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Abstract—Speech-in-noise (SIN) comprehension decreases with
age, and these declines have been related to social isolation,
depression, and dementia in the elderly. In this work, we build
models to distinguish the normal hearing (NH) or mild hearing
impairment (HI) using the different genres of machine learning.
We compute band wise power spectral density (PSD) of source-
derived EEGs as features in building models using support vector
machine (SVM), k-nearest neighbors (KNN), and AdaBoost clas-
sifiers and compare their performance while listeners perceived
clear or noise-degraded sounds. Combining all frequency bands
features obtained from the whole-brain, the SVM registered
the best performance. The group classification accuracy was
found to be 94.90% [area under the curve (AUC) 94.75%;
F1-score 95.00%] perceived the clear speech, and for noise-
degraded speech perception, accuracy was found to be 92.52%
(AUC 91.12%, and F1-score 93.00%). Remarkably, individual
frequency band analysis on whole-brain data showed that γ fre-
quency band segregated groups with a best accuracy of 96.78%,
AUC 96.79% for clear speech data and noise-degraded speech
data yielded slightly less accuracy of 93.62% with AUC 93.17%
by using SVM. A separate analysis using the left hemisphere (LH)
and right hemisphere (RH) data showed that the LH activity
is a better predictor of groups compared to RH. These results
are consistent with the dominance of LH in auditory-linguistic
processing. Our results demonstrate that spectral features of the
γ-band frequency could be used to differentiate NH and HI
older adults in terms of their ability to process speech sounds.
These findings would be useful to model attentional and listening
assistive devices to amplify a more specific pitch than others.

I. INTRODUCTION

Hearing impairment (HI) is the top fifth leading disability
worldwide [1], and the third most common chronic disease
behind heart disease and arthritis [2], [3]. It is one of the key
contributors to the growing disability problem in the United
States [4]. Among other sensory organs, hearing is an essential
function that allows people to communicate properly. In older
adults, HI has been associated with poor cognitive health and
contributes to social isolation as well as loneliness [5]. Age-
related HI (i.e., presbycusis) is thought to occur due to a
myriad of changes in both peripheral and central aspects of
the auditory pathway [6].

Speech-in-noise (SIN) perception is problematic for older
adults with and without hearing loss. The neurophysiological

factors that influence SIN recognition are not well understood.
Regardless of age, the audiogram –the conventional behavioral
test of hearing– fails to always predict speech perception
skills, especially in background noise [7]. Event-related po-
tentials (ERPs), phase-locking value, power spectral density
(PSD), and connectivity analysis are commonly used for
understanding the brain functionality and identify normal and
disorders status [8]. PSD is useful for investigating cognitive
status [9] and complex processes such as working memory
[10], attention [11], [12], and language processing [13]. In
addition, PSD of electroencephalogram (EEG) signal offers a
non-invasive means for various clinical diagnostics including
epileptic seizure [14], [15] and Alzheimer’s disease (AD) [16].

There is a growing interest in using machine learning
(ML) techniques to process neuroimaging data such as EEG,
magnetoencephalography (MEG), functional magnetic reso-
nance imaging, and positron emission tomography. Evidence
suggests that ML can help distinguish healthy and abnormal
states of the brain. ML is a branch of artificial intelligence that
“learns a model” from the past data to predict the future [17].
Support vector machine (SVM), k-nearest neighbors (KNN),
and AdaBoost classifiers are extensively used as powerful tools
to recognize subtle patterns, complex datasets, and classifica-
tion in various fields, including the neurosciences.

EEG signals can be divided into different frequency bands
(e.g., δ, θ, α, β, γ). Different bands are associated with
different brain processes. Previous studies [18], [19] found
that ERPs differed between NH and HI groups and between
the clear and noise-degraded stimulus conditions. Bidelman
et al. used graph theoretic and ML analyses on EEG data
[20] to show that NH listeners could be distinguished from
HI with 85.71% accuracy. Mahmud et al. decoded the hearing
impairment by using the ERP features and a sliding window
basis [18]. They found hearing loss could be identified with
81.50% accuracy as early as ∼ 50 ms after speech onset.
Such model performances are inadequate for clinical practice.
Beside, it is little known which frequency bands are associated
with mild hearing loss.

In this research, we used EEG recordings to understand
the neurodynamics of speech processing and spectral changes
that are associated with age-related hearing impairment. EEGs
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provide a means to detect subclinical and speech understand
problems that may go undetected by standard audiometric
testing. To explore these possibilities, we used source-level
EEG and developed multivariate models to assess changes in
the neural encoding of speech in older adults.

To improve model performance; we investigated how well
spectral features (e.g., PSD) can segregate NH from HI; which
frequency bands (e.g., θ, α, β, γ) could segregate the groups
best; which brain hemisphere is dominant in speech processing
in terms of spectral feature analysis? We present a comprehen-
sive study in developing multivariate models distinguishing
the NH and HI from band wise PSD. We conducted empirical
analyses using all frequency bands, individual frequency bands
both at the whole-brain level, and at hemispheric-specific using
the different genres of machine learning.

Our main contributions are as follows:
• We developed multivariate models to examine age-related

hearing impairment. It was found that NH and HI could
be segregated above 95% accuracy from whole-brain data.
We found that SVM achieved the best segregation of
groups (e.g., NH and HI) over KNN and AdaBoost.

• We investigated using hemispheres data and found that
LH measure is a better predictor of both the NH and HI.

• Finally, we compared different frequency bands and iden-
tified that the PSD of γ-band frequency provided the best
performance among other frequency bands.

The rest of the paper is organized as follows. We review the
related research in Section II and describes the methodology
in Section III. Subsequently, Section IV presents the results,
and Section V concludes the paper with the key findings.

II. RELATED WORK

A plethora of research has used spectral features and ML
to investigate normal and disordered states of brain activity.
Many studies suggested that PSD is useful for exploring
cognitive brain function, including Alzheimer’s disease (AD),
Schizophrenia, and Parkinson’s disease (PD) [21], [22]. Re-
lated to aging and hearing assessment, Alain et al. [19] showed
that older adults with mild hearing loss had higher cortical
neuromagnetic evoked responses than the normal hearing.
Bidelman et al. [20] demonstrated that graph-theoretic features
of the brain’s speech networks (estimated using EEG) could
be used to differentiate adults with and without mild hearing
losses.

Other researchers use the ERPs, band power, and other
relevant statistical features (e.g., mean, variance, kurtosis)
to classify healthy and disorder populations via SVM [23],
[24], [25], KNN, and AdaBoost [8]. These classifiers are
widely used for classification (e.g., face detection, speech
recognition, text mining, etc.) and regression analysis. These
are used as a prognostic (e.g., heart disease, cancer detection,
epileptic seizure detection, and Alzheimer’s classification) in
neuroscience with better accuracy than traditional classifiers
[23].

III. MATERIALS AND METHODS

This work represents a new analysis of data that were orig-
inally collected by the Rotman Research Institute in Toronto
[26], [20]. Following EEG preprocessing (outlined below), the
power spectral density of the source level neural oscillations
was used as input feature vectors to classifiers with the

objective for segregating NH and HI older adults. The working
flowchart of this analysis is presented in Fig. 1.

Fig. 1: Working flowchart.

A. Participants and Data Description

Thirty-two older adults (13 NH and 19 HI; aged 52 to
72 years) were recruited in the greater Toronto area to in-
vestigate the aging auditory system. All provided written in-
formed consent in accordance with a protocol approved by the
Baycrest Research Ethics Review Board. None had reported
neurological or psychiatric diseases. Puretone audiometry was
conducted at octaves frequencies in the range 250 to 8000 Hz.
The listeners were grouped into two cohorts based on their
hearing thresholds (Fig. 3). As standard hearing threshold [27],
participants who had the hearing thresholds 25 dB or better
were considered as NH, and those who had poorer than 25 dB
were included into the HI cohort.

Neural activity of the brain was recorded at standard 10-20
locations on the scalp surface using 32 Ag/AgCl electrodes.
EEGs were recorded during a rapid speech detection task.
Three consonant-vowel (CV) speech tokens /ba/, /pa/, /ta/
were used as stimuli during the EEG recording. These tokens
were presented in a pseudo-random manner, where /ba/, /pa/
were presented frequently and /ta/ infrequently. The stimulus
set comprised 3000 /ba/, 3000 /pa/ and 210 /ta/. The duration
of each token was 100 ms and interstimulus interval 250
ms. A total of 6210 CVs was presented in a clear (i.e., no
noise) and noise-degraded block in which speech sounds were
presented concurrent with +10 dB SNR of speech babble
noise. Participants were asked to respond via a button press
on the computer when they detected the infrequent targets
(i.e., /ta/ tokens). The reaction time (RT) and percentage of
correct detections (%) were recorded. Because of their limited
number, infrequent (i.e., /ta/ ) responses were not analyzed.
The stimulus presentation scenario is depicted in Fig. 2. The
details data description is given in [20].

/ba/ /pa/ /ba/ /pa/ /ta/

target 

interstimulus interval ~ 250 ms

Fig. 2: Stimulus presentation scenario.

B. Signal Pre-processing and Source localization

EEGs were digitized using Neuroscan SynAmps RT ampli-
fiers at a 20 kHz sampling rate. Subsequent pre-processing



Fig. 3: Behavioral results (audiogram of NH and HI). NH,
normal hearing group; HI, hearing impaired group; PTA,
puretone average threshold.

was performed in BESA Research (v6.1) and Brainstorm
software [28]. The ocular artifacts (e.g., eye-blinks) were
corrected in the continuous EEG using principal component
analysis and then filtered (1-100 Hz; notched filtered 60 Hz).
EEGs were epoched into the single-trial (-10 to 200 ms) per
condition (clear and noise). We localized the sources of the
scalp recorded EEG data by performing a distributed source
analysis. We conducted source localization by using a realis-
tic boundary element head model (BEM) volume conductor
and standard low-resolution brain electromagnetic tomogra-
phy (sLORETA) as an inverse solution with Brainstorm [28]
environments. A BEM model has less spatial errors than
other existing head models (e.g., concentric spherical head
model). We used the default setting parameters of Brainstorm’s
tool (SNR=3.00, regularization noise covariance = 0.1). The
localization error of sLORETA for 32 channels is 1.5× less
accurate than 64 channels [29]. However, the mean localization
error of sLORETA for 32 is estimated at 1.45 mm [30].
Once the source localization was done, then from each single
trial sLORETA volume, we extracted the time-courses within
the 68 regions of interest (ROIs) across the left and right
hemispheres defined by the Desikan-Killiany (DK) atlas [31]
(LH: 34 ROIs and RH: 34 ROIs). Single-trial data were
baseline corrected to the epoch’s pre-stimulus interval then
used to compute the PSD.

C. Spectral Feature Extraction

Our dataset comprised ∼ 6000 trials per subject and con-
dition (e.g., clear and noise). Previous studies on this dataset
[18], empirically found that averaged over 100 trials ERPs
provided the best group classification (accuracy 81.5%). Thus,
we measured ERPs averaged over randomly chosen 100 trials
without replacement. We then computed the band average PSD
for each ROI across the entire epoch by using ‘pwelch’ Matlab
function [32] and extracted in several frequency bands includ-
ing of theta (θ: 5-8 Hz), alpha (α: 9-13 Hz), beta (β: 14-30

Hz), and gamma (γ: 31-45 Hz) bands [33]. We computed these
spectral features for each participant, group, and condition
(clear and noise). These spectral features were used as input
to the classifiers. The data were z-score normalized before
submitting to the classifiers to ensure all features were on a
common scale range [34].

D. Classifiers (SVM, KNN, and AdaBoost)

In neuroscience data, a goal is to find relationships and pat-
terns of data that can be useful for monitoring the progression
of the disease. A benefit of classical machine learning tech-
niques is that they reveal such relationships with reasonable
performance with small sample sizes, which is common in
human neuroimaging studies. Here, we used support vector
machines (SVMs), k-nearest neighbor (KNN,) and AdaBoost
classifiers to investigate distinguishing listeners’ group mem-
bership (e.g., NH and HI) from spectral attributes of their EEG.
The machine learning models learned from the training data
that comprised of features (e.g., PSD) and corresponding class
labels (e.g., NH and HI). Once the model learned, then the
unseen test data was used for prediction. We randomly split
the data into training and test sets 80%, and 20%, respectively
[14], [35], [36]. Classification performance (accuracy, F1-
score, and area under the curve (AUC)) was calculated by
using the standard formulas [37] from the predicted and true
class labels. AUC demonstrates the degree to which a model
is capable of distinguishing between the classes. An excellent
model has AUC close to 1, meaning it has a good separability.
On the other hand, a bad model has AUC near to 0, meaning
it has no separability.

SVM: SVM classifier performance is greatly affected by the
kernel function, among other factors. The tunable parameters
(e.g., C, γ) also reflect the performance [38]. Determining
which kernel provides better performance depends on the
nature of the problem. As such, a grid search approached was
performed to find the optimal kernel, C, and γ values. During
the training phase, we fine-tuned the C, and γ parameters to
find the optimal values; so that the classifier could accurately
distinguish HI from the test data. In the grid search approach,
we used five-folds cross-validation [39], kernels = ‘RBF’, and
fine-tuned 20 different values of (C, γ) in the following range
for the C = [2−1 to 210] , and γ = [2−5 to 23]. The SVM
learned the support vectors from the training data that comprise
of the spectral attributes (e.g., PSD) and class labels (e.g., NH
and HI). The resulting hyperplanes were fixed with maximum
margin (e.g., maximum separation between the two classes)
and used for predicting the unseen test data (only by providing
the attributes but no class labels). We selected the best model
then predicted the group membership from the unseen features
attributes of the test data.

KNN: We also used a parameter optimized KNN classifier
[40]. The value of k plays an important role in the performance
of the KNN classifier [41]. During the training phase, we tuned
the value of k from 1 to 30 for achieving maximum accuracy.
In our data, we found an optimal value of k = 5 that provided
the best classification accuracy.

AdaBoost: We used AdaBoost classifier with a base es-
timator Decision Tree Classifier. During the training phase,
we set the hyperparameters, the number of estimator = 50,
and algorithm =‘SMME.R’, which has typically less error and
is faster [8]. Another hyper-parameter (e.g., learning rate) of



TABLE I: SVM, KNN, and AdaBoost classifiers’ performance
metrics (%) for distinguishing hearing status.

Stimulus Classifiers
name

Average
mea-
sure(%)

Whole-
brain
features

LH’s
features

RH’s
features

Clear

SVM

Accuracy 94.90 93.83 91.95
AUC 94.75 93.41 91.61
F1-score 95.00 94.00 92.00
Precision 95.00 94.00 92.00
Recall 95.00 94.00 92.00

KNN

Accuracy 93.56 90.34 91.95
AUC 93.18 90.26 91.61
F1-score 94.00 90.00 89.00
Precision 94.00 90.00 89.00
Recall 94.00 90.00 89.00

Adaboost

Accuracy 90.08 89.00 81.50
AUC 89.52 87.94 80.48
F1-score 90.00 89.00 81.00
Precision 90.00 89.00 81.00
Recall 90.00 89.00 81.00

Noise

SVM

Accuracy 92.52 91.96 89.75
AUC 91.12 90.86 88.29
F1-score 93.00 92.00 90.00
Precision 93.00 92.00 90.00
Recall 93.00 92.00 90.00

KNN

Accuracy 92.16 91.68 87.81
AUC 90.89 91.07 87.98
F1-score 92.00 92.00 88.00
Precision 92.00 92.00 88.00
Recall 92.00 92.00 88.00

Adaboost

Accuracy 84.48 85.59 81.44
AUC 84.28 83.91 79.28
F1-score 85.00 86.00 81.00
Precision 85.00 86.00 81.00
Recall 84.00 86.00 86.00

TABLE II: SVM performance metrics (%) for distinguishing
hearing status by using the γ frequency band spectral feature.

Stimulus Classifiers
name

Average
mea-
sure(%)

Whole-
brain
features

LH’s
features

RH’s
features

Clear SVM

Accuracy 96.78 93.03 91.96
AUC 96.79 92.87 91.53
F1-score 97.00 93.00 92.00
Precision 97.00 93.00 92.00
Recall 97.00 93.00 92.00

Noise SVM

Accuracy 93.62 92.24 90.02
AUC 93.17 91.41 89.34
F1-score 94.00 92.00 90.00
Precision 94.00 92.00 90.00
Recall 94.00 92.00 90.00

the AdaBoost classifier was tuned to achieve better accuracy
(range 0.1 to 1.0; step size = 0.05). Empirically, we found a
learning rate of 1.0 that resulted in the best group segregation.

We submitted the PSD attributes and corresponding class
labels to the three classifiers individually. We separately
analyzed group classification using the whole-brain data,
hemisphere-specific data (e.g., LH and RH hemisphere), and
per frequency band wise (e.g., θ, α, β, γ). The three classifiers
were trained with the same training data set and were used
to predict group membership with the same unseen test data
set. The classifiers’ performance metrics were calculated from
the predicted class (obtained from unseen test data) and true
class labels. Classifier performance in different classification
scenarios (e.g., whole-brain, LH, and RH) are presented in
TABLE I, II, and illustrated the accuracies in Fig. 4, 5, 6,
and 7.

(a) Clear speech detection.

(b) Noise-degraded speech detection.

Fig. 4: Classifier accuracies for distinguishing NH and HI
using PSD features from speech-evoked EEGs using whole-
brain vs. hemispheres-specific (LH and RH) data.

IV. RESULTS

A. Performance Evaluation for Combining all Spectral Fea-
tures

The accuracy of three classifiers obtained using combined
all spectral features is presented in bar charts in Fig. 4.
Accuracy and other performance metrics of three classifiers
are reported in TABLE I.

For clear speech, the SVM classifier yielded a maximum
classification accuracy of 94.90%, with AUC 94.75%, F-1
score, precision, and recall 95.00% by using the whole-brain
data. However, KNN (accuracy 93.56%, AUC 93.18%, F1-
score, precision, and recall 94.00% ), and AdaBoost (accuracy
90.08%, AUC 89.52%, F1-score, precision, and recall 90.00%)
showed almost similar but a slightly less than SVM.

For noise-degraded speech perception, the SVM classifier
revealed a maximum accuracy of 92.52%, AUC 91.12%, F1-
score, precision, and recall 93.00% by using the whole-brain
data. The KNN showed almost similar performance (accuracy
92.16%, AUC 90.89, F1-score, precision, and recall 92.00%)
to the SVM, but AdaBoost accuracy was decreased by 8%
(accuracy 84.48%, AUC 84.28%, F1-score, precision 85.00%,
and recall 84.00%).

We also separately examined hemispheres-specific data (LH
and RH alone) in distinguishing clear and noise-degraded
speech. For clear speech perception, the LH data yielded the



(a) Clear speech detection.

(b) Noise-degraded speech detection.

Fig. 5: Classifier accuracies per frequency band for distin-
guishing NH and HI using PSD from whole- brain data.

classification accuracy of 93.83%, AUC 93.41%, F1-score,
precision, and recall 94.00% by using the SVM, and the KNN
showed (accuracy 90.34%, AUC 90.26%, F1-score, precision,
and recall 90.00%) close to SVM. However, the AdaBoost
showed slightly less accurate (accuracy 90.34%, AUC 90.26%,
F1-score, precision, and recall 90.00% ) than KNN.

For noise-degraded speech perception, classification was
less accurate as compared to clear speech perception. By
using the LH data alone, SVM showed accuracy 91.96%,
AUC 90.86%, F1-score, precision, and recall 92.00%; whereas
KNN, and AdaBoost were less accurate compared to the
SVM. Results are reported in TABLE I. The RH data showed
the lowest accuracy among all analysis scenarios with all
classifiers (reported in TABLE I).

For both clear and noise-degraded speech perception, it was
noticeable that all classifiers showed maximum accuracy and
AUC by using whole-brain data. The LH features showed
slightly lower accuracy and AUC score (reported in TABLE
I) than the whole-brain. The RH is less robust than LH
but still well above chance level (i.e., 50%). Notably, the
SVM provided the best classification performance among other
classifiers (KNN and AdaBoost) for all classification scenarios
(whole-brain, LH, and RH).

(a) Clear speech detection.

(b) Noise-degraded speech detection.

Fig. 6: Classifier accuracies per frequency band for distin-
guishing NH and HI using PSD from LH data.

B. Performance Evaluation for Different Frequency Bands

We also examined the power of individual frequency bands
to segregate NH vs. HI. We used the individual frequency band
spectral features (e.g., PSD) as input to the classifiers with
the corresponding class labels (e.g., NH and HI). Group clas-
sification was performed again via three different classifiers
(SVM, KNN, and AdaBoost). The accuracies of the classifiers
in different analysis scenarios and conditions are presented in
Fig. 5, 6, and 7. Fig. 5 represents the accuracy for the whole-
brain, Fig. 6 for the LH, and Fig. 7 for the RH.

For clear-speech perception, when we used the PSD features
of the θ frequency band from the whole-brain data; SVM,
KNN, and AdaBoost classifiers showed the accuracies of
88.73%, 87.39%, and 75.06%, respectively. The classifiers
were conducted on the LH data that yielded accuracies of
82.57% (SVM), 81.26 % (KNN), and 73.45% (AdaBoost).
These results showed that the LH data showed slightly less
accurate than the whole-brain data. RH data yielded the lowest
accuracies for all classifiers. The RH data showed classification
accuracies of 79.08%, 79.35%, and 70.50%, respectively, for
SVM, KNN, and AdaBoost.

For noise-degraded speech perception, with the same fre-
quency band feature (e.g., PSD of θ frequency band), classi-
fiers’ performance was less accurate than clear speech percep-
tion. Whole-brain data revealed accuracies of 85.59%, 83.93%,
and 77.28% via SVM, KNN, and AdaBoost classifiers, re-



(a) Clear speech detection.

(b) Noise-degraded speech detection.

Fig. 7: Classifier accuracies per frequency band for distin-
guishing NH and HI using PSD from RH data.

spectively. The group classification was less accurate than
whole-brain data while using LH data alone, accuracy of
82.54% (SVM), 79.22% (KNN), and 78.94% (AdaBoost). RH
data showed the least accuracies (Fig.7b) among the three
classification scenarios.

The spectral features of α and β frequency band yielded
a similar group classification accuracy (maximum 90 and
minimum 76 %) as θ band for clear and noise-degraded speech
perception. Accuracies of the different classifiers are illustrated
in Fig. 5, 6, and 7 corresponding to the individual frequency
bands.

Interestingly, group segregation was improved by using the
γ frequency band. Whole-brain data yielded the accuracies of
96.78%, 93.83%, and 87.93%, respectively for SVM, KNN,
and AdaBoost for clear speech perception; whereas in noise-
degraded speech perception, it was less robust accuracies
of 93.62% (SVM), 92.35% (KNN) and 85.59% (AdaBoost).
The group classification was slightly less accurate than the
whole-brain while using the LH data alone. LH data yielded
accuracies of 93.02% (SVM), 92.76% (KNN), and 86.59%
(AdaBoost) for clear speech perception; whereas in noise-
degraded speech perception, it was 92.24% (SVM), 91.68%
(KNN), and 85.04% (AdaBoost). However, RH data showed
lower accuracy than the LH data but still an accuracy above
85.00%.

Among these three classifiers, the SVM classifier showed

the best group segregation across the board. From the individ-
ual frequency analysis, the γ frequency band provided the best
group segregation via SVM. Thus, the other important perfor-
mance metrics of the SVM classifier is reported corresponding
to the best group segregation accuracy in TABLE II. Remark-
ably, all classifiers (SVM, KNN, and AdaBoost) revealed that
classification was most robust while using the spectral feature
of the γ frequency band for clear speech as well as for noise-
degraded speech perception.

Our findings show whole-brain data yielded maximum
group segregation while using combined all features as well
as the individual γ frequency band spectral feature. However,
classification using LH data alone was slightly less than the
whole-brain features but better than the RH. Our results show
an improvement of the classification accuracy by 11% over
previous studies, [18], [20]. Moreover, our findings support
the previous neuroimaging studies that higher frequency (e.g.,
γ) band are associated with auditory perception [42] and
perceptual accuracy [43].

V. CONCLUSION

We developed a robust and efficient computational frame-
work to differentiate NH vs. HI from PSD features. Our results
demonstrate that higher frequency (γ) bands of the EEG are
the most robust spectral features for segregating NH from HI
listeners, especially using whole-brain data. Classification is
also more robust when using LH as compared to RH features.
Our frequency band analysis has the potential to be used
in clinical settings for early detection of hearing loss, and
building models for attentional and listening assistive devices
to amplify particular speech sounds for hearing impaired
listeners.In future work, we will to investigate what are the
brain regions are engaged in categorical perception of speech.
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