per dataset can be found
in the Appendix. First, we can see that there is a significant
improvement in selecting an ideal base-classifier model for
each instance in particular in comparison to using the fixed
model strategy for all instances, considering all performance
metrics used in this work. Thus, we confirm one of our
hypotheses: that each local region may favor certain types of
classifiers and choosing the ideal one for each test sample
is advantageous for local ensembles. When we analyze the
performance of the proposed technique, though, we see that

TABLE II
AVERAGE PERFORMANCE OF THE PROPOSED FRAMEWORK (PROPOSED)

AND THE ONLINE SCHEME USING THE FIXED INDIVIDUAL
BASE-CLASSIFIER MODEL (SGH+MCB) AND AN IDEAL BASE-CLASSIFIER

MODEL FOR EACH SAMPLE. BEST RESULTS EXCLUDING THE IDEAL
SELECTOR ONES ARE IN BOLD. THE ROW W-T-L SHOWS THE NUMBER OF
WINS, TIES AND LOSSES OF THE PROPOSED FRAMEWORK COMPARED TO

USING THE COLUMN-WISE STRATEGY. THE ROWS p-value SHOW THE
RESULT OF A WILCOXON SIGNED RANK TEST WITH α = 0.05 BETWEEN

THE INDICATED STRATEGY (ROW-WISE: PROPOSED AND IDEAL
SELECTOR) AND THE COLUMN-WISE STRATEGY, WITH THE SYMBOLS (+)

AND (-) INDICATING WHETHER THE FORMER IS SIGNIFICANTLY SUPERIOR
OR INFERIOR TO THE LATTER.

Performance metric Proposed SGH+MCB Ideal

Accuracy

Mean 0.936 0.941 0.971
W-T-L n/a 14-20-30 0-5-59
p-value (proposed) n/a 0.008 (-) 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

AUC

Mean 0.805 0.810 0.882
W-T-L n/a 19-12-33 0-6-58
p-value (proposed) n/a 0.179 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

F-measure

Mean 0.674 0.682 0.825
W-T-L n/a 21-8-35 0-3-61
p-value (proposed) n/a 0.265 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

G-mean

Mean 0.740 0.740 0.851
W-T-L n/a 20-12-32 0-4-60
p-value (proposed) n/a 0.506 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

the selection of such ideal base-classifier model per instance
is not so trivial. In terms of accuracy, the proposed technique
yielded a significantly inferior performance to using the fixed
model strategy. However, in terms of AUC, F-measure and
G-mean, the performance was statistically similar.

IV. CONCLUSION

In this work, we presented a novel algorithm recommenda-
tion framework which dynamically suggests a set of relevant
model types for each instance in particular in a problem-
independent manner. Since each model learns differently from
a given set of points, our recommender system makes use of
meta-learning and multi-label learning for recommending the
models according to the local data complexity surrounding



each test sample. We then integrated the algorithm recom-
mender system to our online local pool generation technique
[9] and evaluated the proposed framework’s performance over
64 binary problems.

Experiments showed that the local data characteristics affect
the performance of each model type differently on a local
scope. Moreover, it was shown that it is highly advantageous to
use a suitable model type for each instance in particular, since
the ideal model type selector yielded a statistically superior
performance compared to the fixed model type approach
considering all evaluated performance metrics. However, al-
most half of the components of our multi-label meta-classifier
were not very well fit to the data, which may explain why
its overall precision was high though it still struggled on
harder recommendation scenarios. Overall, the performance
of the proposed model type recommendation framework was
statistically similar to using the original state-of-the-art online
method, which uses a fixed base-classifier model for all test
samples. Given the upper limit provided by the ideal selector’s
performance, and thus the margin for improvement of the
framework, we believe this to be a promising line of research.

Since this is a novel approach to model type recommenda-
tion, in the sense that it is done dynamically according to the
local structure of the data, there are many open challenges and
improvements to be made. Future works may involve using a
more powerful multi-label classifier that takes into account
the label correlations of the meta-problem, as well as using
a broader, more descriptive set of meta-features and applying
a meta-feature selection procedure that is more suitable for
multi-label learning.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian agencies
CAPES (Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior), CNPq (Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico) and FACEPE (Fundação de
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[21] M. A. Muñoz, L. Villanova, D. Baatar, and K. Smith-Miles, “Instance
spaces for machine learning classification,” Machine Learning, vol. 107,
no. 1, pp. 109–147, 2018.

[22] R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, “META-DES.H:
a dynamic ensemble selection technique using meta-learning and a
dynamic weighting approach,” in 2015 International Joint Conference
on Neural Networks. IEEE, 2015, pp. 1–8.

[23] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771,
2004.

[24] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algo-
rithms,” IEEE transactions on knowledge and data engineering, vol. 26,
no. 8, pp. 1819–1837, 2013.
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APPENDIX
DETAILED PERFORMANCE RESULTS

TABLE III
MEAN AND STANDARD DEVIATION OF THE ACCURACY RATE OF THE

EVALUATED TECHNIQUES OVER EACH DATASET FROM TABLE I. BEST
RESULTS ARE IN BOLD.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal

1 0.76 (0.08) 0.77 (0.07) 0.91 (0.05) 33 0.96 (0.01) 0.96 (0.01) 0.98 (0.01)
2 0.98 (0.01) 0.97 (0.02) 0.99 (0.01) 34 1.00 (0.00) 0.99 (0.02) 1.00 (0.00)
3 0.96 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)
4 0.73 (0.02) 0.76 (0.04) 0.86 (0.02) 36 0.97 (0.02) 0.96 (0.02) 0.98 (0.03)
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.91 (0.01) 0.91 (0.01) 0.95 (0.01)
6 0.79 (0.02) 0.84 (0.06) 0.94 (0.04) 38 0.99 (0.01) 0.99 (0.00) 1.00 (0.00)
7 0.72 (0.02) 0.75 (0.03) 0.90 (0.01) 39 0.97 (0.01) 0.97 (0.02) 0.98 (0.02)
8 0.69 (0.03) 0.71 (0.05) 0.87 (0.03) 40 0.90 (0.02) 0.91 (0.03) 0.94 (0.03)
9 0.98 (0.01) 0.97 (0.01) 0.99 (0.00) 41 0.95 (0.02) 0.97 (0.02) 0.98 (0.01)
10 0.75 (0.01) 0.79 (0.02) 0.92 (0.02) 42 0.97 (0.01) 0.95 (0.01) 0.97 (0.02)
11 0.79 (0.01) 0.80 (0.02) 0.93 (0.01) 43 0.99 (0.01) 0.99 (0.02) 0.99 (0.02)
12 0.93 (0.02) 0.93 (0.01) 0.98 (0.01) 44 0.98 (0.01) 0.97 (0.02) 0.98 (0.02)
13 0.95 (0.02) 0.96 (0.02) 1.00 (0.01) 45 0.90 (0.01) 0.92 (0.02) 0.96 (0.02)
14 0.91 (0.02) 0.92 (0.03) 0.96 (0.02) 46 0.91 (0.03) 0.90 (0.02) 0.95 (0.03)
15 0.98 (0.01) 0.99 (0.01) 1.00 (0.01) 47 0.98 (0.01) 0.97 (0.02) 0.99 (0.01)
16 0.98 (0.01) 0.99 (0.02) 1.00 (0.00) 48 0.98 (0.01) 0.97 (0.02) 0.99 (0.01)
17 0.95 (0.02) 0.96 (0.03) 0.98 (0.02) 49 0.93 (0.02) 0.94 (0.02) 0.98 (0.02)
18 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 50 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
19 0.97 (0.01) 0.96 (0.01) 0.97 (0.02) 51 0.93 (0.01) 0.94 (0.01) 0.96 (0.01)
20 0.93 (0.01) 0.95 (0.01) 0.97 (0.01) 52 0.96 (0.03) 0.97 (0.03) 0.98 (0.02)
21 0.90 (0.01) 0.92 (0.03) 0.96 (0.02) 53 0.98 (0.01) 0.99 (0.01) 0.99 (0.01)
22 0.97 (0.01) 0.97 (0.00) 0.99 (0.00) 54 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)
23 0.97 (0.02) 0.97 (0.03) 0.97 (0.02) 55 0.98 (0.02) 0.97 (0.03) 0.99 (0.01)
24 0.94 (0.01) 0.96 (0.01) 0.98 (0.02) 56 0.99 (0.01) 0.99 (0.02) 0.99 (0.02)
25 0.96 (0.03) 0.94 (0.03) 0.98 (0.03) 57 0.94 (0.01) 0.95 (0.01) 0.96 (0.01)
26 0.97 (0.02) 0.97 (0.03) 0.98 (0.02) 58 0.98 (0.02) 0.98 (0.02) 1.00 (0.01)
27 0.91 (0.01) 0.90 (0.01) 0.95 (0.01) 59 0.97 (0.01) 0.98 (0.01) 0.98 (0.01)
28 0.87 (0.03) 0.87 (0.07) 0.92 (0.03) 60 0.96 (0.01) 0.97 (0.01) 0.98 (0.01)
29 0.96 (0.01) 0.97 (0.01) 0.98 (0.01) 61 0.96 (0.01) 0.97 (0.01) 0.98 (0.00)
30 0.93 (0.01) 0.93 (0.02) 0.96 (0.01) 62 0.98 (0.01) 0.98 (0.00) 0.99 (0.00)
31 0.96 (0.02) 0.97 (0.04) 0.99 (0.02) 63 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)
32 0.95 (0.02) 0.97 (0.03) 0.98 (0.02) 64 0.98 (0.01) 0.98 (0.00) 0.99 (0.01)

TABLE IV
MEAN AND STANDARD DEVIATION OF THE AUC OF THE EVALUATED

TECHNIQUES OVER EACH DATASET FROM TABLE I. BEST RESULTS ARE IN
BOLD.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal

1 0.73 (0.09) 0.74 (0.08) 0.89 (0.06) 33 0.83 (0.09) 0.85 (0.09) 0.90 (0.09)
2 0.97 (0.02) 0.96 (0.03) 0.99 (0.02) 34 1.00 (0.00) 0.95 (0.10) 1.00 (0.00)
3 0.95 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.89 (0.09) 0.89 (0.09) 0.93 (0.06)
4 0.69 (0.04) 0.74 (0.04) 0.84 (0.02) 36 0.89 (0.11) 0.89 (0.09) 0.92 (0.12)
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.67 (0.08) 0.63 (0.09) 0.81 (0.05)
6 0.77 (0.03) 0.82 (0.08) 0.94 (0.05) 38 0.95 (0.04) 0.98 (0.01) 1.00 (0.00)
7 0.67 (0.04) 0.69 (0.04) 0.86 (0.02) 39 0.87 (0.07) 0.87 (0.08) 0.92 (0.06)
8 0.57 (0.05) 0.58 (0.05) 0.79 (0.05) 40 0.52 (0.07) 0.53 (0.07) 0.68 (0.13)
9 0.96 (0.01) 0.95 (0.01) 0.99 (0.01) 41 0.80 (0.05) 0.87 (0.08) 0.90 (0.06)
10 0.66 (0.03) 0.68 (0.01) 0.87 (0.03) 42 0.88 (0.06) 0.78 (0.06) 0.90 (0.08)
11 0.70 (0.03) 0.73 (0.02) 0.89 (0.02) 43 0.95 (0.10) 0.95 (0.10) 0.95 (0.10)
12 0.88 (0.06) 0.90 (0.03) 0.96 (0.03) 44 0.90 (0.09) 0.89 (0.09) 0.90 (0.09)
13 0.94 (0.03) 0.94 (0.02) 0.99 (0.01) 45 0.55 (0.06) 0.54 (0.10) 0.72 (0.14)
14 0.87 (0.04) 0.87 (0.04) 0.94 (0.04) 46 0.55 (0.09) 0.49 (0.01) 0.69 (0.13)
15 0.95 (0.03) 0.97 (0.03) 0.99 (0.03) 47 0.88 (0.07) 0.86 (0.08) 0.92 (0.04)
16 0.94 (0.05) 0.97 (0.06) 1.00 (0.00) 48 0.90 (0.12) 0.87 (0.15) 0.93 (0.10)
17 0.87 (0.04) 0.90 (0.03) 0.94 (0.04) 49 0.58 (0.11) 0.68 (0.11) 0.85 (0.13)
18 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
19 0.89 (0.07) 0.89 (0.04) 0.91 (0.06) 51 0.62 (0.03) 0.64 (0.06) 0.70 (0.08)
20 0.82 (0.01) 0.82 (0.02) 0.91 (0.03) 52 0.74 (0.13) 0.84 (0.13) 0.88 (0.14)
21 0.73 (0.07) 0.77 (0.10) 0.86 (0.09) 53 0.89 (0.04) 0.90 (0.05) 0.90 (0.05)
22 0.92 (0.01) 0.92 (0.01) 0.96 (0.01) 54 0.97 (0.04) 0.95 (0.07) 1.00 (0.00)
23 0.87 (0.12) 0.89 (0.10) 0.88 (0.11) 55 0.85 (0.20) 0.79 (0.19) 0.95 (0.10)
24 0.82 (0.03) 0.87 (0.03) 0.92 (0.06) 56 0.95 (0.10) 0.95 (0.10) 0.95 (0.10)
25 0.86 (0.17) 0.80 (0.16) 0.92 (0.12) 57 0.51 (0.03) 0.49 (0.00) 0.55 (0.07)
26 0.85 (0.09) 0.87 (0.12) 0.88 (0.11) 58 0.80 (0.24) 0.75 (0.22) 0.95 (0.10)
27 0.60 (0.04) 0.61 (0.04) 0.75 (0.05) 59 0.70 (0.05) 0.74 (0.10) 0.77 (0.09)
28 0.54 (0.08) 0.48 (0.03) 0.60 (0.13) 60 0.61 (0.07) 0.63 (0.07) 0.73 (0.08)
29 0.88 (0.04) 0.89 (0.03) 0.91 (0.03) 61 0.59 (0.03) 0.63 (0.08) 0.65 (0.06)
30 0.72 (0.03) 0.75 (0.04) 0.81 (0.04) 62 0.84 (0.09) 0.74 (0.09) 0.94 (0.04)
31 0.87 (0.13) 0.89 (0.15) 0.93 (0.10) 63 0.80 (0.19) 0.85 (0.20) 0.85 (0.20)
32 0.80 (0.10) 0.86 (0.14) 0.86 (0.14) 64 0.73 (0.13) 0.67 (0.07) 0.83 (0.11)

TABLE V
MEAN AND STANDARD DEVIATION OF THE F-MEASURE OF THE

EVALUATED TECHNIQUES OVER EACH DATASET FROM TABLE I. BEST
RESULTS ARE IN BOLD.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal

1 0.64 (0.12) 0.66 (0.12) 0.87 (0.08) 33 0.75 (0.12) 0.78 (0.10) 0.86 (0.11)
2 0.97 (0.03) 0.98 (0.01) 0.99 (0.01) 34 1.00 (0.00) 0.93 (0.13) 1.00 (0.00)
3 0.94 (0.01) 0.96 (0.01) 0.97 (0.01) 35 0.84 (0.15) 0.81 (0.12) 0.91 (0.07)
4 0.60 (0.06) 0.65 (0.06) 0.79 (0.03) 36 0.80 (0.17) 0.81 (0.13) 0.88 (0.19)
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.42 (0.16) 0.34 (0.20) 0.71 (0.06)
6 0.69 (0.04) 0.75 (0.11) 0.91 (0.06) 38 0.93 (0.07) 0.97 (0.01) 1.00 (0.00)
7 0.53 (0.06) 0.56 (0.05) 0.81 (0.03) 39 0.83 (0.11) 0.83 (0.11) 0.89 (0.10)
8 0.35 (0.09) 0.36 (0.09) 0.70 (0.08) 40 0.10 (0.20) 0.10 (0.20) 0.48 (0.30)
9 0.95 (0.02) 0.94 (0.02) 0.99 (0.01) 41 0.67 (0.08) 0.81 (0.13) 0.87 (0.05)
10 0.50 (0.05) 0.53 (0.02) 0.82 (0.05) 42 0.79 (0.10) 0.63 (0.10) 0.80 (0.11)
11 0.56 (0.05) 0.60 (0.03) 0.85 (0.02) 43 0.93 (0.13) 0.93 (0.13) 0.93 (0.13)
12 0.83 (0.07) 0.85 (0.02) 0.95 (0.04) 44 0.85 (0.11) 0.81 (0.12) 0.88 (0.12)
13 0.90 (0.05) 0.92 (0.03) 0.99 (0.01) 45 0.14 (0.17) 0.11 (0.23) 0.54 (0.31)
14 0.81 (0.05) 0.82 (0.07) 0.92 (0.05) 46 0.20 (0.24) 0.00 (0.00) 0.50 (0.30)
15 0.94 (0.03) 0.96 (0.04) 0.98 (0.03) 47 0.82 (0.11) 0.78 (0.12) 0.91 (0.04)
16 0.94 (0.06) 0.97 (0.07) 1.00 (0.00) 48 0.84 (0.15) 0.75 (0.21) 0.90 (0.13)
17 0.81 (0.07) 0.85 (0.08) 0.92 (0.05) 49 0.23 (0.29) 0.46 (0.26) 0.79 (0.19)
18 0.98 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
19 0.86 (0.09) 0.85 (0.06) 0.88 (0.08) 51 0.32 (0.06) 0.38 (0.13) 0.55 (0.17)
20 0.69 (0.02) 0.73 (0.02) 0.87 (0.04) 52 0.60 (0.23) 0.75 (0.21) 0.80 (0.20)
21 0.51 (0.10) 0.59 (0.18) 0.79 (0.13) 53 0.80 (0.05) 0.86 (0.08) 0.89 (0.06)
22 0.85 (0.02) 0.84 (0.01) 0.94 (0.01) 54 0.96 (0.04) 0.94 (0.08) 1.00 (0.00)
23 0.82 (0.17) 0.84 (0.16) 0.84 (0.15) 55 0.69 (0.37) 0.60 (0.37) 0.93 (0.13)
24 0.69 (0.02) 0.79 (0.03) 0.88 (0.09) 56 0.93 (0.13) 0.93 (0.13) 0.93 (0.13)
25 0.76 (0.26) 0.64 (0.21) 0.89 (0.17) 57 0.06 (0.10) 0.00 (0.00) 0.16 (0.20)
26 0.79 (0.15) 0.82 (0.17) 0.84 (0.15) 58 0.60 (0.49) 0.53 (0.45) 0.93 (0.13)
27 0.31 (0.10) 0.31 (0.08) 0.65 (0.10) 59 0.51 (0.10) 0.65 (0.17) 0.67 (0.15)
28 0.15 (0.18) 0.00 (0.00) 0.26 (0.33) 60 0.27 (0.15) 0.36 (0.16) 0.61 (0.16)
29 0.79 (0.05) 0.83 (0.06) 0.89 (0.05) 61 0.25 (0.06) 0.34 (0.20) 0.45 (0.15)
30 0.55 (0.07) 0.60 (0.08) 0.74 (0.05) 62 0.69 (0.15) 0.57 (0.14) 0.90 (0.04)
31 0.76 (0.20) 0.82 (0.25) 0.90 (0.13) 63 0.67 (0.37) 0.63 (0.37) 0.73 (0.39)
32 0.67 (0.18) 0.77 (0.23) 0.81 (0.22) 64 0.51 (0.26) 0.45 (0.14) 0.76 (0.15)

TABLE VI
MEAN AND STANDARD DEVIATION OF THE GEOMETRIC MEAN OF THE
EVALUATED TECHNIQUES OVER EACH DATASET FROM TABLE I. BEST

RESULTS ARE IN BOLD.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal

1 0.72 (0.10) 0.73 (0.09) 0.89 (0.07) 33 0.81 (0.11) 0.83 (0.11) 0.89 (0.11)
2 0.97 (0.03) 0.96 (0.03) 0.99 (0.02) 34 1.00 (0.00) 0.94 (0.12) 1.00 (0.00)
3 0.95 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.88 (0.11) 0.88 (0.11) 0.92 (0.07)
4 0.68 (0.05) 0.73 (0.05) 0.83 (0.02) 36 0.88 (0.13) 0.88 (0.10) 0.90 (0.15)
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.58 (0.15) 0.45 (0.25) 0.78 (0.06)
6 0.77 (0.04) 0.81 (0.09) 0.94 (0.05) 38 0.95 (0.04) 0.98 (0.01) 1.00 (0.00)
7 0.65 (0.05) 0.67 (0.04) 0.85 (0.02) 39 0.86 (0.09) 0.86 (0.09) 0.92 (0.07)
8 0.51 (0.07) 0.51 (0.07) 0.76 (0.07) 40 0.12 (0.23) 0.12 (0.23) 0.53 (0.30)
9 0.96 (0.01) 0.95 (0.01) 0.99 (0.01) 41 0.78 (0.07) 0.86 (0.08) 0.89 (0.07)
10 0.63 (0.04) 0.64 (0.01) 0.86 (0.03) 42 0.87 (0.07) 0.74 (0.08) 0.89 (0.09)
11 0.68 (0.05) 0.72 (0.02) 0.89 (0.02) 43 0.94 (0.12) 0.94 (0.12) 0.94 (0.12)
12 0.87 (0.07) 0.90 (0.03) 0.96 (0.04) 44 0.89 (0.11) 0.88 (0.11) 0.89 (0.11)
13 0.93 (0.03) 0.94 (0.02) 0.99 (0.01) 45 0.21 (0.26) 0.14 (0.28) 0.58 (0.32)
14 0.87 (0.04) 0.87 (0.04) 0.94 (0.04) 46 0.23 (0.28) 0.00 (0.00) 0.54 (0.30)
15 0.95 (0.03) 0.97 (0.03) 0.99 (0.03) 47 0.86 (0.09) 0.84 (0.09) 0.92 (0.04)
16 0.94 (0.06) 0.97 (0.06) 1.00 (0.00) 48 0.88 (0.14) 0.84 (0.20) 0.91 (0.12)
17 0.86 (0.04) 0.89 (0.04) 0.94 (0.04) 49 0.26 (0.32) 0.53 (0.28) 0.82 (0.17)
18 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)
19 0.88 (0.08) 0.88 (0.05) 0.90 (0.07) 51 0.50 (0.08) 0.53 (0.11) 0.62 (0.14)
20 0.81 (0.01) 0.80 (0.02) 0.90 (0.04) 52 0.68 (0.17) 0.82 (0.17) 0.85 (0.18)
21 0.69 (0.10) 0.73 (0.14) 0.85 (0.11) 53 0.89 (0.05) 0.89 (0.05) 0.89 (0.05)
22 0.91 (0.01) 0.92 (0.01) 0.96 (0.01) 54 0.97 (0.04) 0.94 (0.07) 1.00 (0.00)
23 0.85 (0.13) 0.88 (0.11) 0.86 (0.13) 55 0.74 (0.39) 0.68 (0.37) 0.94 (0.12)
24 0.80 (0.05) 0.86 (0.04) 0.91 (0.07) 56 0.94 (0.12) 0.94 (0.12) 0.94 (0.12)
25 0.81 (0.23) 0.75 (0.21) 0.91 (0.14) 57 0.08 (0.16) 0.00 (0.00) 0.20 (0.25)
26 0.83 (0.11) 0.85 (0.13) 0.86 (0.13) 58 0.60 (0.49) 0.54 (0.45) 0.94 (0.12)
27 0.45 (0.10) 0.47 (0.10) 0.70 (0.08) 59 0.62 (0.10) 0.70 (0.14) 0.73 (0.13)
28 0.23 (0.28) 0.00 (0.00) 0.28 (0.35) 60 0.46 (0.14) 0.49 (0.13) 0.66 (0.12)
29 0.87 (0.05) 0.88 (0.04) 0.90 (0.04) 61 0.44 (0.07) 0.45 (0.25) 0.54 (0.11)
30 0.66 (0.05) 0.71 (0.05) 0.79 (0.05) 62 0.81 (0.11) 0.69 (0.13) 0.94 (0.04)
31 0.84 (0.18) 0.87 (0.19) 0.91 (0.12) 63 0.68 (0.37) 0.74 (0.39) 0.74 (0.39)
32 0.76 (0.14) 0.83 (0.19) 0.83 (0.19) 64 0.64 (0.22) 0.57 (0.13) 0.80 (0.13)




