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Abstract—Due to the strong connections among stocks, the
information valuable for forecasting is not only included in
individual stocks, but also included in the stocks related to them.
These inter-correlations can provide invaluable information to
be further leveraged to improve the overall forecasting perfor-
mances. However, most previous works focus on the forecasting
task of one single stock, which easily ignore the valuable infor-
mation in others. Therefore, in this paper, we propose a jointly
forecasting approach to process the time series of multiple related
stocks simultaneously, using multi-task learning framework. In
particular, this framework processes multiple forecasting tasks
of different stocks simultaneously by sharing the information
extracted based on latent inter-correlations. Meanwhile, each
stock has their private encoding networks to keep their own
information. Moreover, to dynamically balance private and
shared information, we propose an attention based method, called
Shared-private Attention, to optimally combine the shared and
private information of stocks, which is inspired by the idea of
Capital Asset Pricing Model (CAPM). Experimental results on
the datasets of both stock and other domains demonstrate the
proposed method can outperform other methods in forecasting
performance.

Index Terms—stock time series, forecasting, multi-task learn-
ing, neural networks

I. INTRODUCTION

Time series forecasting is to build models which can
forecast future values based on the past information. This
problem widely exists in many real-world scenarios, such as
finance, logistic, natural environment, medical analysis, etc.
In most cases, the time series we deal with are not univariate
but multivariate, so it is also called multivariate time series
forecasting. In this paper, we focus on the problem of stock
time series forecasting.

Stock time series, are extremely challenging to predict
because of their low signal-noise ratio [1] and heavy-tailed
distributions [2]. Meanwhile, the predictability of stock market
returns still remains open and controversial [3]. To achieve
the good forecasting performance, many classic statistical
solutions such as MA, AR, VARMA [4], as well as machine
learning based methods such as Neural Networks [5] and
SVM [6], are proposed to deal with it, yielding encouraging
performance. However, most of these methods are focusing on
analyzing one single stock. Actually, the information contained
in a single stock’s time series is often limited. According to the
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theory of Capital Asset Pricing Model (CAPM) [7], the returns
of all individual stocks are affected by the systemic risk, in
other words, they are all affected by the macro market. Due
to the inter-connections among stocks, a lot of information
valuable for forecasting is actually included in the time series
of other related ones, not just the individual. When analyzing
stocks independently, it is very difficult to capture them all.
Thus, it is better to process multiple related stocks at the same
time.

To leverage more information from related stocks, a straight-
foreword solution is Multi-Task Learning (MTL) [8], which is
already widely used in text and image applications [9], [10].
MTL jointly learns multiple related tasks and leverages the
correlations over tasks to improve the performance. Therefore,
it often works better than single-task learning. Some recent
works apply MTL to time series forecasting, e.g. the works
of [11] and [12]. However, there are some limitations in these
approaches: 1) only learn the shared information but ignore
the task-private: most of them use a single encoding model
to learn the shared latent features of all tasks, which makes
it easily ignore the useful task-private information; 2) simply
put all latent features together: some other approaches build
multiple models to learn both the shared and task-private latent
features, but they simply put these features together and feed
them to the dense layer, instead of integrating them with more
knowledge.

To address the problems of these existing works, in this pa-
per, we propose a multi-series jointly forecasting approach for
multiple stocks forecasting, as well as a new attention method
to optimally balance the shared and private information. More
specifically, in our MTL based method, each task represents
the forecasting of a single stock. Only the shared information
is not enough, so we build multiple networks to learn both the
shared and private latent features from multiple time series of
related stocks using MTL. To combine the information with
more valuable knowledge, we build an attention model to learn
an optimized weighted combination of them inspired by the
idea of Capital Asset Pricing Model (CAPM) and Attention
[13].

Experimental results on the datasets of both stock and other
domains demonstrate the proposed method can outperform
the previous works, including classic methods, single-task
methods, and other MTL based solutions [14].
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The contributions of this paper are multifold:

• The proposed multi-series jointly forecasting approach
applies multi-task learning framework to time series
forecasting for multiple related stocks.

• We propose a attention based method to learn the op-
timized combination of shared and task-private latent
features of stocks, which is inspired by the idea of CAPM.

• We demonstrate in the experiments on real-world stock
dataset that the proposed approach outperforms single-
task baselines and other MTL based methods, which
further improves the forecasting performance.

The remainder of the paper is organized as follows: related
works are introduced in Section II. The details of the proposed
method are presented in Section III. Experiments on various
datasets are demonstrated in Section IV, including the results
and analysis. Finally, we conclude in Section V.

II. RELATED WORK

A. Time Series Forecasting

The study of time series forecasting has a long history in
the field of economics. Due to its importance to investing,
it is still attractive to researchers from many fields, not only
economics but also machine learning and data mining.

Many classic linear stochastic models are proposed and
widely used, such as AR, ARIMA [15] and GARCH [16].
However, most of these methods pay more attention to the
interpretation of the variables than improving the forecasting
performance. Especially when dealing with complex time
series, they perform poorly. To improve the performance,
Gaussian Processes (GP) are used [17], which works better
especially when the time series are sampled irregularly [18].

On the basis of these methods yielding to, some works bring
in Machine Learning (ML), e.g., the Gaussian Copula Process
Volatility model [19], which brings GP and ML together.

With the recent advances of Deep Learning (DL), many
promising achievements have been achieved in many applica-
tions of machine learning in the past few years [20], such as
computer vision [21], natural language processing (NLP) [22],
[23] and speech recognition [24]. Recently, many works apply
DL to forecasting time series [25]–[27]. However, there are
still few works using deep learning for financial forecasting.
For some recent examples, [28] applied deep learning to event-
driven stock market prediction. [29] used autoencoders with
one single layer to compress multivariate financial data. [30]
present augmentation of LSTM architecture, which is able
to process asynchronous series. [31] proposed autoregressive
convolutional neural networks for asynchronous financial time
series.

These works have a common limitation: they only focus on
the time series of one single stock, or even a univariate time
series. Even if they can process multiple time series of multiple
stocks, they still don’t make good use of the connections
among stocks to extract all the information.

B. Deep Multi-task Learning

Multi-task Learning (MTL) is to process multiple related
tasks at the same time, leveraging the correlation over tasks
to improve the performance. In recent years, it often comes
with deep learning, so also called Deep Multi-task Learning
(DMTL). Generally, if you find your loss function optimizes
multiple targets at the same time, you actually do multi-task
learning [32]. It has successfully applied in all applications of
machine learning, including natural language process [22] and
computer vision [33].

There are some recent works using DMTL to deal with time
series forecasting problems. [34] used multi-task Gaussian
processes to process physiological time series. [35] proposed a
multi-task learning approach to learn the conditional indepen-
dence structure of stationary time series. [36] used multi-task
multi-view learning to predict urban water quality. [11] used
recurrent LSTM neural networks and multi-task learning to
deal with clinical time series. And [12] applied multi-task rep-
resentation learning to travel time estimation. Moreover, some
methods are proposed to learn the shared representation of all
the task-private information, e.g., [37] proposed cross-stitch
networks to combine multiple task-private latent features.

There are some limitations in these works. Firstly, most
of them ignore the task-private information since they only
build a single model to learn the shared information of
multiple tasks. Secondly, although some consider the task-
private information, they do not make use of them efficiently
since they simply put these latent features together and feed
them to the forecasting model.

III. METHODS

To address the limitations that the previous works focus
on a single stock and use the shared information only, we
propose a new method based on Deep Multi-Task Learning
(DMTL) for financial forecasting. More specifically, to effi-
ciently extract the shared and private information from mul-
tiple related stocks, we build multiple networks to learn their
latent representations using DMTL. Furthermore, to address
the problems of not efficiently combining the shared and
private information, we propose an attention method to learn
their optimized combination inspired by the idea of CAPM.
We will describe the details in the following.

A. Problem Statement

Firstly, we give the formal definition of the time series
forecasting problems:

ŷ = g(xt−1, . . . ,xt−N ) ≈ E[yt|{xt−i, i = 1, . . . , N}] , (1)

where E(·) is the mathematical expectation, g(·) is the ap-
proximate function, and N is the length of past sequence.

The time series could be multivariate, that is, xt represent
the values of multiple series at time t:

xt = (x1t, x2t, . . . , xmt)
T , (2)

where m is the number of series. For example, for a stock,
there are multiple price series, such as opening prices, closing



Fig. 1. The architecture of MSJF. It processes the forecasting tasks of K
related stocks at the same time. The shared encoding model encs(·) extracts
the shared information fs from all stocks, while each stock has its private
encoding model enck(·), extracting their private information fk . Then each
of them has private forecasting module Fk(·), using both the shared and
private information to forecast the future values.

prices and so on. Moreover, y can be x itself, which is called
autoregressive forecasting.

Then, for Multi-task Learning, assuming that there are K
tasks in total, the problem is defined as: ŷ1

...
ŷK

 = g

 {x
1
t−i}Ni=1

...
{xK

t−i}Ni=1

 ≈ E

 y1
t {x1

t−i}Ni=1
...

...
yK
t {xK

t−i}Ni=1

 ,
(3)

where {xk
t−i}Ni=1 = {xk

t−i | i = 1, 2, . . . , N} is the time series
of task k, and N is the length of the time series.

In this paper, we process the forecasting tasks of multiple
related stocks, each of which has their own time series for
inputs.

B. Multi-series Jointly Forecasting

In order to utilize the connections to extract the valuable
information from multiple related stocks and improve the
forecasting performance, we propose a jointly forecasting
approach based on DMTL to process multiple stocks simulta-
neously, called Multi-series Jointly Forecasting (MSJF).

According to the theory of CAPM, there are strong connec-
tions among stocks. However, these connections are compli-
cated to clearly quantify and describe in the model. If these
connections are utilized, the forecasting performance will be
further improved. Therefore, we propose MSJF, the framework
of which can be found in Figure 1, to leverage the connections
among tasks to forecast multiple stocks. Formally, MSJF with
K tasks can be defined as: ŷ1

...
ŷK

 = MSJF

 {x
1
t−i}Ni=1

...
{xK

t−i}Ni=1

 ,

ŷk = Fk (fs,fk) , k = 1, 2, . . . ,K ,

fs = encs
(
‖Kk=1{xk

t−i}Ni=1

)
,

fk = enck
(
{xk

t−i}Ni=1

)
, k = 1, 2, . . . ,K ,

(4)

where
• ŷk is the predicted values.
• Fk(·) is the forecasting model for stock k, using both the

shared and private information.

Fig. 2. The architecture of SPA. The encoding models extract the latent
features fs and fk from the raw time series features. SPA measures the
contributions of them to task k and learns their weights, wsk and wk . Then
they are combined with wsk and wk into the optimized representations f̃k .
The dotted lines represent the duplication of the latent features to be combined
by SPA, and the solid lines represent the inputs and outputs of the SPA neural
network.

• encs(·) is the shared encoding model, using the stock
correlations to extract the shared information, enck(·) is
the private encoding model for stock k, to keep its own
information.

• ‖ is the concatenate operation.
• fs is the shared information, fk is the private information

of stock k.
Then, MSJF jointly trains all the tasks end-to-end, by

following joint loss function:

L =
1

K

K∑
k=1

lk(Yk, Ŷk) , (5)

where L is the joint loss, lk is the loss function of task k,
Yk is the ground truth of all samples in task k and Ŷk is the
forecasting values of all samples in task k.

C. Shared-private Attention
To combine the shared and task-private latent features with

more valuable knowledge, instead of simply putting them
together, we propose an attention model to learn the optimized
combination of them inspired by the idea of CAPM.

Capital Asset Pricing Model [7]: given an asset (e.g., stock)
i, the relationship between its excess earnings and the excess
earnings of market can be expressed as:

E(ri)− rf = βim · [E(rm)− rf ] , (6)

where
• E(ri) is the expected return on the capital asset i, E(rm)

is the expected return of the market m.
• rf is the risk-free return, such as interest arising from

government bonds.
• βim is the sensitivity of the expected excess return of

asset i to the expected excess return of market m.
CAPM suggests that the return of the capital asset can be
explained by the return of macro market.

Then, subsequent work [38] shows that there are excess
returns in the earnings of the capital asset that exceeds the
market benchmark portfolio.

Ri − rf = βim · (Rm − rf) + αi , (7)



where αi is the excess return of asset i that exceeds the market
benchmark portfolio. For stocks, the return of a single stock
actually receives varying degrees of influence from the macro
market (often called Beta) and its own factors (often called
Alpha). And the levels of these influences vary from different
stocks. If the levels are expressed by weights, then the return
of individual stocks can be described as:

Ri − rf = wB ·RBeta + wA ·RAlpha . (8)

Similarly, in our DMTL model, each task represents a
single stock, then it is also influenced by the market (shared
information) and its own factors (task-private information), the
levels of which can be different and vary from different tasks.
So based on this, we aim to combine these information with
their levels of influence.

Attention mechanism measures the importance of objects
in your vision and learns their importance by weighting
them. Therefore, we use an attention model to measure the
contributions of the shared information fs and the task-private
information fk to its own forecasting task k. Then the model
combines these information with their weights and obtains
the optimized combination, which is called Shared-private
Attention (SPA). The relationships between fs and fk can
be described as follows:

(wsk, wk) = softmax (SPA (fs‖fk)s ,SPA (fs‖fk)k) ,

f̃k = (wsk, wk) · (fs,fk)
T
, k = 1, 2, . . . ,K ,

(9)

where
• wsk is the weights of shared features fs for task k.
• wk is the weights of private features fk for its own task
k.

• SPA(·) is the attention mechanism computing attention
coefficients, which is a neural network model.

• SPA (fs‖fk)s and SPA (fs‖fk)k means the outputs of
the attention neural network.

• f̃k is the optimized combined latent features.
Finally, MSJF uses the combined latent features f̃k to

do jointly forecasting, which is called Multi-series Jointly
Forecasting with Shared-private Attention (SPA-MSJF). ŷ1

...
ŷK

 = MSJF

 {x
1
t−i}Ni=1

...
{xK

t−i}Ni=1

 ,

ŷk = Fk

(
f̃k

)
, k = 1, 2, . . . ,K ,

fs = encs
(
‖Kk=1{xk

t−i}Ni=1

)
,

fk = enck
(
{xk

t−i}Ni=1

)
, k = 1, 2, . . . ,K ,

f̃k = (wsk, wk) · (fs,fk)
T
, k = 1, 2, . . . ,K.

(10)

D. Multi-head Shared-private Attention

During the experiments, we found that the learning process
of Shared-private Attention is not very stable on the data with
strong volatility, for example, financial data. To stabilize its
learning process, we apply multi-head attention [39] to our

Fig. 3. The architecture of MH-SPA. Several attention models compute
the weights with independent parameters in parallel. And their outputs are
averaged to obtain the ensemble weights.

model, which is an ensemble method to combine the outputs of
several independent attention models and stabilize the learning
process. We call it Multi-head Shared-private Attention (MH-
SPA).

It allows H independent attention models to compute the
attention weights with independent parameters in parallel. The
attention weights are averaged to obtain the ensemble weights,
as follows:

(w∗
sk, w

∗
k) =

1

H

(
H∑

h=1

wh
sk,

H∑
h=1

wh
k

)
, k = 1, . . . ,K , (11)

where H is the number of attention models and wh
sk represents

the attention weights independently computed by the h-th
attention model SPAh. Then the combine features can be as
follows:

f̃k = (w∗
sk, w

∗
k) · (fs,fk)

T, k = 1, 2, . . . ,K. (12)

E. Discussions

1) Differences from the Previous Works: MSJF is an ap-
proach to jointly forecast the time series of multiple related
stocks based on DMTL, while most previous works only focus
on a single stock. Moreover, most of the previous works in
DMTL easily put all latent features together, but we aim to
combine them with more useful knowledge. Since we mainly
focus on financial data, so inspired by the idea of CAPM
and Attention, we propose a new method, SPA, to learn the
optimized combination of all latent features.

IV. EXPERIMENTS

A. Dataset

1) Stock data of the Big Four banks in China: In this paper,
we focus on forecasting stock time series, so we choose the
stock daily trading data of the Big Four banks in China. The
details of the dataset are presented in Table I.

These four stocks come from the Chinese banking industry,
which are the most representative stocks in this industry. Each
stock has 10 time series, including opening prices, closing
prices, highest prices, lowest prices, trading volumes and so
on.

There are four forecasting tasks that predict the excess
returns of the next day for these four stocks.



TABLE I
DATASETS USED IN THE EXPERIMENTS. TASKS MEANS THE FORECASTING TASKS ASSIGNED IN THE DATASET.

Description of the dataset

Dataset Period Samples Tasks

Banking stocks 2010-10 to 2018-08 1937 ICBC, ABC, BOC, CCB
Security stocks 2010-02 to 2018-08 2122 CITIC, CM, HAI, GF, HUA, EB
Shipping stocks 2010-01 to 2018-08 2143 CSSC, CSSC-TECH, HAIXUN, RUITE, HIGHLANDER, JIANGLONG, ASAC, BESTWAY

(a) Stock prices of the Big Four banks in China.

(b) Stock prices of six securities in China.

Fig. 4. Stock prices.

2) Stock data of six securities in China: Besides the stocks
from the banking industry, we also choose the stock data of
six securities in China. Similar to the Big Four banks in China,
they are representative in the Chinese securities industry. The
details are similar to the banking stock dataset, also presented
in Table I.

There are 6 forecasting tasks that predict the excess returns
of the next day for 6 different stocks.

3) Stock data of eight shipping stocks in China: In addition,
we select 8 stocks from the industry of shipping in the
Chinese market. There exist trading connections among these
companies, so the trading time series of them are correlated.
The input time series features are the same as the other
datasets.

There are 8 forecasting tasks that respectively predict the
temperature and humidity of 8 rooms in the house.

B. Baselines

We compare the proposed method with the following base-
line methods, including linear methods and deep learning
based methods:

• Moving Average model (MA): This is a classic linear
method for time series forecasting, widely used in eco-
nomics. So it serves as a baseline for comparison.

• Auto-Regressive Integrated Moving Average model
(ARIMA): This is another classic linear method for time
series forecasting, also serves as a baseline.

• Single-task Learning (ST): This serves as a baseline
without benefits of multi-task learning. Each single-task
model predicts one forecasting task, not sharing the
information of other related tasks.

• Fully-connected Layers (FC): Many existing works treat
related forecasting tasks as a multivariate time series
forecasting problem and process it with a fully-connected
neural network layer, so this method serves as a baseline.

• Fully-shared and Single-task (FSST): It also serves as
a baseline without benefits of MTL, using the shared
information of all tasks but still single-task.

• Fully-shared and Multi-task (FSMT): It serves as a base-
line using only the shared information to forecast, similar
to the previous works we mentioned, which can prove the
benefits of our multi-model architecture.

• Private-shared MTL (PS-MTL): As our final baseline,
we compare to a variant method of [37]. The original
method builds multiple private encoding models and
there is a shared embedding layer learning the shared
representations of all private latent features, different
from ours. So their method is adapted to this problem
and serves as a private-shared MTL baseline.

C. Implement settings

For MA and ARIMA, the parameter settings are chosen
through grid search with the best Bayesian information crite-
rion (BIC) [40]. And their models are implemented with the
APIs of statsmodels [41], a python package.

All deep learning based methods are implemented using
Tensorflow [42]. And they use Long Short Term Memory
Recurrent Neural Networks (LSTM-RNN) [43], [44] as their
encoding models, fully-connected layers as their forecasting
and attention models. The objective is MSE, and optimized by
Adam [45] with Gradient Clipping [46]. The hyper-parameter
settings and model details are presented in supplement pages.

D. Evaluation metrics

The loss functions are based on Mean Square Error (MSE),
and three other metrics are used to evaluate the forecasting per-
formance. Suppose that y = [y(1), y(2), . . . , y(N)] represents
the ground truth, while ŷ = [ŷ(1), ŷ(2), . . . , ŷ(N)] represents
the predicted values, and N denotes the number of samples,
these metrics can be described as follows:



TABLE II
OVERALL PERFORMANCE COMPARISON. THE FORECASTING PERFORMANCES OF THE PROPOSED METHOD ON THREE DATASETS ARE MEASURED BY 4

METRICS, MSE, MAPE, MAE, AND MARE. OUR METHODS ARE MSJF, SPA-MSJF, AND MH-SPA-MSJF, WHILE THE OTHERS ARE BASELINE
METHODS. THE EXPERIMENTS FOR EACH METHOD ARE RANDOMLY PERFORMED FIVE TIMES, AND THE RESULTS BELOW ARE THE AVERAGE TESTING

VALUES OF ALL TASKS IN FIVE EXPERIMENTS. THE MSE VALUES ARE PRESENTED IN THE FORM OF mean(±std).

Banking stocks Security stocks Shipping stocks

Method MSE MAPE MAE MARE MSE MAPE MAE MARE MSE MAPE MAE MARE

MA 3.78e-4 3.4003 0.0186 2.0319 6.78e-4 2.2511 0.6449 0.9038 4.44e-4 3.2312 0.3117 0.8305
ARIMA 3.61e-4 2.3114 0.0184 2.0088 4.54e-4 2.9347 0.4911 0.6879 3.72e-4 3.0091 0.3094 0.8105

ST 3.81e-4 (±2e-5) 3.3011 0.0119 1.2911 1.16e-4 (±1e-5) 1.3344 0.2649 0.3717 3.44e-4 (±3e-5) 3.0014 0.2901 0.7942
FC 2.87e-4 (±2e-5) 2.5078 0.0109 1.1872 1.16e-4 (±1e-5) 1.2128 0.2541 0.3569 3.25e-4 (±4e-5) 2.9442 0.2801 0.7245

FSST 2.66e-4 (±2e-5) 3.0274 0.0108 1.1738 1.09e-4 (±2e-5) 1.3175 0.2354 0.3300 2.44e-4 (±3e-5) 2.6617 0.2733 0.7642
FSMT 2.70e-4 (±2e-5) 3.1601 0.0111 1.1968 1.12e-4 (±2e-5) 1.1963 0.2351 0.3298 2.31e-4 (±1e-5) 2.3364 0.2513 0.7244

PSMTL 2.78e-4 (±2e-5) 2.5901 0.0109 1.1869 1.07e-4 (±3e-5) 1.2301 0.2358 0.3317 1.94e-4 (±4e-5) 2.1943 0.2756 0.7196
MJSF 2.51e-4 (±2e-5) 2.6485 0.0107 1.1621 1.04e-4 (±2e-5) 1.1303 0.2265 0.3177 1.72e-4 (±5e-5) 1.9341 0.1525 0.5465

SPA-MSJF 2.24e-4 (±1e-5) 2.4662 0.0103 1.1146 1.01e-4 (±1e-5) 1.1255 0.2266 0.3178 1.21e-4 (±6e-5) 1.5627 0.0964 0.3427
MH-SPA-MSJF 2.03e-4 (±4e-6) 2.1331 0.0097 1.0541 1.02e-4 (±1e-5) 1.1504 0.2232 0.3132 1.32e-4 (±6e-5) 1.1651 0.1214 0.3544

TABLE III
PERFORMANCE COMPARISON ON INDIVIDUAL TASKS IN THE BANKING

STOCK DATASET.

Task ST MSJF SPA-MSJF MH-SPA-MSJF

ICBC 3.91e-4 2.53e-4 2.34e-4 2.05e-4
ABC 2.36e-4 2.25e-4 1.99e-4 1.83e-4
CCB 5.38e-4 2.72e-4 2.28e-4 2.21e-4
BOC 3.61e-4 2.55e-4 2.34e-4 2.04e-4

TABLE IV
PERFORMANCE COMPARISON ON INDIVIDUAL TASKS IN THE SECURITY

STOCK DATASET.

Task ST MSJF SPA-MSJF MH-SPA-MSJF

CITIC 1.173e-4 1.117e-4 1.054e-4 1.063e-4
CM 1.181e-4 1.053e-4 1.001e-4 1.052e-4
HAI 1.107e-4 0.976e-4 0.962e-4 0.965e-4
GF 1.156e-4 1.124e-4 1.077e-4 1.112e-4

HUA 1.182e-4 1.113e-4 1.026e-4 1.047e-4
EB 1.077e-4 1.012e-4 0.998e-4 1.004e-4

• Mean Absolute Percentage Error (MAPE):

MAPE(y, ŷ) =
1

N

N∑
i

∣∣∣∣y(i) − ŷ(i)
y(i)

∣∣∣∣ , (13)

• Mean Absolute Error (MAE):

MAE(y, ŷ) =
1

N

N∑
i

∣∣y(i) − ŷ(i)
∣∣ , (14)

• Mean Absolute Relative Error (MARE):

MARE(y, ŷ) =

∑N
i

∣∣y(i) − ŷ(i)
∣∣∑N

i

∣∣y(i)∣∣ . (15)

E. Results and Analysis

1) Overall Performance Comparison: The overall compar-
ison experiment results are shown in Table II. From these
results, We have the following observations: 1) Both MSJF
and SPA-MSJF can outperform the baseline methods on all
datasets. This indicates the effectiveness of the proposed

TABLE V
PERFORMANCE COMPARISON ON INDIVIDUAL TASKS IN THE SHIPPING

STOCK DATASET.

Task ST MSJF SPA-MSJF MH-SPA-MSJF

CSSC 3.217e-4 1.608e-4 1.194e-4 1.126e-4
CSSC-TECH 3.174e-4 1.673e-4 1.119e-4 1.258e-4

HAIXUN 2.918e-4 1.776e-4 1.242e-4 1.217e-4
RUITE 2.946e-4 1.693e-4 1.172e-4 1.189e-4

HIGHLANDER 2.992e-4 1.926e-4 1.225e-4 1.147e-4
JIANGLONG 3.319e-4 1.895e-4 1.155e-4 1.265e-4

ASAC 3.376e-4 1.678e-4 1.159e-4 1.305e-4
BESTWAY 3.005e-4 1.533e-4 1.151e-4 1.141e-4

methods; 2) SPA-MSJF is better than MSJF. This demonstrates
the proposed SPA model can indeed further improve the
performance of MSJF.

2) Effects of Multi-series Jointly Forecasting: To show the
effects of MSJF, we use the experimental results in Table II,
III, IV and V. Without the benefits of SPA, 1) in Table II,
MSJF outperforms single-task (ST) and fully-shared & single-
task (FSST) baselines. And it outperforms ST on each task in
all datasets, as shown in Table III, IV and V. These suggest
the effectiveness of MSJF; 2) MSJF performs better than fully-
shared & multi-task (FSMT) and private-shared MTL (PS-
MTL) baselines. This suggests the effectiveness of the multi-
model architecture in MSJF.

3) Analysis on Shared-private Attention: On the basis of
MSJF, we propose SPA to learn the optimized combination
of shared and task-private latent features. In Table II, SPA-
MSJF outperforms MSJF on the average test MSE in all
datasets. And in Table III, IV, V, SPA-MSJF outperforms
MSJF on 18 tasks (totally 18 tasks). These results demonstrate
the effectiveness of SPA.

We also provide a visualization of combination weights
learned by SPA, shown in Figure 6. From the visualization, 1)
we can find the shared weights are larger than the private
weights in almost all test data of stock datasets. It means
the shared information plays an important role in stock fore-
casting, which is similar to the conclusion of CAPM. This



Fig. 5. The attention weights learned by Shared-private Attention (SPA) and Multi-head Shared-private Attention (MH-SPA) on the stock dataset. We use
sliding training and testing on the stock dataset, so these figures show the change of wsk and wk during the training process, indicating that the learning
process is stabilized by the multi-head mechanism.

Fig. 6. The attention weights learned by Shared-private Attention (SPA). To
more clearly show the results, all the testing samples are evenly divided into
several subsets. The weights shown are the average of the samples in each
set.

result indicates the SPA model can indeed leverage the idea
of CAPM to improve the forecasting performance; 2) As for
the result in the shipping stock dataset, we find a different
pattern: the shared weights are almost the same as the private
weights. However, from the result in Table V, SPA-MSJF is
still better than MSJF on average. This shows SPA also can
work on the non-stock data. These results also demonstrate
the effectiveness of SPA.

4) Effects of the Multi-head Mechanism: In experiments,
we find the learning process of SPA on the stock dataset
is not stable, so we apply the multi-head mechanism and
obtain Multi-head Shared-private Attention. We provide
visualization for the learning processes of SPA and MH-SPA
in Figure 5. We can find that, with the benefits of the
multi-head mechanism, the learning process is stabilized. And
in Table II, MH-SPA-MSJF outperforms SPA-MSJF on the

stock dataset. These demonstrate the effectiveness of MH-SPA.

Experimental results on the stock time series datasets demon-
strate the proposed methods, MSJF, SPA-MSJF and MH-SPA-
MSJF, outperform the previous works, including linear meth-
ods, single-task methods and other DMTL based solutions.
We separately analyze the effects of MSJF, SPA, and MH-SPA,
using the results to prove they further improve the performance
indeed. In addition, with the visualizations, we analyze the
effectiveness of SPA and MH-SPA in further details.

V. CONCLUSION

In this paper, we propose a jointly forecasting approach,
MSJF, to process the time series of multiple related stocks
based on DMTL, which can use the connections among stocks
to improve the forecasting performance. Moreover, in order
to combine the shared and task-private information more
accurately, we propose an attention method, SPA, to learn the
optimized combination of them inspired by the idea of CAPM.
We demonstrate our method on various financial datasets,
and it outperforms the classic methods and other MTL based
methods. In the future works, we would like to further improve
SPA’s ability of combining latent features. And for DMTL, we
would like to build hierarchical models to extract the shared
information from all tasks more efficiently.
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