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Abstract—Multi-target regression is concerned with the pre-
diction of multiple continuous target variables using a shared
set of predictors. Two key challenges in multi-target regression
are: (a) modelling target dependencies and (b) scalability to large
output spaces. In this paper, a new multi-target regression method
is proposed that tries to jointly address these challenges via a
novel problem transformation approach. The proposed method,
called MRQ, is based on the idea of quantizing the output
space in order to transform the multiple continuous targets into
one or more discrete ones. Learning on the transformed output
space naturally enables modeling of target dependencies while
the quantization strategy can be flexibly parameterized to control
the trade-off between prediction accuracy and computational effi-
ciency. Experiments on a large collection of benchmark datasets
show that MRQ is both highly scalable and also competitive
with the state-of-the-art in terms of accuracy. In particular, an
ensemble version of MRQ obtains the best overall accuracy, while
being an order of magnitude faster than the runner up method.

Index Terms—multi-target regression, vector quantization,
multi-label classification, ensemble methods

I. INTRODUCTION

Multi-target regression, also called multivariate or multi-
output regression, is an instance of multi-target prediction [1]
where the goal is to estimate multiple continuous variables
based on a common set of predictors. Under the existence of
statistical dependencies between the target variables, their joint
modeling has been shown to be advantageous compared to
modeling each variable independently [2]. This is for instance
the case in applications such as stock prediction [3], energy
production forecasting in photovoltaic farms [4] and water
quality monitoring [5].

Similarly to methods for multi-label classification [6], multi-
target regression methods can be broadly categorized in two
groups: (i) algorithm adaptation and (ii) problem transforma-
tion. Algorithm adaptation methods extend specific learning
algorithms (e.g. support vector regression [7], trees [8], etc.)
in order to handle multiple outputs, while problem transfor-
mation methods transform the learning task into one or more
single output tasks that can be solved with existing learning
algorithms. Algorithm adaptation methods often generate a
single multi-output model that is easier to interpret and are
more scalable to large output spaces compared to existing
problem transformation methods. On the other hand, problem
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transformation methods can be easily adapted to the problem
at hand by employing suitable base learners and have been
found superior to algorithm adaptation methods in terms of
accuracy [9].

Despite the fact that problem transformation methods have
seen widespread use in multi-label classification (largely
owing to their excellent predictive performance [10]), their
potential in the context of multi-target regression has only
recently been explored. More specifically, methods that expand
the input space of the independent regressions baseline using
estimations of the other target variables as meta inputs were
introduced in [9], while [11] proposed an ensemble approach
that is based on constructing random linear combinations of
the target variables. Both these methods were found com-
petitive with the state-of-the-art but scale linearly (at best)
with respect to the number of targets, thereby having limited
applicability in problems with large output spaces.

In this paper we propose Multi-target Regression via Quan-
tization (MRQ), a novel problem transformation method that
is based on the idea of using vector quantization [12] in order
to map the original real-valued output vectors into a finite set
of prototype vectors or centroids. After this transformation,
the multi-target regression problem is transformed into one
of multi-class classification, where the task is to predict the
centroid that lies closer to the actual output vector. This type
of reduction is motivated by the fact that in many real world
problems, variables that are originally continuous in nature
are discrete by observation and hence it is reasonable and
convenient to model an appropriate discrete approximation
[13].

Compared to existing problem transformation approaches,
MRQ has the advantage that it directly models the joint
distribution of the targets through a discrete approximation and
has a complexity that is practically independent of the number
of target variables, making it scalable to problems with very
large output spaces.

In addition to the basic version of MRQ where a single
quantizer is used to encode the whole output space, we also
introduce an ensemble version of the method (eMRQ) where
multiple quantizers are used, each one encoding a randomly
selected subset of the target variables. Hence, in eMRQ the
multi-target regression problem is transformed into multiple
multi-class classification problems and the predictions are
obtained by averaging multiple centroids. Although eMRQ has
a higher computational complexity, it provides significantly
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higher accuracy as it strikes a better balance between the two
main error components of the approach, i.e. the quantization
and the classification error.

The rest of the paper is organized as follows. Section II
presents related work on multi-target regression and draws
parallels between our approach and some widely used prob-
lem transformation approaches for multi-label classification.
Section III describes MRQ and its ensemble version eMRQ,
including a discussion of some interesting theoretical prop-
erties of the method. Section IV describes the experimental
setup and section V presents and discusses the experimental
results. Finally, section VI concludes the paper and discusses
directions for future work.

II. RELATED WORK

A. Algorithm adaptation methods

The first multi-target regression methods were developed
by statisticians in the 70s and the 80s with Reduced Rank
Regression [14], FICYREG [15], two-block PLS [16] and
Curds and Whey [17] being some of the most characteristic
examples. As shown in [17], all these methods have the same
generic form, under which the estimates obtained by applying
ordinary least squares regression on the target variables, are
modified by a shrinkage matrix (calculated differently in each
method) in order to to provide a more accurate prediction,
under the assumption that the targets are correlated.

More recently, a number of multi-target methods were
derived from the predictive clustering tree framework [18].
Predictive clustering trees differ from standard decision trees
in that the variance and prototype functions are treated as
parameters that can be instantiated to fit a variety of learn-
ing tasks, including multi-target regression. Following this
approach, [19] developed muti-objective decision trees where
the variance function is computed as the sum of the variances
of the targets, and the prototype function is the vector mean of
the target vectors of the training examples falling in each leaf.
Other approaches that fall under the same framework are the
ensembles of multi-objective decision trees proposed in [20]
and a number of rule learning algorithms whose primary focus
is on improving model interpretability (e.g. [21]).

Another large group of methods stem from a regularization
perspective [22]1. These methods minimize a penalized loss of
the form min

W
L(W )+Ω(W ), where L(W ) is an empirical loss

calculated on the training data, W is an estimated parameter
matrix, and Ω(W ) is a regularization term whose particular
form depends on the underlying task relatedness assumption.
Most methods assume that all tasks are related to each other
[24]–[26], while there are methods assuming that tasks are
organized in structures such as clusters [27], trees [28] and
graphs [29]. A systematic analysis of the connections between
these regularization-based methods and related techniques
from the Gaussian Processes framework is provided in [30].

1Most of these methods were originally developed to solve the more general
learning task of multi-task learning [23] but are commonly applied to multi-
target regression tasks as well.

Finally, a number of methods for multi-target regression
have been derived by extending artificial neural networks to
handle multiple outputs (e.g. [3], [31]–[33]).

As the aforementioned techniques do not involve an ex-
plicit transformation of the multi-target regression problem
but rather extend specific learning paradigms to handle multi-
target regression tasks directly, they are regarded as algorithm
adaptation methods.

B. Problem transformation methods

Contrary to the majority of multi-target regression methods,
MRQ follows a problem transformation approach. This type
of approaches reduce the multi-target prediction problem into
one or more single-target prediction problems, for which a
multitude of well-developed algorithms are readily available.
The challenge is then to devise effective reduction approaches.

Problem transformation methods have been extensively
studied in the context of multi-label classification with Binary
Relevance (BR) and Label Powerset (LP) being two of the
simplest but also widely used and theoretically justified (see,
e.g., [34]) methods. BR transforms the multi-label classifi-
cation task into m binary classification tasks, one for each
label, while LP reduces multi-label classification into multi-
class classification by treating each label combination as a
distinct class value. As discussed in [34], although BR ignores
label dependencies, it is well tailored for losses whose risk
minimizer can be expressed in terms of marginal distributions
P (Yi|x)(i = 1, . . . ,m) such as Hamming loss. LP on the other
hand, can be seen as a method to estimate the conditional joint
distribution P (Y|X), and while its basic form is tailored for
the subset 0-1 loss, it can be extended to any loss function.

While BR and LP are reasonable baselines, they have been
extended and outperformed by more recent approaches. Two
notable examples that have achieved state-of-the-art perfor-
mance and received significant attention in the multi-label
classification literature are Classifier Chains (CC) [35] and
RAkEL [36]. CC is an extension of BR which manages to
model label dependencies by augmenting the input space of
each binary classifier with extra features that correspond to
other labels. RAkEL extends LP by building multiple LP
classifiers on random subsets of the original label space and
combining their predictions with voting. This way, RAkEL
tackles a number of LP’s limitations such as modeling of
scarce label sets and increased computational cost in problems
with many distinct label sets.

Recently, both CC and RAkEL have offered inspiration for
developing analogous approaches in multi-target regression.
Regressor Chains (RC) [9] is a direct adaptation of CC
where regressors are used as base models instead of binary
classifiers. Equipped with a mechanism to deal with noise
propagation at inference time, RC was shown to achieve state-
of-the-art performance in multi-target regression. RAkEL, on
the other hand, inspired RLC [11], an approach that builds
an ensemble of regression models, each one concerning a
random linear combination of a random subset of the target
variables. RLC uses a sparse random matrix to project the



original output space into a new output space of higher
dimensionality, where each transformed variable represents the
linear combination of two or more of the original targets. At
inference time, an overdetermined system of linear equations
is solved to recover the original space. While RLC was found
competitive with other multi-target regression approaches in
terms of performance, it suffers increased computational com-
plexity as it requires a number of regression models that is
significantly larger than the number of targets to perform
competitively. Concurrently to RLC, an approach based on
random output space projections was developed in [37] in
the context of multi-label classification. Differently from RLC
which aimed at improving prediction accuracy, the main goal
of that approach was to reduce learning time complexity while
maintaining the accuracy of predictions.

The proposed approach bares a number of striking parallels
with LP and RAkEL. Firstly, each cluster centroid in MRQ
can be considered as the equivalent of a labelset (or label
combination) in multi-label clasification. In that sense, MRQ
resembles LP as it uses a multi-class classifier to predict the
most likely centroid. In fact, it is easy to show that MRQ
becomes equivalent to LP when the quantization error becomes
zero. Given that eMRQ extends MRQ in the same way that
RAkEL extends LP, it is straightforward to see their resem-
blance. Contrarily to other problem transformation methods
for multi-target regression which have a linear (RC) or higher
(RLC) complexity with respect to the number of targets, MRQ
and eMRQ have a practically constant complexity with respect
to the number of targets and can be tuned to provide a
good trade-off between prediction accuracy and computational
efficiency by appropriate parameterization of the quantization
scheme.

Recently, we developed a transformation approach for fea-
ture selection on multi-target data based on the idea of output
space quantization and found it to perform competitively
against other feature selection methods [38]. To the best of
our knowledge, this is the first time that this idea is applied
in the context of multi-target regression.

III. METHOD

A. Background and notation

1) Multi-target regression: Given a set of training exam-
ples Dtrain = {xn,yn}Nn=1, where x = [x1 . . . xd] and
y = [y1 . . . ym] are realizations of the joint random variables
X = X1 . . . Xd and Y = Y1 . . . Ym, the goal in multi-target
prediction is to induce a model h : X → Y that given
an input vector x, predicts an output vector ŷ = h(x) that
closely approximates the true output vector y. In multi-target
regression, all the output variables Yj are continuous (i.e.
Y ∈ Rm) while the input variables Xi can have a real, ordinal
or nominal domain.

The baseline Single-Target (ST) approach consists of build-
ing an independent regression model hj : X → Yj for each
target variable. Despite the obvious limitation of ignoring
dependencies between targets, when coupled with a strong

base learner, ST is very competitive in both multi-label clas-
sification (called BR in this context) [39] and multi-target
regression [9], especially on target-wise decomposable loss
functions [34].

2) Vector quantization: Vector quantization is a technique
that has its roots in information theory and was originally used
for analog-to-digital conversion and data compression [12].
In vector quantization, the goal is to reduce the cardinality
of the representation space of high-dimensional, real-valued
input data, while minimizing an objective distortion criterion.
Formally, a vector quantizer is a function q : Rd → C that
maps each d-dimensional vector x ∈ Rd to a vector q(x) ∈ C
where C = {ci}ki=1 is a finite set of reproduction values
or centroids ci ∈ Rd. Typically, a vector quantizer seeks to
minimize the squared error between the input vector x and its
reproduction value q(x) and is learned using Lloyd’s algorithm
(k-means). In this work, VQ is applied to transform the output
space in multi-target regression problems by replacing each
output vector by a value that corresponds to the index of the
quantizer centroid that lies closer to that vector (section III-B).
This way, multi-target regression is reduced to multi-class
classification.

As the dimensionality of the vectors that we want to
quantize increases, so does the number of centroids k that are
required to maintain a small quantization error. As k increases,
it becomes impossible to learn a quantizer using k-means due
to the fact that both the learning complexity as well as the
number of required training samples are several times k. To
address this issue, more efficient quantization techniques such
as Product Quantization (PQ) [40] are used when dealing
with high-dimensional vectors. In PQ, the vectors are split
into s non-overlapping subvectors of dimensionality d′ = d/s
and a distinct lower-complexity subquantizer Cj is learned
on each subspace using k-means. The reproduction values
of such a quantizer are defined as the concatenation of the
centroids of the s subquantizers, thus the product quantizer
maps each original vector to a vector from the Cartesian
product C = C1 × . . . × Cs. Assuming that all subquantizers
have the same number of reproduction values k′, the product
quantizer effectively generates a quantizer with (k′)s repro-
duction values. In this work, we use a quantization approach
that is similar to PQ in order to improve the accuracy of our
method in problems with large output spaces (section III-C).

B. MRQ

The main idea behind MRQ is the use of vector quantization
in order to transform the multi-dimensional continuous output
space Y = Y1 . . . Ym, Yj ∈ R into a uni-dimensional discrete
output space Z ∈ {1, . . . , k}, where the levels of the cate-
gorical variable Z correspond to the indices of the centroids
{ci}ki=1 of a vector quantizer q(·) learned using k-means on
the original2 output space Y. At training time, a mapping
hMC : X → Z is learned using a multi-class classifier.

2Output variables are actually standardized to ensure equal variances before
applying k-means.



At inference time, given an unknown instance x, the multi-
class classifier is first applied to get ẑ = hMC(x) and the
corresponding centroid cẑ is returned as the final prediction.

The squared error of MRQ can be written as:

SE(hMRQ) =
∑

{x,y}∈Dtest

{
||q(y)− y||2 when ẑ = z

||cẑ − y||2 when ẑ 6= z

(1)
Assuming that the quantizer q satisfies the first Lloyd optimal-
ity condition, i.e that all vectors are quantized to their nearest
centroids in terms of Euclidean distance:

q(x) = arg min
ci∈C

||y − ci||2, (2)

it is easy to see that the lower bound for the squared error of
MRQ is equal to the squared error of the underlying quantizer.
Thus, using a quantizer with a small quantization error is a
necessary condition for good performance in MRQ. However,
this lower bound is realized only when hMC is an oracle classi-
fier that always predicts the correct class and any classification
error can cause an arbitrarily large increase. Thus, achieving a
small classification error CE(hMC) =

∑
{x,z}∈Dtest

1(ẑ 6= z)
is also crucial.

Interestingly, both error components of MRQ (i.e. the
quantization and the classification error) are highly dependent
on the parameter k. The quantization error, on one hand,
is a monotonically decreasing function of k for a Lloyd
optimal quantizer. The classification error, on the other hand, is
expected to increase with an increasing number of classes and
a decreasing number of examples per class. Thus, finding a k
that strikes a good balance between the two error components
is crucial for achieving good performance in MRQ.

This trade-off is highlighted in Figure 1 which plots the
error of MRQ (in two datasets), using an ensemble of clas-
sification trees as the multi-class classifier, against that of
MRQo, an oracle version of the method whose underlying
multi-class classifier is assumed to provide perfect predictions
(i.e. CE(hMC) = 0). We see that while the error of MRQo

decreases with k, the error of MRQ decreases initially as a
result of a decreasing quantization error but then starts to
increase as the classification error begins to dominate. We also
notice that while in osales MRQo has a smaller error than
ST for k >= 5, k >= 50 is required in oes10. This is
reflected in the performance of MRQ as in osales it obtains
a smaller error than ST for a wide range of k values, while in
oes10 it is always worse.

C. eMRQ

eMRQ extends MRQ by employing a PQ-like approach
to quantize the output space. More concretely, instead of
building a single k-means quantizer C on the whole output
space, eMRQ builds s subquantizers {Cj}sj=1 on variables Wj

which are defined as random subsets of the original targets,
i.e. Wj ⊂ Y ∀ j = 1 . . . s. Contrarily to PQ where only
disjoint subsets are considered, in eMRQ we allow the same
target variable to participate in multiple groups and thus be
redundantly quantized.
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Fig. 1. Performance (aRMAE) of MRQ, MRQo (oracle version of MRQ),
eMRQ, eMRQo (oracle version of eMRQ) and ST as a function of k on
osales and oes10.

By employing this quantization scheme, eMRQ effectively
transforms the mutli-target regression problem into s multi-
class classification subproblems, where the categorical class
variables Zj ∈ {1, . . . , k} encode the indices of the centroids
of the subquantizers Cj . At inference time, all multi-class
classifiers hj

MC : X → Zj are queried to predict the
corresponding targets Wj and the predictions for each of the
original targets Yj are obtained by average pooling3:

ŷj =

∑s
i=1([[Yj ∈Wi]] ∗ ŵij)∑s

i=1[[Yj ∈Wi]]

where (with a slight abuse of notation) ŵij denotes the
component of ŵi that corresponds to variable Yj .

eMRQ has three parameters: (a) the number of centroids
k in each subquantizer, (b) the number of original targets
considered in each subquantizer, i.e. |Wj |, henceforth denoted

3For a predicate P, the expression [[P]] evaluates to 1 if P is true and to 0
if P is false.



NoT and (c) the total number of quantizers s. We observe that
NoT can take values in {1, . . . ,m} and controls the degree
of joint modelling of the target variables in the ensemble.
The special case where NoT = 1 corresponds to building an
independent model for each target variable, while NoT = m
makes eMRQ equivalent to MRQ. We further observe that
each of the original target variables is expected to participate
in s∗NoT

m of the subproblems induced by eMRQ and therefore
an s ≥ m

NoT should be used to guarantee that, on average,
all target variables will be considered in at least one of the
subproblems.

Similarly to PQ, the quantization approach adopted by
eMRQ allows it to implicitly induce a quantizer with ks

reproduction values4. Thus, it requires quantizers with a sig-
nificantly smaller number of centroids than those of the single
quantizer in MRQ to achieve the same quantization error.
In turn, this has a positive impact on the classification error
of eMRQ as each multi-class classification problem becomes
simpler (fewer classes, more training examples per class).
This effect can be seen in Figure 1 where we notice that
eMRQo, the oracle version of eMRQ (parameterized here with
NoT = 2 and q = m and using the same multi-class classifier
as MRQ), obtains a significantly smaller error than MRQo for
the same values of k. This results in eMRQ outperforming
MRQ in both datasets.

D. Computational Complexity

The complexities of both MRQ and eMRQ depend on
the complexities of the underlying multi-class classification
and quantization algorithms. Given a multi-class classifier
with training complexity O(g(n, d, c)) for a dataset with n
examples, d input variables and c classes, the complexity of
MRQ is O(t·k·n·m)+O(g(n, d, k)), where O(t·k·n·m) is the
complexity of running k-means for t iterations. Similarly, the
complexity of eMRQ is O(s·t·k·n·NoT ) + O(s·g(n, d, k)),
since it learns s quantizers on NoT -dimensional vectors and
s multi-class classifiers. In practise, the training complexity
of both methods is dominated by the complexity of building
the multi-class classifier. As shown in section V, by using a
multi-class classifier with sublinear complexity with respect
to the number of classes (i.e. an ensemble of decision trees),
both methods are significantly faster than other problem trans-
formation approaches.

IV. EXPERIMENTAL SETUP

In this section we describe our experimental setup. We
first present the datasets and their main characteristics, then
provide the details of the setup used for MRQ, eMRQ and the
other competing methods, and finally describe the evaluation
methodology and the approach used to check for statistically
significant performance differences.

4Since the subquantizers in eMRQ are overlapping, the effective number
of reproduction values will be smaller than ks.

TABLE I
NAME, NUMBER OF EXAMPLES, NUMBER OF INPUT VARIABLES (d),
NUMBER OF TARGET VARIABLES (m), AVERAGE PAIRWISE PEARSON

CORRELATION (|r|) AND AVERAGE OUTPUT SPACE ENTROPY H(Y) OF
THE DATASETS USED IN THE EVALUATION.

Name # ex. d m |r| H(Y)
edm 154 16 2 0.01 3.06
enb 768 8 2 0.98 4.51
jura 359 15 3 0.20 3.97
scpf 1137 23 3 0.73 2.35
sf1 323 10 3 0.23 1.66
sf2 1066 10 3 0.20 1.31
slump 103 7 3 0.42 4.37
andro 49 30 6 0.40 4.52
atp1d 337 411 6 0.82 3.91
atp7d 296 411 6 0.64 3.90
rf1 9125 64 8 0.39 3.96
rf2 9125 576 8 0.39 3.96
osales 639 401 12 0.62 2.44
wq 1060 16 14 0.10 2.13
oes10 403 298 16 0.82 2.90
oes97 334 263 16 0.79 3.02
scm1d 9803 280 16 0.64 4.07
scm20d 8966 61 16 0.60 4.03

A. Datasets

The experiments are carried out on a large and diverse
collection of multi-target regression datasets5, whose main
characteristics are summarized in Table I (see [9] for a detailed
description of each dataset). In addition to the number of
examples, features and targets in each dataset, Table I also
reports |r| and H(Y). |r| is the average Pearson correlation
coefficient between all distinct pairs of targets in each dataset
and is a rough measure of target interdependence. H(Y)
is the average entropy of the probability density functions
(PDF) of the target variables, where each PDF is calculated by
applying kernel density estimation using a gaussian kernel and
a bandwidth tuned to maximize likelihood using 3-fold cross-
validation. H(Y) aims to serve as a measure of the expected
quantization error in each dataset, as lower values point to a
distribution that is concentrated around few specific values,
while higher values point to a dispersed distribution (uniform
being the most dispersed distribution having an entropy of 4.61
in this setup).

B. Methods and parameters

In section V, the performance of MRQ and eMRQ is
compared to the performance of ST, RLC [11] and ERC [9].
Similarly to MRQ and eMRQ, ST, RLC and ERC take a prob-
lem transformation approach to multi-target regression and
have been found significantly better than algorithm adaptation
approaches such as ensembles of multi-objective decision trees
(e.g. [20]) and multi-task learning methods (e.g. [24]) in a
previous empirical study [9].

RLC and ERC are parametrized using the setup that leads
to the best results according to the corresponding papers, i.e.
100 random linear combinations of 2 target variables are used

5http://mulan.sourceforge.net/datasets-mtr.html
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in RLC, while in ERC we use the variant that generates out-
of-sample estimates with 10 internal cross-validation folds and
an ensemble size of 10. A crucial factor for the performance
of any problem transformation approach is the underlying
base learning algorithm. Throughout this study, ST, RLC
and ERC are instantiated using a Bagging [41] ensemble
of 100 regression trees as the base regressor, following the
recommendations of [9]. To keep the comparison of MRQ and
eMRQ with these methods as fair as possible, we instantiate
them with a Bagging ensemble of 100 classification trees.

The proposed methods are implemented in Java and are
integrated in the Mulan library [42] which already contains
implementations of ST, RLC and ERC. Thus, all methods are
evaluated under a common framework6.

C. Evaluation methodology
The performance of the methods is measured using average

Relative Mean Absolute Error (aRMAE). The aRMAE of a
model h on a dataset D is defined as:

aRMAE(h, D) =
1

m

m∑
j=1

∑
(x,y)∈D |ŷj − yj |∑
(x,y)∈D |Ȳj − yj |

where Ȳj is the mean value of Yj over D and ŷj is the
prediction of h for Yj . Intuitively, aRMAE measures how
much better (aRMAE<1) or worse (aRMAE>1) the model
h is (on average) compared to a naive baseline that always
predicts the mean value of each target. To estimate aRMAE
we use either repeated random subsampling (with 90% of the
data used for training and 10% for validation) (sections V-A
and V-B) or k-fold cross-validation (section V-C).

To test the statistical significance of the observed differences
between the methods, we follow the methodology suggested
by [43] for comparing multiple methods on multiple datasets,
i.e. we use the Friedman test to check the validity of the
null-hypothesis (all methods are equivalent) and when the
null-hypothesis is rejected (p < 0.01), we proceed with the
Nemenyi post-hoc test. Instead of reporting the outcomes of
all pairwise comparisons, we employ the simple graphical
presentation of the test’s results introduced in [43], i.e. all
methods being compared are placed in a horizontal axis
according to their average ranks and groups of methods that
are not significantly different (at a certain significance level)
are connected (see Figure 5 for an example). To generate such
a diagram, a critical difference (CD) needs to be calculated that
corresponds to the minimum difference in average ranks re-
quired for two methods to be considered significantly different.
CD for a given number of methods and datasets, depends on
the desired significance level. Due to the known conservancy
of the Nemenyi test [43], we use a 0.05 significance level for
computing the CD throughout the paper.

V. RESULTS AND DISCUSSION

A. Empirical evaluation of MRQ
In this section we study the performance of MRQ for

different values of its parameter k and compare it against

6https://github.com/lefman/mulan-extended
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Fig. 2. Critical difference diagram between ST and MRQ variants.

ST. The results are summarized in Table II which shows the
error of MRQ for k ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000} as
well as the error of ST on each dataset. The best performance
per dataset is highlighted in bold, while the best performance
among the MRQ variants is underlined7.

We see that the choice of k can have a big impact on
the method’s performance, as different values lead to optimal
results on each dataset. Trying to shed some light into the
factors that affect the optimal value of k, we observe that
datasets with larger output spaces typically benefit from larger
values of k and vice versa. As a result, the best performance on
scm1d and scm20d which have the highest number of targets
in the collection is obtained with k = 1000, while the best
performance on edm which has the smallest number of targets
is obtained with k = 5. However, there are notable exceptions
to this rule: (a) enb has the same number of targets as edm
but the best performance is obtained with k = 200, (b) oes10
and oes97 have the same number of targets as scm1d and
scm20d but the best performance is obtained with k = 50.
In the case of enb, we observe that it is among the two
datasets with the highest output space entropy. Hence, despite
the small number of targets, a high k is required to reduce
the quantization error. In the case of oes10 and oes97,
on one hand these datasets have relatively small output space
entropies and, on the other hand, they have a small number of
examples (403 and 334 respectively) which makes it difficult
to learn an accurate quantizer with k > 50. Summarizing the
above observations, we conclude that the optimal value of k
is affected by the following factors: (a) the number of targets,
(b) the entropy of the output space, (c) the number of training
examples.

Comparing the performance of MRQ to that of ST, we
observe that in 11 out of 18 datasets ST is outperformed
by one of the MRQ variants, which suggests that MRQ can
be very competitive with appropriate parametrization. In fact,
even with a fixed k, we see (last row of Table II) that MRQ
with k = 50 obtains a similar average rank with ST (4.333
vs 4.056). As shown in the critical difference diagram of
Figure 2, only the variant that uses k = 2 is found statistically
significantly worse than ST.

https://github.com/lefman/mulan-extended
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Fig. 3. Performance (aRMAE) of eMRQ as a function of k for NoT ∈ {1, 2, 3}.
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TABLE II
MRQ PERFORMANCE FOR DIFFERENT VALUES OF k. THE BEST

PERFORMANCE ON EACH DATASET IS HIGHLIGHTED IN BOLD AND THE
BEST PERFORMANCE AMONG MRQ VARIANTS IS UNDERLINED. THE LAST

ROW SHOWS THE AVERAGE RANK OF EACH METHOD.

MRQ
Dataset k=2 5 10 20 50 100 200 500 1000 ST
edm 1.076 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.545 0.840
enb 0.350 0.217 0.151 0.127 0.119 0.110 0.102 0.115 0.177 0.085
jura 0.880 0.709 0.664 0.649 0.617 0.610 0.639 1.008 1.008 0.511
scpf 0.835 0.516 0.473 0.490 0.514 0.542 0.533 0.525 0.525 0.607
sf1 0.695 0.591 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.957
sf2 0.590 0.454 0.408 0.408 0.408 0.408 0.408 0.408 0.408 0.843
slump 0.883 0.838 0.844 0.821 0.839 0.950 0.950 0.950 0.950 0.703
andro 0.922 0.472 0.446 0.546 0.685 0.685 0.685 0.685 0.685 0.476
atp1d 0.614 0.481 0.442 0.402 0.360 0.307 0.318 0.285 0.285 0.325
atp7d 0.805 0.575 0.489 0.430 0.394 0.287 0.332 0.332 0.332 0.429
rf1 0.792 0.529 0.385 0.275 0.180 0.121 0.080 0.045 0.031 0.045
rf2 0.792 0.529 0.385 0.275 0.180 0.121 0.080 0.045 0.031 0.050
osales 0.864 0.639 0.628 0.651 0.632 0.725 0.757 0.924 0.924 0.702
wq 0.950 0.899 0.888 0.897 0.884 0.885 0.890 0.918 0.961 0.858
oes10 0.752 0.532 0.482 0.455 0.455 0.460 0.500 0.627 0.627 0.399
oes97 0.843 0.668 0.637 0.635 0.632 0.685 0.755 0.822 0.822 0.570
scm1d 0.704 0.566 0.512 0.458 0.389 0.345 0.307 0.266 0.241 0.236
scm20d 0.740 0.614 0.557 0.504 0.416 0.359 0.324 0.278 0.260 0.334
Av. rank 9.389 6.750 5.083 5.000 4.333 4.694 4.917 5.361 5.417 4.056

B. Empirical evaluation of eMRQ

In this section we study the performance of eMRQ with
respect to its parameters: k, NoT and s. To simplify the
analysis, we first fix the s parameter at s = m, i.e. we use as

7Note that whenever k is larger than the number of distinct output vectors
card, k = card is used.

many subquantizers as the number of targets in each dataset,
and study the interaction between k and NoT . Then, we fix
the NoT parameter and study the interaction between k and
s.

Figure 3 shows the aRMAE of eMRQ as a function of k
for NoT ∈ {1, 2, 3} on andro and scm20d, as well as
the average aRMAE obtained for each combination of values
across all datasets (except for edm and enb which have only
two target variables and hence NoT = 3 is not applicable).
Note that NoT = 1 corresponds to independently quantizing
each target variable and was included to directly examine the
advantages of joint modelling in eMRQ.

Looking at the average performance, we see that joint
modelling is indeed advantageous as the best results are
obtained with NoT = 2 and k = 20. However, larger values
of NoT do not lead to better results on average. On the other
hand, we also see that a different set of parameters leads to
better results in each dataset (NoT = 3, k = 10 in andro and
NoT = 2, k = 100 in scm20d). This suggests that careful
per dataset tuning of these parameters is required for optimal
performance.

Figure 4 shows the aRMAE of eMRQ as a function of k
for s ∈ {1, 2, 3} (for NoT = 2) on andro and scm20d, as
well as the average aRMAE obtained for each combination of
values across all datasets. We see that the average performance
of eMRQ is improving with larger values of s for all values
of k and this behavior is consistent across the datasets shown
here as well as the remaining datasets.
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Fig. 5. Critical difference diagram between state-of-the-art methods.

C. Comparison with state-of-the-art

In this section, we compare the performance of MRQ and
eMRQ with that of state-of-the-art multi-targer regression
methods. In particular, the comparison includes ST, RLC [11]
and ERC [9], using the setup described in section IV-B.

In the case of MRQ, k = 50 is used based on the analysis of
section V-A. In the case of eMRQ, we instantiate two variants,
one using s = m and one using s = 3m. However, instead
of fixing or tuning the k and NoT parameters, we employ a
randomized version of eMRQ (denoted as eMRQr) where for
each of the s subquantizers, k is chosen uniformly at random
from the range [50, 100] and NoT is chosen uniformly at
random from the range [1, 2]. The advantage of this approach
is that it avoids the need for parameter tuning - which increases
computational time and can be unstable on smaller datasets -
and increases the diversity of the eMRQ ensemble.

Table III shows the results obtained by each method on each
dataset, as well as their average ranks and total running times.
We first see that MRQ and eMRQr outperform the competing
methods in 12 out of 18 datasets. More specifically, MRQ
and eMRQrm have the best performance in two datasets each
and eMRQr3m outperforms all other methods in 10 datasets.
Looking at the average ranks of the methods, we see that
eMRQr3m obtains the lowest average rank, followed by ERC
and eMRQrm. As can be seen in the critical difference diagram
of Figure 5, eMRQr3m performs statistically significantly
better than RLC and MRQ, while the experimental data is
not sufficient to reach any conclusion with respect to other
methods.

The last row of Table III reports the total running time8

of each method (per dataset running times are omitted due to
space limitations). We observe that MRQ is the fastest method
overall, while eMRQr3m is an order of magnitude faster than
ERC. Taking into account the fact that eMRQr3m is also the
best overall performer in terms of accuracy, makes it a very
appealing multi-target regression model.

VI. CONCLUSION AND FUTURE WORK

We presented MRQ, a new problem transformation ap-
proach for multi-target regression that was shown to offer com-
parable accuracy with state-of-the-art methods, while being

8Experiments were run using 10 cores of a 64-bit CentOS Linux machine
equipped with Intel Xeon E7-4860 processors running at 2.27 GHz, leveraging
a parallelized implementation of the base learner.

TABLE III
COMPARISON WITH STATE-OF-THE-ART. THE LAST TWO ROWS SHOW THE

AVERAGE RANKS OF THE METHODS AND THE TOTAL RUNNING TIME IN
HOURS RESPECTIVELY.

Dataset ST RLC ERC MRQ50 eMRQrm eMRQr3m
edm 0.822 0.817 0.823 0.544 0.566 0.546
enb 0.085 0.087 0.082 0.117 0.109 0.105
jura 0.529 0.546 0.531 0.658 0.664 0.563
scpf 0.625 0.626 0.629 0.553 0.494 0.473
sf1 0.972 0.975 0.971 0.463 0.463 0.463
sf2 0.883 0.927 0.868 0.462 0.460 0.461
slump 0.669 0.677 0.671 0.810 0.813 0.761
andro 0.583 0.569 0.548 0.870 0.747 0.726
atp1d 0.313 0.325 0.312 0.343 0.280 0.261
atp7d 0.459 0.470 0.441 0.365 0.307 0.301
rf1 0.063 0.080 0.060 0.182 0.070 0.051
rf2 0.072 0.087 0.067 0.182 0.070 0.050
osales 0.690 0.679 0.646 0.599 0.581 0.567
wq 0.857 0.851 0.858 0.873 0.702 0.697
oes10 0.412 0.410 0.412 0.466 0.494 0.454
oes97 0.563 0.566 0.562 0.647 0.648 0.615
scm1d 0.271 0.267 0.252 0.412 0.266 0.238
scm20d 0.405 0.404 0.322 0.441 0.299 0.266
Av. rank 3.722 4.056 3.000 4.556 3.472 2.194
Time 1.27 9.89 90.86 0.14 1.72 5.56

significantly more efficient. In addition, a more computation-
ally expensive, ensemble version of MRQ was found to be
more accurate than other approaches in most studied datasets.
MRQ has two important characteristics that distinguish it from
other approaches for multi-target regression: (a) it models a
discrete approximation of the joint distribution of the target
variables, (b) it is scalable to problems with very large output
spaces as it builds a constant number of models.

In the future, we would like to evaluate MRQ on real-world
and synthetic datasets with significantly larger output spaces.
We would also like to perform a deeper theoretical analysis of
the two main sources of error in MRQ, i.e the quantization and
the classification error, and come up with better ways to choose
quantization parameters that strike a good balance between
these two error components. Finally, we would like to explore
more sophisticated quantization schemes (e.g. [44], [45]) that
reduce the redundancy between the different subquantizers and
are hence able to achieve a smaller quantization error for a
fixed quantizer complexity.
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