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Abstract—Deep convolutional neural networks (DCNN) have
been the dominant methodology in the field of computer vision
over the last decade, using various architectural organizations of
successive convolutional layers to extract and assemble low level
image features into visual component detectors. One of the trade-
offs that have been made as the community has migrated to deep
neural models is the loss of explainability and understanding of
which salient visual components are being recognized by a model
for a particular task. However, there exists a significant heritage
in the remote sensing community that has developed advanced
algorithms to analyze the signal and structural characteristics
of anthropogenic features. One such approach is the use of
morphological image processing techniques to extract objects
from imagery and aid in the structural analysis of shapes. In
particular, the differential morphological profile (DMP) has had
great success extracting object shapes, while naturally grouping
the extracted shapes into scale ranges. In this research, we present
a novel architecture that integrates an explicit (definable and ex-
plainable) scaled object extraction into the network architecture,
allowing shallower convolutional layers and lower complexity
neural models. The architecture is evaluated on a challenging
remote sensing dataset of object classes, providing insights to
this approach and illuminating future directions of integrating
morphology into neural architectures for enhanced explainability.

Index Terms—Convolutional neural network, differential mor-
phological profile, object detection, overhead imagery

I. INTRODUCTION

Image processing for high-resolution remote sensing im-
agery (HR-RSI) has a long history that includes a wide
variety of application domains, such as environmental and
urban monitoring, land cover classification, and object de-
tection just to name a few. Object detection is particularly
challenging in remote sensing due to the variability of the
numerous sensor platforms, environmental effects, naturally
occurring object class variances, as well as diverse collection
geometries (elevation angle, capture altitude, etc.). The sheer
scale, variety, and complexity of HR-RSI presents challenges
for even the most basic image processing, such as edge
detection and object segmentation; which compounds further
the difficulty of computer vision tasks such as land cover
classification and object detection. Typical HR-RSI scenes
may cover hundreds of square kilometers, with billions of
pixels and a significant variety of collection characteristics;
such as ground sample distance (GSD) (i.e., ground resolution)
based on sensor geometry respective to the imaged Earth
region (e.g., elevation angle from ground to sensor, azimuth
orientation, and the compounding effects of Earth topology).

This is further compounded by the variety of platforms (i.e.,
airborne or spaceborne) and sensors (e.g., different organiza-
tions and platforms, such as WorldView and Planet satellites).

Deep convolutional neural networks (DCNN) have been the
dominant architecture in recent literature for land cover clas-
sification and object detection applications in remote sensing
imagery [1]. There exists a variety of DCNN architectures that
are constructed with organizations of successive convolutional
layers to extract and assemble low level image features into
visual component detectors, such as found in the ubiquitous
VGG networks [2]. Furthermore, the research and commercial
community has provided us with a variety of DCNN design
enhancements.

Building upon the basic convolutional network layers, archi-
tectures such as GoogLeNet [3] and InceptionNetv3 [4] lever-
age inception modules that are composed of increasingly larger
convolutions and max-pooling operations that are concatenated
within a layer module. Alternative techniques include residual
connections, such as found in the ResNet architectures [5],
which also have been combined with inception modules for
architectures such as the InceptionResNet varieties [6]. Archi-
tectures such as DenseNet [7] and Xception [8] build upon
these concepts even further. DenseNet with complete residual
connectivity, and Xception using depth separable convolutions
to maintain independence of color channels.

Interesting architectural modifications to phases of DCNN
beyond the convolutional feature extraction have been explored
in the development of capsule networks as dynamic routing
[9]. In [10], a Superpixel Capsule network is developed to
map convolutional feature extraction into superpixel segmen-
tation and applied to HR-RSI imagery data. Many of these
architectures have been evaluated on a variety of benchmark
overhead imagery datasets in research such as [11]–[14].

Object detection and localization in satellite imagery has
been explored with a variety of neural architectures and
techniques. The single shot detectors (SSD) [15] rely on a
multi-box detectors, which test each location for each class to
perform detection and localization. The most commonly used
object detection and localization algorithm in recent years,
however, is the you only look once (YOLO) [16] algorithm.
YOLO is optimized for real time performance and needs
only a single pass on an image to predict both the detection
score and bounding boxes. Recently, YOLOv3 [17] introduces
multi-class detection as well as object detection at three
scales: small, medium, and large. Additional variants of the
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YOLO architecture that are designed specifically for overhead
imagery include YOLT [18] and SIMRDWN [19]. Similar
to object detection, several techniques have been developed
to perform semantic segmentation in overhead imagery. One
leading technique is the U-Net algorithm [20], a convolutional-
deconvolutional network that was originally developed for
biomedical imaging, but has seen success in several other
fields. Other techniques for semantic segmentation include the
mask regional convolutional neural network (Mask R-CNN)
[21]. This algorithm relies on finding regions of interest (ROI)
and performing object localization before finally computing a
semantic segmentation.

With the rare exceptions, such as [9] and [10], one of
the trade-offs that have been made as the community has
migrated to deep neural models is the loss of explainability and
understanding of which salient visual components are being
recognized by the models for particular object classes. For
instance, in research such as [13] state-of-the-art performance
on benchmark datasets is achieved using DCNN architectures
such as ResNet50 [5], DenseNet [7], and Xception [8], just
to list a few. In contrast to opaque techniques, such as these
deep neural architectures, there exist a significant heritage in
the remote sensing community that has developed advanced
algorithms to analyze the signal and structural characteristics
of anthropogenic features, such as objects in overhead imagery.

In particular, morphological image processing techniques
have been shown to extract objects from imagery and aid
in the structural analysis of shapes in a meaningful, human-
interpretable way. Specifically, the differential morphological
profile (DMP), first defined by Pesaresi and Benediktsson [22],
has had great success extracting object shapes, while natu-
rally grouping the extracted shapes into scale ranges. Various
research, such as [23]–[27], has been enabled by the DMP;
which extracts image regions that are either lighter or darker
than their contextual setting using morphological opening or
closing operations, respectively. An in-depth summary of the
use of the DMP for remote sensing objects, as well as using
information fusion constructs, to achieve multi-scale object
extractions is presented in [28].

In this paper, we present a novel neural architecture that in-
tegrates non-linear image morphology based on the DMP as an
initial stage for a convolutional neural architecture that is, by
contemporary standards, only moderately deep. Specifically,
we present a preliminary Differential Morphological Profile
Neural Net, DMPNet, and we evaluate its performance on a
large, challenging HR-RSI benchmark dataset. We explore an
initial architecture combining a neural DMP phase for light
and dark component segmentation, feeding into convolutional
feature extraction, then classical fully connected layers, and
then a softmax classifier.

A basic overview of morphology and the DMP is provided
in Sect. II. Sect. III details the implementation of the DMP as a
pre-convolutional phase of a neural architecture. Experimental
data, design, and results are discussed in Sect. IV. Finally,
Sect. V provides summary remarks and our future research
directions.

Fig. 1. Differential opening profile component tensor flows. Concurrent flows
of an input image pass through an erosion (min pool) then dilation (max pool)
sequence, effectively γSE=l(I). The piecewise differential is computed with
the absolute difference operation, noted as | − |.

II. DIFFERENTIAL MORPHOLOGICAL PROFILE OBJECT
EXTRACTION

Image morphology is traditionally defined with two base
operations on an image I , dilation (δ) and erosion (ε),

δSE(I) = δ(I) ∧ SE, (1)

εSE(I) = ε(I) ∨ SE, (2)

respectively, where SE is the structuring element, with ∧
and ∨ as setwise maximum and minumum, over each pixel
neighborhood in I . From the two base operations, we can
construct higher level operations such as opening,

γSE(I) = δSE(εSE(I)), (3)

and closing
ϕSE(I) = εSE(δSE(I)). (4)

In terms of a signal, the closing operation with a SE of
size n fills in signal valleys (i.e., dark image holes), and
conversely the opening operation removes signal peaks. In
the 2-D image space, the valleys and peaks represent dark
objects in light background context and light objects in dark
background context, respectively.



In this work, the concept of the DMP is simplified, namely
replacing the morphological reconstruction operations using
geodesic SE (see [28] for details) to instead use simplified
morphological operations with flat-square SE. As discussed,
γSE(I) removes signal peaks, or image regions lighter than
their surrounding context, yet smaller than SE. Therefore,
given an increasing scale of SE, such as square edges of 3,
5, 7, 9, we can expect that increasingly larger light objects are
removed. From the strictly increasing set, L, of SE sizes, we
can construct an opening profile:

Πγ(I) = {Πγl : γSE=l(I),∀l ∈ L}. (5)

To generate a set of scaled light object extractions, we compute
a piecewise derivative of the opening profile (differential
opening profile) as

∆γ(I) = {∆γl : ∆γl = |ΠγSE=l(I)−ΠγSE=l−1|,∀l ∈ L′},
(6)

where L′ = L\min(L). In an equivalent manner we can define
the closing profile,

Πϕ(I) = {Πϕl : ϕSE=l(I),∀l ∈ L}, (7)

and differential closing profile,

∆ϕ(I) = {∆ϕl : ∆ϕl = |ΠϕSE=l(I)−ΠϕSE=l−1|,∀l ∈ L′}.
(8)

Figure 1 shows the internal tensor operations that implement
the differential opening profile, ∆γ. The opening operation is
computed concurrently for each SE, l ∈ L. Once the set of
morphological openings are computed, the piecewise differ-
entials are concurrently computed with an absolute difference
(i.e., | − |) tensor operation within the network. As can be
seen in Fig. 1, light objects include an airplane and various
ground equipment. The smaller objects are bright responses
from the smaller SE in the left most scaled extraction. The
large fuselage, which is brighter than the wings, and the jet-
way have strong responses, shown in the right-most final image
chip.

III. DMP NEURAL NETWORK

A key motivation of the DMPNet is to simplify the normally
extensive network complexity (number of learnable parame-
ters) that results from layers and layers of convolutional feature
extraction in traditional DCNN. As discussed in Sect. II, the
DMP is a series of non-linear operations that produce scaled
object extractions of either light (opening) or dark (closing)
objects. In this sense, the two DMP, ∆γ(I) and ∆ϕ(I) can
be defined in network layers, opening-stack (∆γ) and closing-
stack (∆ϕ); specifically, as a set of user specified scaled ex-
tractions that are parameter-free in regards to network training.
In this way, ∆γ and ∆ϕ become architectural components
of neural network design that perform explicit scaled object
extraction tasks within a larger network.

Figure 2 is a diagram of a simple DMPNet architecture.
To facilitate a simple architecture, the color image is first
transformed into a grayscale image using a 1× 1 convolution.
This grayscale signal is then concurrently passed into the ∆γ

Fig. 2. Differential Morphological Profile Network: The input color image is
flattened to grayscale with a 1 × 1 convolution, then passed simultaneously
into ∆γ and ∆ϕ. Each profile is compressed via 1 × 1 convolutions, then
stacked with the grayscale image and fed as a 3-band input into a shallow
convolutional neural network.

and ∆ϕ components. In this preliminary examination of the
DMPNet architecture, we have used SE ∈ {3, 5, 7, 9} for
both the opening and closing profiles. Figure 3 shows the
opening profile and closing profile generated by the neural
components for a particular image chip. The figure shows
a sample from the Cross-walk class along with the learned
grayscale (1× 1 convolved) image, followed by the resulting
piecewise differential images for both opening and closing
profiles. It can be seen that the stripping pattern from the
crosswalk is extracted as both small light objects in dark
context, as well as the space between the paint extracted as
dark objects in light context. for the lower differentials (5− 3
and 7 − 5). However, the larger SE differential, 9 − 7, loses
discernible features of the crosswalk.

The output from both ∆γ and ∆ϕ are independently passed
into learnable 1× 1 convolutions to flatten into a 2-D tensor;
and then they are both stacked with the original grayscale 2-D



Original 1× 1 Convolved Image

5− 3 Opening 5− 3 Closing

7− 5 Opening 7− 5 Closing

9− 7 Opening 9− 7 Closing

Convolved Opening Convolved Closing

Fig. 3. The flattened input image is concurrently processed for opening and
closing responses with SE ∈ {3, 5, 7, 9}, which are then used to compute ∆γ
and ∆ϕ.

tensor into a 3-band, 2-D tensor and passed into a traditional
shallow convolutional network. In Fig. 3, the final pair of
images in the figure show the resulting (i.e., learned) fusion
of the DMP into a multiscale light and dark component
extraction. It is important to note here that when comparing
the resulting fused DMP images, open for light objects and
close for dark objects, the characteristic salient visual cues of
a cross walk are present in a mostly gray background. We
observe that the unimportant areas appear to be gray and the
profiles are convolved into peaks and valleys when rendered
as an image signal.

In this initial work, we have used VGG16 convolutional
layers–initialized with ImageNet weights–as the shallow con-
volutional phase. The network then uses a two fully connected
hidden layers (1024 and 1024), followed by a traditional
softmax classifier layer. A key aspect of training the DMPNet
architecture is that the convolutions are learned, however, the
SEs are actually network design hyperparameters instead of
learnable weights. This implies that we are able to extract
structural components without relying on learning the extrac-
tion with convolutions alone.

The overall design idea is to feed into the convolutional
feature extraction phase the grayscale image, a light object
structural analysis, and a dark object structural analysis. It
should be noted that this is a preliminary design of the
DMPNet architecture and numerous improvements will be
contemplated for the SE sets, fusion of scaled object ex-
tractions, and related transitional architecture that passes the
profiles into the shallow convolutional network.

IV. EXPERIMENTAL EVALUATION

To evaluate this preliminary DMPNet, we leverage a large
and challenging HR-RSI benchmark dataset. Following DCNN
training insights for HR-RSI from [1], we explore cross-
validation performance of the network and compare it to the
base VGG-16 model.

A. Evaluation Dataset

In [29], a benchmark meta-dataset (MDS) was developed as
an agglomeration of object classes from four previously exist-
ing land cover and object detection remote sensing datasets.
The MDS was designed to have increased variability and
resolutions within class for objects (intra-class variability).
The dataset consists of 33 object classes, with the instance
counts per class ranging from 700 for classes such as Church
or Palace to 1655 for class Overpass/Viaduct. Table II list
all classes and the corresponding class counts. As noted, the
MDS is an agglomeration of object classes and is specifically
designed for training object detection machine learning mod-
els. To this end, it is a natural dataset for evaluation of the
DMPNet, which has been designed to generate scaled object
extractions within a neural model.

B. Object Classification

To evaluate the suitability of the DMPNet for detection
of objects within overhead imagery we conducted five-fold
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Fig. 4. Network Learning: Fold-A loss function during 20 epochs of training
for (a) DMPNet, (b) VGG-16, using a 4× rotation augmentation.

TABLE I
CLASSIFICATION PERFORMANCE FOR 4× AUGMENTATION, 20 EPOCHS OF

5-FOLD CROSS VALIDATION

F1 Weighted F1 Precision Recall
DMPNet 0.95 0.96 0.96 0.96
VGG-16 0.96 0.97 0.97 0.96

cross-validation experiments using both the DMPNet and
the standard VGG-16 network. In the experiments, the folds
are identically generated for both the DMPNet and VGG-
16, and all training hyperparameters are the same. VGG-16
is initialized with ImageNet weights for the convolutional
phase, and new fully connected and softmax classification
layers are learned for the MDS dataset. This DMPNet uses
SE ∈ {3, 5, 7, 9} for its object extraction phase, followed by
an identical setup of the VGG-16 as the shallow convolutional
network.

During the network training, a 4× data augmentation was
applied by rotating the image chips through the cardinal orien-
tations, i.e., successive 90◦ rotations. Based on lessons from
[1], the directed augmentation as opposed to randomization
of training samples is used to enhance the generalization of
network learning. The augmented data was passed through for
20 epochs of training in the networks, which should be noted is
equivalent to 80 epochs of training on the original dataset. The
network has been implemented in the PyTorch deep learning
framework and was trained with the Adam optimizer using a
1 × 10−4 initial learning rate. It can be observed in Fig. 4
that the training loss curve for both networks is quite similar.
However, we can see that DMPNet appears to have a more
smooth loss curve, which may be indicative of a more stable
network architecture.

Table I provides the summary cross-validation performance
of the DMPNet and the VGG-16. We see that the recall of
both networks is 0.96, while in precision, F1, and weighted
F1, the two networks are very comparable. Table II list the F1
score for all classes, for both DMPNet and VGG-16. We see
that, in most cases, the results are similar. A critical item of
note to consider in this context is that the VGG-16 network
is processing the color information; whereas the DMPNet is
limited to a single band compression (i.e., grayscale) of the
color information from the input 1×1 convolutional layer that
is prior to the concurrent neural DMP profiles.

TABLE II
PER CLASS F1 SCORES FOR DMPNET AND VGG-16

Class Count DMPNet VGG-16
1 Airplane 1600 0.984 0.988
2 Baseball Field 1600 0.969 0.977
3 Basketball Court 1500 0.965 0.978
4 Bridge 1550 0.966 0.966
5 Church 700 0.767 0.807
6 Coastal Mansion 800 0.988 0.997
7 Crosswalk 800 0.997 0.983
8 Ferry Terminal 800 0.936 0.976
9 Football Field 850 0.959 0.986
10 Freeway 1600 0.949 0.958
11 Golf Course 1600 0.983 0.985
12 Intersection 1600 0.955 0.967
13 Mobile Home Park 1600 0.977 0.987
14 Nursing Home 800 0.941 0.975
15 Oil Well 800 1.000 0.999
16 Overpass / Viaduct 1655 0.954 0.971
17 Palace 700 0.728 0.760
18 Parking Lot 1650 0.981 0.988
19 Parking Space 800 0.995 0.997
20 Railway Station 1550 0.961 0.962
21 Roundabout 700 0.954 0.960
22 Runway 1600 0.973 0.975
23 Runway Marker 800 0.993 0.998
24 Ship 700 0.923 0.943
25 Solar Panel 800 0.996 0.995
26 Stadium 700 0.932 0.931
27 Storage Tanks 1600 0.970 0.980
28 Swimming Pool 800 0.979 0.993
29 Tennis Court 1600 0.976 0.975
30 Thermal Power Station 700 0.921 0.942
31 Track Field 700 0.923 0.952
32 Transformer Station 800 0.980 0.993
33 Wastewater Treatment 800 0.975 0.991

Figures 5, 6, and 7 highlight some key insights and
characteristics that affect the performance of the DMPNet.
In Figs. 5 and 6, two classes with higher F1 score for the
DMPNet over VGG-16 are shown. In each, a pair of sample
images is provided for review, followed by the result of the
1× 1 convolution of the opening DMP layers, then the 1× 1
convolution of the closing DMP layers. The performance of the
DMPNet was higher for classes Cross-walk and Oil Well than
for VGG-16. In the samples, we can see that these classes have
small components that are key structural aspects of the objects.
It is expected that the choice of SE used in the DMPNet is well
aligned for these object classes. Specifically, the Cross-walk
has the white painted lines forming pathway patterns that are
extracted in the opening profile as a key salient visual element
of the class. In the context of the Oil Well, the piping is fairly
low contrast, however, the cast shadows of the piping form the
salient visual components that are extracted from the closing
profile.

In contrast, Fig. 7 shows image samples from two classes
in which VGG-16 suitably outperforms DMPNet. These are
Church and Ferry Terminal, both of which are larger struc-
tures. In the case of the Church, we see the vaulted roofing of
the structure that is characteristically large, beyond the scope
of the SE used in the DMPNet; instead the edge features
are highlighted by the DMP versus more relevant structural



7. Cross-walks

Opening DMP 1× 1 Convolved

Closing DMP 1× 1 Convolved

Fig. 5. Example images from the Cross-walk class where DMPNet outper-
formed VGG-16 in F1 score. We see small complex patterns and sub-structures
dominate the visual content and were amplified by the set of SE.

aspects. Similar characteristics exist in the Ferry Terminal
class, where the long planking is co-existing with boats and
resulting DMP images lack discernible visual components.

V. SUMMARY AND FUTURE WORK

In this paper we have presented a novel neural architecture,
the Differential Morphological Profile Neural Net – DMPNet.
This architecture integrates non-linear image morphology as
an initial stage of light and dark component extraction for
input into convolutional neural components. The DMPNet was
evaluated on a HR-RSI benchmark dataset and shown to have
comparable performance to an existing convolutional network
without the benefit of color information. We have shown that
by exploring the DMP activations within the DMPNet, we
can gain insights and understanding about the salient visual
features that are contributing to the network’s object detection.
These insights make clear that the structural component object
extraction achieved within the DMPNet neural structure can
enhance object detection and classification in particular cases.

15. Oil Well

Opening DMP 1× 1 Convolved

Closing DMP 1× 1 Convolved

Fig. 6. Example images from Oil Well class where DMPNet outperformed
VGG-16 in F1 score. We see small complex patterns and sub-structures
dominate the visual content and were amplified by the set of SE.

Future investigations will explore a variety of pathways
forward for the DMPNet. These include broader experimen-
tation of the set of SE used, as well as alternative techniques
to transition the scaled light and dark component extraction
into the convolutional layers. Specifically, we will explore
alternatives to the 1×1 flattening of the profiles. Furthermore,
techniques from the recently developed neural architecture
search (NAS) can also be explored to find optimal differential
steps. Additionally, other techniques that are being introduced
into contemporary neural architectures, such as capsules, will
be explored.
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