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Abstract—Obstacle avoidance is one of the basic capabilities
of intelligent mobile robots. With the diversification of the
application environment, mobile robots are required to avoid
obstacles with higher generality. Benefit from the development of
mobile platform and deep learning algorithm in recent years, we
conceive a few-shot dynamic obstacle avoidance strategy to meet
this higher generality demand. Under this metric-based meta-
learning method, mobile robots can quickly adapt to unknown
environments by learning from several samples. In order to
verify its effectiveness, we use this strategy to train a model
and deploy it to the mobile robot and run multiple obstacle
avoidance recognition tests in the real-world environment. The
results of experiments performed on the mobile robot platform
illustrates a good performance and verifies our proposed strategy.
In addition to analyzing the experimental results, the advantages,
disadvantages as well as application potential of the proposed
strategy as a decision aid are also discussed.

Index Terms—few-shot learning, obstacle avoidance, mobile
robot, unknown environment

I. INTRODUCTION
A. Background

Obstacle avoidance is the basic requirement for autonomous
navigation of the mobile robots. With the increasing com-
plexity of application scenarios, the reliability and universality
of obstacle avoidance for mobile robots are becoming higher
and higher. Traditional obstacle avoidance algorithms, such as
grid method and visibility graph [1] have good performances
in dealing with known obstacles, but they often fail to work
well when there are unknown or dynamic obstacles. Therefore,
a series of intelligent obstacle avoidance algorithms, such as
genetic algorithm [2] [3], artificial neural network [4], fuzzy
control [5], etc., are generated, and the performance of these
algorithms depends on the design of the geometric model.
In recent years, with the update of the processor and the
application of various advanced algorithms, it becomes easier
to carry out complex operations on the mobile robot platform.
In order to promote the intelligence of mobile robots, deep
learning algorithms are also being applied to mobile robots
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to avoid obstacles [6] [7]. However, there is no any kind of
algorithm can achieve relatively effective obstacle avoidance
in any environment. How to improve the obstacle avoidance
algorithm to make it obtains generality is still an important
research direction at present. By referring to human abilities,
obstacle avoidance can be carried out effectively in different
environments according to the previous experience. Human-
like learning is a feasible way to solve the general problem
of obstacle avoidance algorithm. The generation of few-shot
learning [8] is to build a bridge between traditional deep
learning and human-like learning [9].

B. The need of few-shot learning in robotics

Mobile robots are often arranged to work in diverse en-
vironments. Traditional deep learning algorithms are driven
by large amounts of data, but training models by collecting
large numbers of labeled samples in privacy and dangerous
environments is expensive or even impossible. How to adapt
to the new environment as quickly as humans has become a
research hotspot. Few-shot learning solves the problem of lack
of samples by referring to prior knowledge and achieves the
goal of learning new tasks quickly, which is exactly the defect
of obstacle avoidance of mobile robots. From the perspective
of few-shot learning, the ability of mobile robots to adapt to
the new environment can be improved, which can greatly save
the learning cost and achieve fast learning.

C. Contributions

Based on the embedded learning [10] method, we proposed
a few-shot obstacle dynamic avoidance strategy to solve the
problem of mobile robots quickly adapting to unseen environ-
ments. The main contributions of this paper are as follows:

1) Quickly adapt to the unknown environment: only a few
labeled samples are needed to achieve the ideal obstacle
avoidance effect without retraining the learning model.

2) Human-like ability to avoid obstacles: decisions making
are based on monocular vision information without using
accurate distance and azimuth.

D. Organization

The follow-up part of this paper is organized as follows:
Section II provides an overview of the recent related works in



few-shot learning and visual based obstacle avoidance. Section
IIT is an introduction to the proposed obstacle avoidance
scheme. Experimental results are given in Section IV, follow
by the discuss and analysis in Section V. The conclusion and
supplementary reference of related materials are provided at
the end.

II. RELATED WORKS

At present, there are few studies on the practical application
about few-shot learning, and there is no application in mobile
robot. Therefore, the related works are respectively illustrated
from the two aspects of few-shot learning and deep learning
in obstacle avoidance.

A. Few-shot learning

As an emerging hot topic of deep learning, a variety of
solutions of few-shot learning have emerged. The mainstream
of existing few-shot learning methods is embedded learning
[9]. The samples are mapped to a smaller embedded space
to distinguish between similar and different samples. This
method is mainly used for classification tasks by measuring
the similarity between samples and embedded Spaces. The
ProtoNet [11], Matching Nets [12], Relation Net [13] are all
realized based on this method. Embedded learning usually
adopts meta-learning [14] [15] training process, and the model
learned can be quickly transferred to other tasks. There are also
methods based on data augmentation. The method in [16] is
to learn a set of encoders from similar classes to perform
intra-class transformations to synthesize new samples for an
unseen class. [17] augments the dataset by migrating from
a large number of unlabled or weakly labled datasets. The
effectiveness of such methods depends on external data and is
not always applicable. Handcrafted rules are commonly used
as pre-processing step, such as mapping [18], rotation [12],
flip [19] [20], etc. Santoro et al. [19] proposed the memory-
augment strategy based on external memory [21] to solve few-
shot learning tasks. Such methods rely on human experience to
design rules for memory updating and storage. Other methods
such as fine-tuning [22] [23], Model-agnostic meta-learning
(MAML) [14], Meta-Learner LSTM [24] are focused on how
to optimize parameters to reduce overfitting caused by lack of
samples. Our strategy is similar to the ProtoNet [11], adopting
the metric-based meta-learning method.

B. Deep learning in obstacle avoidance

Deep learning-based obstacle avoidance algorithms [7] [25]
have gained attention in recent years because they do not need
to establish geometric models and adjust a large number of
parameters, and can directly benefit from large data sets and
continuous use. L. Tai et al. [6] proposed a deep-network solu-
tion to treat obstacle avoidance as a depth image classification
task. It combines the hierarchical structure with the convolu-
tional neural network (CNN) [26] to realize the model-free
obstacle avoidance with the raw depth image as the input and
the control command as the output. When perception is limited
to monocular vision without three-dimensional information,

L. Xie et al. [7] proposed a deep reinforcement learning
algorithm based on deep double-Q network (D3QN), which
avoids obstacles by predicting depth information from RGB
images. There are similar methods like [27] which achieve
indoor visual navigation without additional map information
and manual guidance through distributed deep reinforcement
learning in different regions. Kovacs et al. [28] proposed the
method of image region classification based on relative focus
map, which does not require prior training. Based on the
advantages of these methods, we solve the problem of few-
shot obstacle avoidance as an image classification task.

III. FEW-SHOT DYNAMIC OBSTACLE AVOIDANCE

In this section, we will introduce the proposed few-shot
dynamic obstacle avoidance strategy, which is used to adapt a
mobile robot to an unknown environment with a few samples
and without retraining the learning model. It comprises a
feature extractor, metric-based decision making process and
meta-training process. The feature extractor generates a set of
feature vectors of the raw monocular visual data, which are
embedding to a high dimensional space. A similarity measure-
ment function is used to calculate the similarity between the
test data and the embedded space for decision making. This
whole end-to-end process framework is shown as Fig. 1. With
the method of meta-learning, the above process can be rapidly
generalized to new tasks.

A. Feature extraction

The feature extractor is implemented based on the
EfficientNet-B0O [29]. The baseline model, shown as Fig. 2, is
built with mobile inverted bottleneck convolution (MBConv)
[30]. It is a network model for mobile applications with 5.3M
parameters. We feed the raw RGB image with a resolution
of 224x224 into the model and normalized it before training,
and obtain its feature map through multi-layer convolution.
To improve the speed of calculation without affecting the
accuracy, there is a dropout layer with dropout rate equals
0.2 after a batch normalization and 2x2 average-pooling layer.
Then squeeze its feature map to feature vector for later
embedding.

B. Metric-based decision making

As a few-shot learning problem, we will introduce our
strategy in terms of general problem definitions. A task with
N categories and K labeled samples per categories is called
N-way K-shot task. The sample is expressed as <X, y>.
K samples in each category constitute the support set S of
corresponding category. The feature vectors F in support set
of category C are embedded into a low dimensional space to
obtain its embedded representation E:

1 K
Ec(x) = =+ Y_ Fu, (1
i=1

Equation (1) is to compute the average vector as an embedded
representation of category C, F, is feature vector of sample
X; in the support set of C.
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Fig. 1. Few-shot Dynamic Obstacle Avoidance Framework. E(x) is an embedding function (Equation (1)), D(X¢est, E) denotes the similarity measurement

(Equation (2)), and black arrows stand for the different decisions.
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Fig. 2. Feature extraction network. (a) is the model architecture; (b) and
(c) are structures of middle layers. Conv stands for standard convolution,
DWConv is depthwise convolution, 1x1/3x3/5x5 means kernel size, BN is
batch normalization, Relu is ReLU activation function, and x2/3/4 is the
repeated number of its left layer.

We use the distance from the test sample to different embed-
ded spaces to measure its similarity with each category which
is expressed as D(X¢est, E) in Fig. 1. Similar to the ProtoNet
[11], we adopt Euclidean distance as similarity measurement:

D(xtesty EC) = \/(Fxt,est - EC)(Fﬂﬁtest

The smaller the distance, the more similar the test sample is to
the category. In general, the similarity is numerically reflected
as s € [0, 1] and the closer s gets to 1, the more similar it is.
Then the similarity can be written as:

1

s(xtesh EC) 1+ D(xtestyEC) (3)
We calculate the similarity between the test samples and
N categories, and select the category corresponding to the
maximum s as the prediction result to make the decision. This
decision-making process is based on metric information, so in
the new environment that also deals with obstacle avoidance
tasks, only few labeled samples are needed to build the support
set shown in Fig. 3 without retraining the model in order to
learn the environmental information into the model.

—Eo)T (@)

C. Meta-learning process

The learning process adopts the episode-based meta-
learning methods proposed by [24]. It is a meta-learner which
contains two nested learning procedures. Fig. 3 illustrates
the data composition in the learning process. The learning
process consists of two phases, meta-training for learning few-
shot learning ability and meta-validation for determining hyper
parameters. The meta-training procedure involves many few-
shot learning tasks, and each task contains a train set and
a test set sampled from meta-training dataset. In each task,
we use the same train set to predict a set of test images for
evaluation, then we obtain a predicted distribution after feature
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Fig. 3. An epoch in meta-learning process. In the red box is a single
few-shot learning task. Train set and support have the same structure and are
different names for different phases. Query works the same as test set.

extraction and decision making to calculate the single task loss
and accuracy. The loss is calculated using the cross entropy
loss function:

Loss = = p(yi)log(p(4:)) “)

i=1

where p(y;) is the probability of the ground-truth and p(y;)
is the probability of the prediction. We update the model
parameters by using an Adam optimizer to optimize loss.

After we the meta-training process, there is a series of test
tasks of a new environment in the meta-validation process to
verify the learning ability of the model which is evaluated with
accuracy.

IV. EXPERIMENTS AND RESULTS
A. Platform and environments

In order to verify the effectiveness of our strategy, the
experiment is carried out on NVIDIA Jetbot, a mobile robot
platform shown in Fig. 4(a) consisting of Jetson Nano de-
velopment board for data processing, vehicle frame, steering
gear, power supply, Raspberry Pi camera V2.1 for RGB image
acquiring, and other components. The Jetson Nano is equipped
with a 4 core Cortex-A57 CPU, an 128 core Maxwell GPU and
4GB LPDDR4 memory. It is a a powerful development board
for edge computing. Fig. 4(b) is the environment we use to
collect the dataset for training and Fig.4(c) is the environment
to collect dataset for validation. The test environment is shown
as Fig.4(d). We also collect a dataset in test environment to
evaluate model capability by accuracy.

B. Data collecting

In our experiment, we collect three datasets from three
different environments for training, validation and testing. And
the ground-truth labels are manually marked. To be specific,
we control the mobile robot to walk in different environments

(a) Platform (b) Train

N
\\
X
(c) Validation

(d) Test

Fig. 4. Platform and environments. (a) the mobile robot platform for
experiments, (b) and (c) are environments to collect dataset for training and
validation, and (d) is the test environment.

and execute various instructions to avoid collisions. Mean-
while, samples are collected by the monocular camera on the
mobile robot and labeled as “free”, “left-blocked” and “right-
blocked” categories corresponding to “go forward”, “go right-
forward”, “go left-forward” three decisions. So we have three
datasets that each have three categories and each category
contains 300 RGB images. The training dataset is from the
artificial environment, and the validation and test dataset are
from the real-world environment. Two of them are used to
train the obstacle avoidance model in the section III, and one
is used to test and construct the support set required for actual
obstacle avoidance.

C. Model training and deployment

The acceleration environment can be configured on Jetbot
for training, but in order to reduce the training time, we trained
and tuned the model on the server with GeForce RTX 2080
Ti GPUs, and then transplanted the model to Jetbot. We have
a PyTorch [31] framework configured on both the server and
Jetbot for training and evaluation. The original RGB image
size collected from camera is 300x300, and we resize the
samples to a resolution of 224x224 before training to reduce
the computational cost. Then put them into the meta-learning
cycle introduced in Section III. We set up 100 epochs for
training, meta-training batchsize is 100 and meta-validation
batchsize is 200. It means that there are 100 tasks in meta-
training phase and 200 tasks in meta-validation phase in each
epoch. Each task is a 3-way 5-shot problem with query equals
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15. The learning rate of training process is le-3, and we load
‘efficientnet-b0’ as the pre-training model and take its weights
as the initial point of training.

When deploying the model to Jetbot, we prepared a support
set with five images for each of the three categories from
the test environment. After loading the model, the real-time
video frames are predicted according to the support set, and
the predicted results are respectively corresponding to the
instructions to be taken.

D. Results and evaluation

In the actual test environment shown in Fig. 4(d), the
mobile robot successfully avoids all obstacles, including static
tables, chairs and posts and dynamic pedestrians. The average
processing time is 0.131s per frame. The whole reaction time
from reading the video frame to making the decision is about
0.15s. This processing speed is enough for robot to get the next
instruction before the decision is completed. As a task-driven
rather than precision-driven problem, our strategy reach the
ideal results in the experiment. To improve the persuasiveness,
we also evaluate the effectiveness of the strategy numerically.

Firstly, we show the validation result of model training as
Fig. 5. The way the model learns determines that its results in
the validation phase will be similar to those during the test, and
the results in Fig. 6 also confirm this statement. We could see
that the initial accuracy is 64.2%. During the first 40 epochs
of learning, the fluctuation is strong, but it is in the normal
fluctuation rising state. This indicates that the 3-way 5-shot
learning ability of the model is gradually enhanced. After that,
the accuracy gradually stabilized and finally reached 83.1% by
the time the training was completed.

We randomly selected 5 samples from each categories of
test dataset to construct a support set. The mobile robot is
arranged to run in the test environment shown in Fig. 4(d),
which is tested with different obstacles. Each category is tested
100 times and the model’s performance is shown in Fig. 6. It
can be seen that the overall test accuracy is 83.6%, and the
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Fig. 6. Confusion matrix on test dataset. The values on the map represent
the distribution of the prediction.

correct amount of decision for three categories of “free”, “left-
blocked” and “right-blocked” are 84, 84 and 83. The accuracy
is in line with the training results and expectations. From the
wrong decisions, 1 sample in“left-blocked” and 3 in “right-
blocked” are predicted to be “free” which means that the
probability of making a “go forward” decision is very small
when there are obstacles. 5 samples in “free” and 14 in “right-
blocked” are predicted to be “left-blocked”, and 11 and “free”
and 15 in “left-blocked” are predicted to be “right-blocked”.
The error rate is not high but it means that the robot is likely
to make a turn where it needs to go straight, and turn in the
wrong direction when it needs to turn. We will analyze the
possible causes of this type of error in section V.

V. ANALYSIS AND DISCUSSION

In our strategy, the model treats obstacle avoidance as a
classification problem, and is trained in a supervised way. It
enables a mobile robot to complete a new task using a few
samples. In this section, we are going to analyze the experi-
mental results and discuss the advantages and disadvantages
of our strategy as well as its application potential.

A. Experimental analysis

Considering going straight, turning left-forward and right-
forward are the three most basic forward movements and one
of the two movements rather than going straight would be
made when there is an obstacle right in front. Therefore,
the task was set as a 3-way problem in experiments. The
probability of random guessing was 33.3%, but the initial
accuracy of model learning was more than 60%. We tried to
replace the feature extraction network and cancel the use of
the pre-trained model then observe the corresponding learning
curve. It was found that the initial accuracy using the pre-
trained model was significantly better than the unused one,
while the model using another feature extraction network is
not different in this respect. It explains the importance of



prior knowledge in few-shot learning task, just like human-
beings who’s ability to complete new tasks is influenced by
accumulated experience.

According to the experimental results, it can be concluded
that the robot could avoid all the obstacles in the real-world
environment, but the accuracy of the model was only about
83%. From the distribution of prediction results, our strategy
can accurately predict the need for turning. We have observed
samples of decision-making errors, and found that the errors
occurred when the obstacles accounted for a relatively small
proportion in the image, that is, the robot still had some
moving space. So the mobile robot will not collide even if
it is wrong. And when making a wrong decision on the free
area, the car will deviate from the path rather than collide.
The main reason for this is that our test set came from a dark
ceramic tile environment, and some test samples had obvious
reflective conditions. This also reflects that our strategy has the
same limitations as other monocular visual obstacle avoidance
methods, which are greatly affected by light, visibility and
other factors. It is not robust enough as a single sensor obstacle
avoidance scheme.

In addition to the above experiments, we also tried some
methods to improve the accuracy without adjusting the frame-
work of the strategy. The most intuitive and effective method
is to use operations such as scaling or rotation to to amplify the
data of the support set, or to construct multiple support sets
for streaming processing of the support set to make voting
decisions but this method will obviously affect the processing
speed.

B. Discussion

Our strategy works well in common environments, but it
is only a feasible but imperfect idea to solve the generality
problem of obstacle avoidance of mobile robot. Due to some
inherent defects and advantages of the vision sensor, the
obstacle avoidance scheme based on monocular vision is often
used to integrate with other sensors. Our strategy can realize
the integration with other schemes at the decision-making level
to deal with some extreme situations, for example, the 2D-
laser cannot detect the stair edge below the plane and the
visual information is obviously different from the free area.
Because of its low learning cost, it has an advantage over other
deep learning programs. And its human-like learning ability
is worthy of further study in the process of intelligent mobile
robots. For example, how to make the obstacle avoidance route
of the robot more stable and less affected by environmental
factors, and how to use this strategy to achieve a complete
autonomous navigation system and how to apply it in a more
complex environment.

VI. CONCLUSION

In this paper, we proposed a few-shot dynamic obstacle
avoidance strategy based on monocular visual information
which enables mobile robots to quickly adapt to unknown
environment, and accomplished the obstacle avoidance tasks
in the real-world environment. Experimental results show

that our scheme can successfully accomplish the few-shot
obstacle avoidance task. In principle, it allows mobile robots
to learn much like humans and develop human-like abilities.
Nevertheless, the strategy has its limitations, such as the
inability to accumulate knowledge learned in different test
environments, so it may not be the most suitable way for
practical applications. We will look at how to achieve the
accumulation of experience in all the walked environment to
omit the step of collecting support sets changing environments
in the future research.
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