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Abstract—With the breakthrough performance in a variety of
computer vision and medical image analysis problems, convolu-
tional neural networks (CNNs) have been successfully introduced
for the classification task of breast cancer histopathological
images in recent years. Nevertheless, existing breast cancer
histopathological image classification networks mainly utilize the
first-order statistic information of deep features to represent
histopathological images, failing to characterize the complex
global feature distribution of breast cancer histopathological
images. To address the problem, this work makes a first attempt
to explore global second-order statistics of deep features for the
above task. More specifically, we propose a novel deep second-
order pooling network (DSoPN) for breast cancer histopatho-
logical image classification, in which a robust global covariance
pooling module based on matrix power normalization (MPN)
is embedded into a simple yet effective CNN architecture. The
given DSoPN model can capture richer second-order statistical
information of deep convolutional features and produce more
informative global representations for breast cancer histopatho-
logical images. Experimental results on the public BreakHis
dataset illuminate the promising performance of the second-order
pooling for breast cancer histopathological image classification.
Besides, our DSoPN achieves very competitive performance
compared to the state-of-the-art methods.

Keywords—Breast cancer histopathological image classifica-
tion, second-order pooling, covariance estimation, matrix power
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I. INTRODUCTION

Breast cancer is one of the women cancers with the highest
mortality rate in the world [1]. Investigating histopathological
images has been regarded as the most important means for
the diagnosis of cancers. However, with the number of cancer
patients increasing continuously, the manual classification of
histopathological images of breast cancer tissues becomes
fatigued, tedious, and sensitive to the subjective influence
of observers. Therefore, it is of great importance to explore
computer-aided diagnostic means, providing more effective
diagnosis for the breast cancer.

Recently, convolutional neural networks (CNNs) [2]–[6]
have played an important role in various computer vision
and medical image analysis tasks. Meanwhile, CNN models
related to the classification of pathological images have been

attracting wide attentions [7]–[14], which also achieve the
breakthrough performance compared to traditional machine
learning models. Generally speaking, CNN methods for breast
cancer pathological images classification can be divided into
three categories as follows. Firstly, some researchers utilize
representative or newly constructed CNNs as feature extractors
followed by traditional classifiers to distinguish the extracted
CNN features, which belong to non-end-to-end models. Deniz
et al. [7] adopt pre-trained AlexNet and VGG16 models to
capture deep features of breast cancer histopathology images,
and then use a support vector machine to distinguish the ex-
tracted deep features. Spanhol et al. [12] extensively evaluate
the feature representation capability of the pre-trained AlexNet
model for this task, whose results illuminate the superior
performance to traditional hand-crafted textural descriptors
and task-specific CNNs in certain conditions. Besides, Gupta
and Bhavsar [10] adopt multi-layered deep features extracted
from the fine-tuned DenseNet as the final representations
of histopathology images, which are further distinguished
through the combined XGBoost classifiers. Next, several pre-
vious works directly employ classical networks for end-to-end
breast tumor histopathology images classification. To boost the
classification performance, these methods usually employ pre-
trained networks with fine-tuning. Thus, they are also called
as task-specific CNN methods [8], [9]. Shallu and Mehra [8]
explore the transfer learning ability in histopathological im-
ages compared to fully trained networks on VGG16, VGG19,
and ResNet50. Zhang et al. [9] systematically study a family
of VGGNet and ResNet models for breast cancer histopathol-
ogy images classification, and experimental results show that
ResNet50 achieves the best performance among the six net-
works. Lastly, some works attempt to construct novel end-to-
end networks using representative networks or modules for the
classification of pathological images. Bayramoglu et al. [13]
recommend two CNN models with independent and different
magnifications, inputting mixed images with various magni-
fications for training. Spanhol et al. [11] construct a simple
CNN with five trainable layers for breast cancer classification,
and this model utilizes small batches of pathological images as
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Fig. 1. The overall architecture of our deep second-order pooling network (DSoPN) for breast cancer histopathological image classification. The core of
DSoPN consists of two blocks, i.e., a simple CNN as the backbone and a second-order pooling (SoP) module to boost its performance. COV, Norm., N-S
and Comp. given in SoP module represent covariance estimate, pre-normalization, Newton-Schultz iteration and post compensation operation, respectively.

network inputs to prevent the overfitting problem, achieving a
6% performance improvement over traditional methods. Jiang
et al. [14] design a novel CNN model consisting of small SE-
ResNet modules, achieving favorable performance on this task.
To further promote its performance, a Gauss error scheduler
is also applied for the learning of the network.

All of these studies supply a broad prospect for the
application of CNNs in large-scale histopathological image
classification of breast cancer, which has significantly pro-
moted the research of this field. However, these methods
primarily employ simple first-order statistics of deep features
to represent histopathological images, ignoring characterize
complex global feature distribution (high-order statistics) of
histopathological images, leading to the limitation of classifi-
cation performance. Actually, high-order representations have
shown advantages in obtaining global deep feature statistics of
visual images, which have recently attracted more and more
attentions [15]–[20]. Compared with first-order CNNs, high-
order models effectively capture more complex relationships
of features through second-order or higher-order functions
inserted into convolutional layers. Relevant researches on
high-order statistical modeling mainly include DeepO2P, B-
CNN, MPN-COV, etc. [15]–[18] DeepO2P [17] embeds a
learnable O2P layer into existing convolutional networks, and
it further proposes a matrix backpropagation methodology
for network training in an end-to-end manner. Different from
DeepO2P, B-CNN [18] captures second-order statistic features
by performing an outer product of convolutional activations
extracted from two different convolutional networks. In addi-
tion, Li et al. [15] utilize covariance square root normaliza-
tion to construct deep second-order representations of input
images, achieving the brilliant performance on large-scale
visual recognition tasks. To obtain more discriminant second-
order statistic features, GSoP-Net [16] plugs global covariance
pooling in-between network, further boosting the performance
of convolutional networks.

Inspired by the brilliant performance of high-order net-
works achieved in computer visual tasks, this work makes
an attempt to explore global second-order pooling for breast
cancer histopathological image classification problem. Specif-
ically, we propose a novel deep second-order pooling network
(DSoPN) for this medical image task, in which a robust covari-
ance pooling module [15], [20] based on matrix power normal-
ization (MPN) is embedded into a simple yet efficient CNN

architecture. The proposed DSoPN can capture richer second-
order statistic information of deep convolutional features and
produce more informative global representations of breast
cancer histopathological images. Experiments conducted on
public BreakHis dataset illuminate the effectiveness of second-
order pooling for this problem. The overall architecture of our
DSoPN can be illustrated as in Fig. 1. The main contributions
of our paper can be summarized into three aspects. (1) A novel
deep second-order pooling network (DSoPN) is proposed
for the breast cancer histopathological image classification
problem in an end-to-end learning manner. To the best of
our knowledge, it is the first attempt to introduce second-
order statistic features for this medical image task. (2) Our
DSoPN consists of a simple yet effective CNN architecture
as the backbone and a second-order pooling module to boost
the performance of the network. To obtain more discriminant
representations, DSoPN utilizes a covariance estimation mod-
ule based on matrix power normalization (MPN) to compute
second-order statistics of deep activations for histopathological
images. (3) Experiment results on the public BreakHis dataset
demonstrate the effectiveness of the second-order pooling for
this problem. Moreover, our DSoPN achieves very competitive
performance compared to the state-of-the-art methods.

II. METHOD

In this section, we give a detailed description of the deep
second-order pooling network (DSoPN) proposed for the
breast cancer histopathological image classification problem,
which mainly consists of two core blocks, as shown in Figure
1. The leftmost block is a simple yet efficient CNN architecture
named SimpleNet as the backbone, and the rightmost block is
the second-order pooling module based on the faster training
of global covariance pooling module (fast-MPN-COV) [20].

A. SimpleNet

The topology of SimpleNet given in this work can be shown
in Figure 2, which mainly consists of five convolutional layers
and three fully connected layers. We apply the ReLU [21]
activation to provide nonlinearity for the SimpleNet. With the
function f(X) = max(0,X), the ReLU activation has a
faster gradient descent to back-propagate, compared to other
activation functions. For the first two convolutional layers and
the fifth convolutional layer, we add the Max pooling layer
with kernel size = 3× 3 and stride = 2. The Max pooling



Fig. 2. Framework of the SimpleNet model, which mainly consists of five convolutional layers and three fully connected layers.

layer is behind the ReLU layer to reduce the spatial resolution
of the feature maps, and achieves spatial invariance to input
distortions and translations [22]. The weights of the network
are initialized by using a Gaussian distribution with a low
standard deviation of 0.01 for the convolutional layers and
fully connected layers. The Dropout layer is applied after the
first fully connected layer, with the probability p = 0.5, which
effectively improves the generalization ability of the network.

Note that though our SimpleNet is similar to the VGGNet
[3], we prefer to use a shallower, more efficient and simple
network, which is also intuitive and natural. Simple and ef-
fective structure is our motivation for adopting the SimpleNet,
with which we empirically show, a well-crafted yet simple
and reasonably deep architecture can be comparable to or
better than a complex network structure, such as VGG-F or
VGG-M [3]. In the Section III, we also conduct extensive
ablation studies and experiments on both image-level and
patient-level classification tasks for evaluating the proposed
SimpleNet’s performance, compared to the counterparts of
VGGNet models.

B. Covariance Pooling Module

Recent works have shown that second-order statistics in
deep CNNs encourage obtaining more discriminative repre-
sentations than first-order ones [15]–[20], [23]. These studies
show that second-order statistics can capture the correlation
between feature dimensions and significantly improve model
classification performance. Specially, global second-order co-
variance representations of deep features based on matrix
power normalization have illustrated brilliant performance on
large-scale visual recognition tasks [15], [20], attracting more
and more attentions in recent years. Inspired by the above
observations, we also adopt covariance pooling to compute
the second-order statistic features of breast cancer histopatho-
logical images.

1) Covariance normalization: Let X ∈ RC×H×W be the
input feature of the network, we can get the following form:

M = ϕ(X;W , b), (1)

where ϕ represents the feature function, which is a CNN
consisting of a series of convolutional and pooling layers,
such as SimpleNet. W and b represent the weight parameters

and the bias of the feature function. We reshape the feature
map M ∈ RC×H×W into a feature matrix M ∈ Rd×N
with N = H ×W features of d-dimension. Then, covariance
differentiation is embedded into deep learning network, and
covariance matrix F is established.

F = MĪMT , (2)

where Ī = 1
N

(
I− 1

N JJT
)
, I is the identity matrix of N×N ,

J is the d-dimensional vector with all elements are one, and
T is the transpose of the matrix.

Since the covariance matrix is a symmetric positive semi-
positive, Singular Value Decomposition (SVD) or eigenvalue
decomposition (EIG) can be performed as follows:

F → (U ,Λ),F = UΛUT , (3)

where Λ = diag(λ1, ..., λd) is a diagonal matrix and λi, i =
1, ..., d is an eigenvalue arranged in non-increasing order; U =[
u1, ..., ud

]
is an orthogonal matrix, and its column ui is the

eigenvector corresponding to the eigenvalue λi. Therefore, the
power operation of covariance matrix F can be calculated
through EIG or SVD decomposition to the power operation
on the eigenvalue:

(U ,Λ)→ Z,Z = Fα = UΦ(Λ)UT , (4)

here, Φ(Λ) = diag(λα1 , ..., λ
α
d ), the exponent α is a positive

real number, and empirically, the covariance matrix works best
when α is 0.5.

2) Covariance normalization Acceleration: As described in
Subsection II-B1, the power operation on the matrix depends
heavily on the SVD or EIG operation, but the implementation
of SVD or EIG on GPU is slower than the CPU counterparts
[15], [20], [24]. For this reason, we utilize Newton-Schulz
iteration to accelerate the computation of covariance normal-
ization [20], [24]. In details, from Eq. (4), the Z = F 1/2 =

Y = Udiag(λ
1/2
i )UT when α = 1/2. Let Y0 = F̂ ,Z0 = I

for n = 1, ..., d, as shown in [20], the coupled iteration can
take the following form:

Yn =
1

2
Yn−1(3I −Zn−1Yn−1),

Zn =
1

2
(3I −Zn−1Yn−1)Zn−1.

(5)



The Eq. (5) can be computed with only matrix product, more
suitable for implementation on GPU. Meanwhile, the iteration
can achieve an approximate solution with a small number of
iterations. In our method, the iteration number is 5.

In order to guarantee the covergence of the Newton-Schulz
iteration, the F firstly passes through

F̂ =
1

tr(F )
F , (6)

where tr(·) denotes the trace of matrix. And in order to
compensate the data magnitudes caused by Eq. (6), we apply
a post-compensation, i.e.,

Z =
√
tr(F )YN . (7)

C. Instantiation

As mentioned above, our proposed DSoPN model combines
the merits of the SimpleNet and the covariance pooling
module to capture second-order statistic information of deep
features, and meanwhile it can be easily trained in an end-
to-end learning manner, as shown in the Figure 1. In details,
the breast cancer histopathological image passes through all
convolutional layers, and first of all, the first five convolutional
layers are used to extract feature maps of the input breast
cancer histopathological image, and then the feature maps
are passed through the covariance pooling module, capturing
the second-order statistical information and providing more
nonlinearity. Finally, the outputs as the final representation of
the image are fed into the classifier.

III. EXPERIMENTS

In this section, we first introduce the breast cancer
histopathological image dataset adopted for evaluating deep
second-order pooling network (DSoPN). Then, experimental
setting and evaluation metrics are further described, followed
by the detailed experimental results on patient level and image
level, respectively.

A. Dataset

To effectively evaluate the performance of the proposed
DSoPN, we adopt a commonly used breast cancer histopatho-
logical image dataset, i.e. BreaKHis dataset. BreaKHis dataset
consists of 7909 pathological images from 82 patients, in
which each pathological image has been annotated with a
benign or malignant label. Besides, 2480 samples belong to
benign images and the remained 5429 samples are malignant
images. Each sample image has the size of 700x460 pixels in
RGB channel pattern with an 8-bit color depth per channel.
According to the different magnification factors, samples of
each patient can be classified into four groups of 40x, 100x,
200x and 400x, respectively. A typical sample with four
different magnification ratio images is shown in Figure 3. The
rectangle in this figure is manually added for demonstration
purpose, which indicates the region of interest selected to be
detailed in the next higher magnification factor.

Fig. 3. A typical breast malignant sample in four magnification factors (a)
40×, (b) 100×, (c) 200×, (d) 400×.

B. Evaluation Metrics and Settings

In this work, two typical metrics of image-level recognition
rate and patient-level recognition rate are computed for the
model measure. The recognition rate of image level does not
consider the factor of patient information, but only considers
the classification accuracy of models for images. Given Nall
represents the number of all pathological images in the test
set, and Nrec represents the number of pathological images
correctly classified by the test. The recognition rate of the
image level IRR can be calculated as follows:

IRR =
Nrec
Nall

. (8)

Meanwhile, the recognition rate on patient level is calcu-
lated by taking patient information into account. Let Np be
the number of pathological images of patient P . For patient
P , if the classification of cancer images is correct, the score
on the patient level can be defined as Ps and computed as

Ps =
Nrec

Np
. (9)

Let N be the number of patients in the test set, the global
patient recognition rate PRR can be further calculated by

PRR =

∑
Ps

N
. (10)

For fair comparisons, we adopt the same experimental
protocols following [25], [26]. More specifically, the original
dataset is randomly divided into training set and testing set for
each magnification, where training set consists of 70% images
and other 30% of images make up testing set. Additionally,
25% images of the training set are retained for cross-validation
to select model parameters. All of experiments adopt the same
training dataset and testing dataset. To reduce the influence
of the possible over-fitting problem, we perform simple crop
and flip operators to augment the size of training set. For
the training of networks, we set the initial learning rate to
lr = 0.001, and attenuate it once during the training process
through the anti-attenuation strategy if the loss value keep
stable or increasing in 8 epochs. This parameter scale updates



the size or steps taken by the neural network. The stochastic
gradient descent method with a batch size of 32 is used
to optimize the loss function. The datasets are randomly
scrambled to avoid any negative effects on learning from the
use of orderly training data. We also set the value of the
momentum factor to 0.9, which helps the loss function move
to the global minimum instead of getting stuck in the local
minimum. All of the experiments are implemented using the
Pytorch deep learning framework on Server equipped with
Tesla V100 GPU.

C. Experimental Results
1) Comparisons with Baselines: To illustrate the effec-

tiveness of second-order statistic features for this task, we
first compare DSoPN with its first-order baseline (i.e., Sim-
pleNet) on BreakHis dataset. In addition, we also carry out
experiments by using two milestone models (i.e., VGG-F and
VGG-M) and corresponding second-order pooling networks
(i.e., VGG-F-SoP and VGG-M-SoP) to further prove the
superiority of second-order statistic features for this problem.
The compared experimental results on image level and patient
level are reported in Table I and Table II, respectively.

TABLE I
COMPARED RESULTS WITH CORRESPONDING FIRST-ORDER BASELINES ON

IMAGE LEVEL

Methods 40x(%) 100x(%) 200x(%) 400x(%)
SimpleNet 91.49 92.12 91.39 91.44
DSoPN(SimpleNet-SoP) 96.00 96.16 98.01 95.97
VGG-F 90.65 88.16 88.25 87.55
VGG-F-SoP 95.49 94.40 96.85 96.34
VGG-M 89.15 88.16 88.91 86.26
VGG-M-SoP 96.33 94.56 96.36 95.42

Table I shows that DSoPN achieves image level recognition
rates of 96.00%, 96.16%, 98.01% and 95.97% on 40x, 100x,
200x and 400x data sets, respectively. DSoPN obtains the
optimal classification results on 100x and 200x data sets,
while it is slightly worse than VGG-M-SoP on 40x data set
and VGG-F-SoP on 400x date set, respectively. In addition,
its first-order baseline, i.e., SimpleNet, is superior to both
VGG-F and VGG-M on all of the four data sets, whose
recognition rates are 91.49%, 92.12%, 91.39% and 91.44% on
40x, 100x, 200x and 400x data sets, respectively. Compared
with its first-order counterpart of SimpleNet, DSoPN largely
outperforms it by 4.51%, 4.04%, 6.62% and 4.53% gains
on the four data sets, respectively. The illustrated promis-
ing performance results prove the effectiveness of DSoPN
for this medical image problem. When it comes to VGG-
based models, it is clear to see that the two second-order
pooling models are also superior to corresponding first-order
baselines by a large margin. By embedding the second-order
pooling layer into VGG-F, the image level recognition rate
on 40x, 100x, 200x and 400x data sets increases by 4.84%,
6.24%, 8.6% and 8.97%, respectively. Similarly, the second-
order pooling model VGG-M-SoP gains 7.54% performance

improvement on average over its first-order network. Specially,
VGG-M-SoP outperforms VGG-M by 9.16% on 400x data
set. These significant performance improvements establish
the effectiveness of second-order statistic features for breast
cancer histopathological image classification tasks.

TABLE II
COMPARED RESULTS WITH CORRESPONDING FIRST-ORDER BASELINES ON

PATIENT LEVEL

Methods 40x(%) 100x(%) 200x(%) 400x(%)
SimpleNet 89.76 93.67 92.85 92.86
DSoPN(SimpleNet-SoP) 95.01 96.84 97.92 96.28
VGG-F 90.19 90.63 87.42 88.06
VGG-F-SoP 95.22 94.82 97.48 96.72
VGG-M 88.69 90.51 89.36 87.09
VGG-M-SoP 95.12 94.77 97.28 96.22

Table II illuminates the compared experiment results with
corresponding first-order counterparts on patient-level classi-
fication problem. As shown in Table II, patient-level classi-
fication accuracy of 95.01%, 96.84%, 97.92% and 96.28%
are achieved by DSoPN on 40x, 100x, 200x and 400x data
sets, respectively. The optimal classification accuracy on 100x
and 200x data sets are obtained by DSoPN, while the best
results on 40x and 400x data sets belong to VGG-F-SoP.
Though DSoPN is shallower and has fewer parameters, it has
a similar classification performance with VGG-F-SoP on this
medical image task, and both of them slightly outperform
VGG-M-SoP model. When comparing second-order pooling
networks with their first-order counterparts, similar to the
comparison results on image level, by embedding second-order
pooling layers, all of the three second-order pooling networks
gain significant performance improvements on the four data
sets. The compared performance results once again prove the
effectiveness of deep second-order statistic features for breast
cancer histopathological image classification application.

2) Comparisons with representative methods: To further
evaluate the effectiveness of second-order statistic features
for this task, we further compare DSoPN, VGG-F-SoP and
VGG-F-SoP with other typical CNN-based methods that have
achieved advanced level in the past four years, and the com-
pared results on both image level and patient level are listed
in Table III. As shown in this table, our second-order methods
are superior to most of the previous methods, illustrating a
competitive performance compared to several state-of-the-art
methods.

More specially, for compared results on image level, our
second-order models significantly outperform methods given
in [11], [26], [28], [31]–[33]. Among the six methods, Ben-
hammo et al. obtain optimal result of 90.20% on 40x data
set by using Inception V3 model. Meanwhile, CNN+FV
and ResHist-Aug have the best performance of 87.60% and
91.15% on 100x and 200x data sets, respectively. In addi-
tion, the highest accuracy on 400x data set of 86.60% is
achieved by [32]. However, our proposed DSoPN, whose accu-



TABLE III
COMPARED RESULTS WITH REPRESENTATIVE CNN-BASED METHODS ON BOTH IMAGE LEVEL AND PATIENT LEVEL

References Years Methods Image Level (%) Patient Level (%)
40x 100x 200x 400x 40x 100x 200x 400x

Spanhol et al. [11] 2016 A variant of AlexNet 85.60 83.50 82.70 80.70 90.00 88.40 84.60 86.10
Bayramoglu et al. [13] 2016 Single Task CNN – – – – 83.08 83.17 84.63 82.10

Song et al. [28] 2017 CNN+FV 87.70 87.60 86.50 83.90 90.20 91.20 87.80 87.40
Han et al. [27] 2017 CSDCNN 95.80 96.90 96.70 94.90 97.10 95.70 96.50 95.70

Bardou et al. [25] 2018 CNN+Aug – – – – 96.82 96.96 96.36 95.97
Benhammo et al. [26] 2018 Inception V3 90.20 85.60 86.10 82.50 91.50 85.10 86.80 82.90

Gupta et al. [10] 2018 Sequential(Ave.) – – – – 94.71 95.90 96.76 89.11
Zhu et al. [31] 2019 Multiple CNNs 85.70 84.20 84.90 80.10 85.20 83.50 84.10 79.30

Lichtblau et al. [32] 2019 DE ensemble 83.90 86.00 89.10 86.60 85.60 87.40 89.80 87.00
Gupta and Bhavsar [29] 2019 Independent framework – – – – 96.81 95.26 93.78 90.76

Gour et al. [33] 2020 ResHist-Aug 87.40 87.26 91.15 86.27 87.47 88.15 92.52 87.78
Kumar et al. [30] 2020 VGGNET16-SVM – – – – 94.11 95.12 97.01 93.40

Ours –
DSoPN 96.00 96.16 98.01 95.97 95.01 96.84 97.92 96.28

VGG-F-SoP 95.49 94.40 96.85 96.34 95.22 94.82 97.48 96.72
VGG-M-SoP 96.33 94.56 96.36 95.42 95.12 94.77 97.28 96.22

racy reaches 96.00%, 96.16%, 98.01% and 95.97%, achieves
5.80%, 8.56%, 6.86% and 9.37% gains over these optimal
results on 40x, 100x, 200x and 400x data sets, respectively.
In addition, DSoPN achieves competitive results with the
state-of-the-art model of class structure-based deep CNN
(CSDCNN) [27], which adopts an extra supervised distance
constraint to supervise the learning process of the network,
and outperforms CSDCNN on 40x, 200x, and 400x sets,
respectively.

When it comes to results on patient level, we compare our
second-order pooling models with 12 typical first-order models
including CSDCNN, Multiple CNNs, Sequential model, etc. It
is worth noting that our second-order methods still outperform
most of the given methods. Among them, models proposed by
[11], [13], [26], [28], [31]–[33] obtain the average accuracy
of less than 90% on the four data sets, which are obviously
inferior to other methods. CSDCNN and CNN+Aug gain
brilliant performance with average accuracy over 96%, and
are superior to the remained three methods [10], [29], [30]
by appropriate 2.00%. Our second-order pooling models can
achieve extremely competitive performance with CSDCNN
and CNN+Aug. Moreover, they obtain the optimal accuracy of
97.92% and 96.72% on 200x and 400x data sets, respectively.
The compared results on patient level once again show the
effectiveness of second-order pooling models.

3) Visualization Results: Finally, we select and analyze
some representative images that can be well classified by
second-order network of DSoPN but failed to be correctly
discriminated by its corresponding first-order baseline of Sim-
pleNet model. Figure 4 shows some typical images in 100x
data set under this condition, where images of the first two
rows are breast benign tumor images that are misclassified as
malignant samples, and images of the third and fourth rows
are mispredicted as benign images by SimpleNet model. As
shown in Figure 4, pathological images with large blank areas
are often not able to be correctly classified by the baseline
CNN network. When benign images contain irregular texture
in most areas, SimpleNet easily fails to classify these images.
Meanwhile, by analyzing misclassified malignant images, it

Fig. 4. Sample images from 100x data set that are correctly classified by
DSoPN while misclassified by its first-order baseline, where images of the
first two rows are benign images and the remaining belong to malignant.

can be seen that the inapparent texture feature could also be the
possible reason leading to the misclassification of the baseline
CNN. However, these images can be correctly classified by
our second-order pooling network, indicating the effectiveness
of DSoPN in capturing more discriminant features of breast
cancer histopathological images.

IV. CONCLUSION

In this work, we try to explore global high-order statis-
tics and propose a novel deep second-order pooling network
(DSoPN) for breast cancer histopathological image classifica-
tion. DSoPN employs a robust covariance estimation module
to capture richer second-order statistic information of deep
convolutional features, providing a more discriminant repre-
sentation of histopathological images. Experimental results
on public BreakHis dataset also illuminate the promising
performance of DSoPN, proving the effectiveness of second-
order statistic features for this medical image task. Our future



work will further explore more robust high-order statistic fea-
tures for breast cancer histopathological image classification
by performing more advanced statistic models and suitable
backbone networks. Besides, the combination of first-order
and high-order statistic features will also be addressed.
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