
New Insights on Learning Rules for Hopfield
Networks: Memory and Objective Function

Minimisation
Pavel Tolmachev

Electrical and Electronic Engineering Department,
The University of Melbourne,

Melbourne, Australia
0000-0001-6024-0135

Jonathan H. Manton
Electrical and Electronic Engineering Department,

The University of Melbourne,
Melbourne, Australia
0000-0002-5628-8563

Abstract—Hopfield neural networks are a possible basis for
modelling associative memory in living organisms. After sum-
marising previous studies in the field, we take a new look
at learning rules, exhibiting them as descent-type algorithms
for various cost functions. We also propose several new cost
functions suitable for learning. We discuss the role of biases
— the external inputs — in the learning process in Hopfield
networks. Furthermore, we apply Newton’s method for learning
memories, and experimentally compare the performances of
various learning rules. Finally, to add to the debate whether
allowing connections of a neuron to itself enhances memory
capacity, we numerically investigate the effects of self-coupling.

Index Terms—Hopfield Networks, associative memory, content-
addressable memory, learning rules, gradient descent, attractor
networks

I. INTRODUCTION

Hopfield networks were introduced almost four decades ago
in an influential paper by Hopfield [10]. They have received
considerable attention because they exhibit properties of a
content-addressable memory, and it has been hypothesized that
biological associative memory might operate according to the
same principles [22, 17, 24].

Hopfield network is a fully-connected directed graph with
the vertices associated with neurons and edges corresponding
to the strengths of interactions between these neurons, nu-
merically characterised by weights. In a discrete version of a
Hopfield network the neurons can only be in one of two states:
“up” and “down”. The state of a given neuron depends on the
influence of all the neighboring neurons and a bias; the latter
characterises a tendency of a neuron towards being in one of
the states.

The network evolves in discrete time-steps. At each time-
step, a weighted sum of states of all the neurons and the
neuron’s bias (net input) is computed at each neuron. The
weights in the sum are the synaptic strengths afferent to a
postsynaptic neuron. The neuron then re-evaluates its own
state according to the following rule: if the resulting net
input is positive, the neuron assumes “up”-state, otherwise,
it is updated with “down”-state. Guided by this principle,
the network is guaranteed to converge either to a stable

configuration or a stable limit cycle after a finite number of
time-steps.

Discrete Hopfield network, although stripped from all the
complexities associated with intrinsic neural dynamics has an
intriguing property: manipulating the weights of the network
one may able to imprint binary vectors (we refer to these
vectors as patterns) into the system. If the system is initialised
sufficiently close to one of these memorised states (i.e. we
present a distorted pattern to the network), the network re-
covers the original pattern (which corresponds to one of the
stable configurations). The network may store more than just
one pattern: the more patterns are written into the network,
the less noise the network may tolerate while still correctly
recovering a pattern.

A. Related work

The capacity of the Hopfield Network to store patterns
depends on the algorithm of tuning the weights between the
neurons (learning rule), so developing new learning strategies
became a primal focus of researchers in this area. The first
learning rule applied to store patterns was Hebbian learning
[10]. To increase the storing capacity of the networks, various
other learning rules were proposed [27], [5], [16], [23], [4],
[5]. For the detailed review, a general family of rules was
formulated and considered in [1] and [3].

From purely engineering standpoint, in the recent literature
Hopfield neural networks have been applied for image pro-
cessing [20], [9], solving various combinatorial problems [32]
[25], [18], random numbers generation [30], [7], and have even
been used in conjunction with Brain Computer Interfaces [12],
[28]. To increase the energy efficiency of the implementation
of Hopfield Networks in hardware, learning in sparse networks
have been considered in [29] and subsequently tested in the
context of image restoration.

B. Contributions

In this paper we provide a new approach for generating
learning rules by formulating a task of learning as an optimi-
sation problem and applying descent-type strategies (Sec.IV).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Further, we show that some of the previously described rules
could be obtained from the aforementioned perspective. In
section VI we demonstrate the performance of the newly
proposed learning rules and made a comparison with the rules
previously described in the literature. We then extend these
learning rules with the application of Newton’s method. It
was debated weather the neural self-connections benefit the
memory capacity of the Hopfield Networks [3] [6] [13]. We
experimentally studied the effects of self-coupling in VI-C.
Along the way, we discuss the role the biases play in learning
in the Hopfield Networks (Sec. IV-C).

II. DEFINITION OF THE MODEL

In a concise form, the model could be summarised as
follows:

hi[n] =

N∑
j=1

ωijsj [n− 1] + bi

si[n] = sign(hi[n]), i ∈ {1, 2 . . . , N}

(1)

Where hi - net input to a neuron i (also could be referred to
as hidden variable or local field), ωij - the synaptic strength
from a neuron i→ j, si - the state of a neuron i, bi - bias of
a neuron. Number n in square brackets denotes the number of
the current time-step.

In a vectorised from, the model’s dynamic could be stated:

h[n] = Ws[n− 1] + b

s[n] = sign(h[n])
(2)

where W is a matrix containing ωij as elements.

A. An example of a learning rule: Hebbian learning

An obvious candidate for learning procedure would be the
Hebbian rule, which was stated as ”cells which fire together
wire together” back in 1948 by Donald Hebb [8]. The intuition
behind this rule in the context of the Hopfield networks is
simple: suppose the system initially has all the weights set
to zero, and one wants to write some pattern into a system.
The obvious thing to do would be to increase the weights
between those neurons which fire together by a constant
value, to facilitate their parallel alignment. Conversely, if the
neurons are aligned antiparallely in the pattern to memorise,
the weights should be decreased by the same amount. To put
succinctly, the Hebbian rule is defined:

∆wij = λσiσj (3)

Where σi is the state of a neuron in the pattern to be
memorised. λ is the proportionality coefficient. If there are
multiple patterns, the rule then becomes:

∆wij = λ

p∑
ν=1

σνi σ
ν
j (4)

Where index µ ∈ 1, . . . , p denotes the number of a pattern
to memorise, and p is the total number of patterns.

III. IMPORTANT ASPECTS OF LEARNING IN THE HOPFIELD
NETWORKS

A. Physical analogy

If one considers only symmetric weight matrices, and thus,
symmetric interactions between the neurons, there is a useful
analogy from physics: an evolution of a system of atoms with
magnetic moments interacting with one another could also
be described by the same dynamics. The physical analogy
allows us to consider the evolution of a Hopfield Network
as a relaxation of a physical system into a state achieving a
local minimum of energy E.

E = −1

2
sTWs− (b, s) (5)

Presenting the system with the initial state, from which it
then continues to evolve, the system relaxes to a closest local
minimum. These minima are defined by the weight matrix.
Thus, the task of memorising the patterns could then be seen
as creating funnels in the energy landscape: the rounder and
deeper the funnels are, the more robustly the pattern could
be recovered. During the process of learning the patterns,
the system may also create spurious minima in the energy
landscape, which do not correspond to any of the patterns it
has learned. The trivial examples of spurious minima would
be anti-patterns.

B. Biological plausibility

The important aspect of a learning rule is its biological
plausibility, as the Hopfield Networks are studied mostly to
understand how the biological associative memory works.
Here, by using term ”biologically plausible” in relation to a
learning rule we do not claim that the learning in biological
systems occurs according to the rule. Rather, we use the term
to eliminate non-plausible learning schemas.

The two main components defining biological plausibility
are locality and incrementality. For the learning rule to be
strictly local, the update of weights has to rely only on the
information available at a given synapse. The rule could also
be said to be loosely local if the update requires information
from the other synapses from presynaptic and/or postsynaptic
neurons.

Incrementality of a learning rule states that updates of
the weights may depend only on one pattern at the time.
Incremental learning is closely linked to forgetting. As the
network one patter after another, it eventually overrides the
information about the old patterns encrypted in its weights
[19].

One can see that Hebbian learning falls into the category of
biologically plausible rules in the aforementioned sense, as it
is both local and incremental.

C. Asymmetry in the connectivity

Although it is much easier to operate with the symmetric
weight matrices, as it provides a useful analogy with spin
glasses [10], the biological networks do not exhibit such
property. The asymmetry in the connectivity is still largely

unexplored phenomena, despite the bulk of research done in
this area. It has been claimed that asymmetry in the synaptic
weights allows storing limit cycles, and thus, oscillations [10].
Further pursuing this line of research may shed some light
on how to construct Central Pattern Generators (CPGs). In a
letter [21], the author noted that if the process of updating
the weights never stops in the real network, the sufficient
asymmetry of weights might be needed for the network to
perform successfully. Otherwise, the system may stuck in a
spurious minimum and then reinforce it through continuous
learning. To counter this, if the system has not reached a
stable pattern, it has to relapse into a chaotic behaviour, for
the weights not to be excessively updated in some particular
direction.

Although the exploration of the role of asymmetry in these
networks is tempting, in this paper, we consider only systems
with the symmetric weights.

D. Linear programming and learning in Discrete Hopfield
Networks

During the learning stage, a pattern to be memorised is
clamped to a network, effectively forcing the neurons to be in
a predefined state: si = σi ∀i ∈ {1, 2, . . . , N}. Furthermore,
since the states of neurons are fixed, a net input on the
neuron i depends only on the clamped pattern σ and weights
presynaptic to the neuron, ωi. For the pattern to be stable, each
neuron has to adjust its net input to have the same sign as the
state-value clamped to it. To achieve this, a neuron needs to
tune only the afferent weights, while it does not require any
information about the synaptic strengths between any other
neurons.

Let’s define hµi (ωi) =
∑N
j=1 ωijσ

µ
j to be a net input to a

neuron i with the pattern µ clamped on the network. Then,
for a given pattern σµ, one can formulate a constraint to be
imposed on the weights afferent to a neuron i:

hµi (ωi)σ
µ
i ≥ 0, µ = {1, . . . , p} (6)

Or, in a canonical LP form (aTx+ b ≤ 0):

−σµi (σ
µ)
T
ωi − σµi bi ≤ 0, µ ∈ {1, . . . , p} (7)

Further down, we are going to address these constraints
as stability constraints. Note that these constraints depend
on the weights and a bias linearly. Because of this, the task
of learning breaks down into a set of linear programs, each
defined for a particular site i, and solved independently from
the other neurons. We refer to such property of Discrete
Hopfield Network as linearity of learning.

Developing the idea of linearity of learning further, one
can obtain a useful geometric perspective on the learning
algorithms. The stability constraints correspond to hyper-
planes in weights-biases space, which pass through the origin,
and each of the constraints defines a feasible half-space. Thus,
if the solution to the learning problem exists, it lies in the
pointed multi-dimensional cone defined by the intersection of
the half-spaces. To make the solution robust, one needs to stay

as far from the boundaries defined by the stability constraints
as possible. These will be ensured if the weights and a bias lie
on the bisectrix of the feasible cone in the weights-bias space.

To counter the unbounded growth of the weights, either
regularisation or additional constraint on the weight’s norm
has to be imposed.

E. Weights re-scaling

Another useful concept may be obtained by considering the
alignment of a net input hiσi on a neuron i. It is easy to notice,
that the stability constraints are invariant to the scaling of the
incoming weights and a bias of a neuron by some positive
factor. Thus, if the local linear program on a neuron i is
successfully solved, and a pair (ωi, bi) is one of the solutions,
a pair (aωi, abi) also satisfies the stability constraints, for any
a > 0

IV. POSING THE TASK OF LEARNING AS AN OPTIMISATION
PROBLEM

The problem of robust pattern retrieval is conjugated with
making the basins of attractions of the patterns as wide
and round as possible. However, it is highly nontrivial to
characterise the width and roundness of basins of attraction
analytically, although some experimental investigations have
suggested that maximising the quantity γ = hiσi

‖ωi‖2 increases
the size of basins of attraction and prevents the unbound
growth of elements of ωi [14].

Instead of employing a direct approach, we replace the task
of learning a pattern by the task of making the system to
maintain the pattern, once it has reached this state.

That being said, the new task can be expressed as the
following optimisation problem:

min
W

D
(
σ, sign(Wσ + b)

)
(8)

where D is some distance measure between two binary vec-
tors. The first variable is one of the learned patterns which
the network has started from, and the second argument is the
state of the system after the one round of evolution started
from this pattern.

This problem, in turn, may be further simplified down to:

min
W

D
(
σ, λ(Wσ + b)

)
(9)

Where we simply omitted the sign function and replaced with
identity function multiplied by some positive λ.

A. Learning as a gradient descent

The reformulation of a problem allows us to implicitly
calculate the update of weights and biases, for the whole
function to be minimised by setting the change of the learned
parameters to be proportional to the anti-gradient of the
function.

1) Descent Overlap: Utilising the negative cosine similarity
measure instead of a distance function: D

(
σ, λ(Wσ+ b)

)
=

−
(
σ, λ(Wσ+ b)

)
. One arrives at the following update rule:

∆ωij = λσiσj

∆bi = λσi
(10)

Which is exactly the Hebbian rule described previously (see
eq. 3). It is also worth noticing that minimising the negative
cosine similarity measure corresponds to minimising an energy
function (eq. 5).

2) Descent L2 norm: If one uses the L2 norm for the
distance measure D between the vectors, the resulting update
rule will take the form:

∆ωij = 2λ
(
σi − λhi

)
σj

∆bi = 2λ
(
σi − λhi

) (11)

The rule is aimed to minimise the same function as the pseudo-
inverse learning rule, but at the same, it is biologically plau-
sible in a defined above sense, as it is local and incremental.
Interesting enough, apart from the factor 2, it is actually the
”rule II” in Diederich and Opper [4] but obtained from a
different perspective.

This rule is also could be seen from yet another angle: (σi−
λhi)

2 = 1− 2λhiσi + λ2h2i , so it follows that this rule seeks
to maximise the alignment of the net input with the clamped
pattern (term −2λhiσi), while preventing the local-field from
growing too much (regularisation λ2h2i).

3) Descent L1 norm: Using L1 distance as D (which is
equivalent to minimising the Hamming distance) one gets:

∆ωij = λ sign
(
σi − λhi

)
σj

∆bi = λ sign
(
σi − λhi

) (12)

This rule is, in fact, exactly the same as the ’rule I’ proposed
in Diederich and Opper [4]:

sign
(
σi − λhi

)
= sign

(
σi(1− λhiσi)

)
= σi sign

(
1− λhiσi

)
B. Robust learning with barrier functions

For p patterns to be learned, each particular neuron has a
set of p constraints, where each constraint defines an allowed
half-space. To counteract the noise, the weights of incoming
connections to a neuron have to stay away from the hyper-
planes corresponding to constraints as far as possible. To
achieve this, we propose an exponential barrier exp{−λσµi h

µ
i }

which grows fast if the constraints are not satisfied. Other
choices of the barrier function are possible. The tendency of a
system to stay away from the constraints will lead the weights
and biases to become infinitely large. To deal with this issue,
one has to impose a regularisation on learning variables to
keep the norms of weights and biases from infinite growing. It
should be noted, that if the problem is infeasible, minimisation
of this function will produce a parameter set which tends
to minimise the number of broken constraints. The resulting
minimisation problem (for one neuron) is formulated as:

min
ωi

p∑
µ=1

e−λσ
µ
i

(
(σµ,ωi)+bi

)
+
α

2
(‖ωi‖22 + b2i) (13)

Since this function is readily differentiable, one can obtain
an update rule as follows:

∆ωij = λ

p∑
µ=1

σµi σ
µ
j e
−λσµi hi − αωij

∆bi = λ

p∑
µ=1

σµi e
−λσµi hi − αbi

(14)

Of course, this rule is not biologically plausible in the previ-
ously defined sense, as it requires access to the information
about all the patterns at once. Nevertheless, one can easily con-
struct a biologically plausible version of it just by considering
one constraint at the time (and, hence, just one pattern). Thus,
the learning automatically incorporates forgetting, is local and
incremental.

C. Tuning the biases

If one employs the approach of learning through gradient
descent, it becomes obvious that the biases also may contribute
to the process of memorising (although they were largely
neglected in previous research papers, being dismissively set
to zero). The biases could be regarded as the weights of
connections coming from an up-stated neuron from outside
of the network. From now on, to use a common notation for
weights and biases, we will use ω′

i to refer to a vector of ωi
and bi concatenated together, and the symbol σ′µ will denote
the original pattern σµ concatenated with 1.

D. Beyond the gradient descent: Newton’s method

To speed up the convergence of learning algorithm, one may
consider the learning with variable step-size, instead of fixed
λ. To obtain the step-size as a function of locally available
information, one has to find an explicit expression for the
inverse of the Hessian of an objective function.

As an example, let us consider the task of minimisation of
the function:

f(ω′
i) =

1

2

p∑
µ=1

(λhµi − σ
µ
i)2 +

α

2
‖ω′

i‖
2
2 (15)

Then the gradient of this function is written as:

∂f

∂ω′
i

= λ

p∑
µ=1

(λhµi − σ
µ
i)σ′µ + αω′

i (16)

And the Hessian:

Hω′
i

=
∂2f

∂ω
′2
i

= αI + λ2Z′Z′T (17)

where Z′ is the matrix, with the augmented patterns σ′µ

as columns. And the learning rule would be:

∆ω′
i = −Hω′

i

−1 ∂f

∂ω′
i

(18)

Luckily, Hessian Hω′
i

is easily invertible thanks to Neu-
mann series for matrices. Applying (I −A)−1 =

∑∞
k=0A

k:

Hω′
i

−1 =
1

α
(I−λZ′Z′T+λ2Z′C′Z′T−λ3Z′C′2Z′T+. . .)

(19)
where C′ = Z′TZ′ - the correlation matrix. Considering

learning all the patterns at once, one may use only the first
two terms to get a reasonable approximation. If the task is to
learn sequentially, just one pattern at the time, the inverse of
the Hessian may be computed explicitly:

Hω′
i

−1 =
1

α
(I − λ

1 + λ(N + 1)
σ′σ′T) (20)

with λ(N + 1) < 1 for the infinite series to converge.
We have arrived at a modification of previously described

set of learning rules: a weight’s update (18) with the gradient
(16) and an inverse of a Hessian in (20).

V. METHODS

This section describes numerical experiments preformed in
the Results section.

We will refer to the rules described in section IV as descent-
type rules. They are summarised in the table below (Table I).

TABLE I
DESCENT-TYPE RULES

Learning rule Minimised Function

DescentL2
p∑

µ=1

(λhµi − σ
µ
i)

2

DescentL1
p∑

µ=1

|λhµi − σ
µ
i |

DescentExpBarrier
p∑

µ=1

exp
(
− λhµi σ

µ
i

)
DescentExpBarrierSI*

p∑
µ=1

exp
(
−

λhµi σ
µ
i

‖
∑
j ω

2
ij + bi‖

)
*postfix ”SI” stands for scale-invariant (see sections III-E, IV)

Since employing Newton’s method does not affect the
performance in terms of accuracy of recall (it only speeds up
the convergence), we have used information from a Hessian
whenever it was possible. Except for DescentExpBarrierSI
rule, all the descent-type rules were combined with the L2
regularisation on weights and biases. We will compare incre-
mental rules separately from the non-incremental ones. For our
simulations, a network of 75 neurons was used. All the tests
were performed with random patterns, where the probability
of one particular neuron to be “on” was 0.5. For each of the
learning rules, we have made the network to learn p patterns,
where p varies from 1 to 75. To test the recall performance, for
each number p, we have sequentially introduced k number of
random flips (changes of a neuron’s state to an opposite one)
into one of the patterns, and presented the distorted pattern to
the network (k is running from 1 to 37). After each retrieval,
the weights and the biases of the network were reset to some
small random values drawn from a gaussian distribution with a

TABLE II
INCREMENTAL RULES AND PARAMETERS

Learning rule Parameters

Hebbian sc = True, λ = 1

Storkey sc = True, λ = 1

Diederich-Opper I sc = True, lr = 10−2

Diederich-Opper II sc = True, lr = 10−2, tol = 0.1

Krauth-Mezard sc = True, lr = 10−2, maxiter = 200

DescentExpBarrier sc = True, tol = 0.1, λ = 0.5, α = 10−3

DescentL1 sc = True, tol = 0.1, λ = 0.5, α = 10−3

DescentL2 sc = True, tol = 0.1, λ = 0.5, α = 10−3

DescentExpBarrierSI sc = True, tol = 0.1, λ = 0.5

Gardner-Krauth-Mezard sc = True, lr = 10−2, k = 1.0,

maxiter = 100

*sc - self-coupling, lr - learning rate, tol - criteria for optimisation
termination, maxiter - maximum length of sequence of patterns to learn

zero mean. The whole cycle was repeated for 100 times. Thus,
the total number of retrievals was 100 × 75 × 37 for each
rule. For each retrieval, the overlap (an inner product divided
by N) between the retrieved vector and the intended pattern
was computed. The visual measure we have used to evaluate
the performance of learning prescriptions was the position of
the curve pε(k), on which the overlap value was ε = 0.95 so
that the overlap values below the curve were higher than ε: the
greater the area under the curve, the better the performance
of a given rule. All the code is publicly available on GitHub:
github.com/ptolmachev/Hopfield_Nets

VI. RESULTS AND DISCUSSION

In this section, we make a comparison of newly proposed
learning strategies with some of the previously known learning
rules.

We have made a comparison of the following incremental
learning rules: Hebbian, Storkey, Diederich and Opper rules
I and II and all of the descent-type learning rules (Table I).
We also have made comparison with the rule proposed by
Krauth and Mezard [16], since it could be attributed neither
to incremental, nor to non-incremental rules since this rule
employs weak-pattern-first update strategy. We also have used
a modification of Gardner’s rule [5]: combining it with Krauth-
Mezard strategy of choosing the next pattern to learn (we refer
to it as Gardner-Krauth-Mezard learning rule).

For non-incremental rules comparison, we have chosen
Hebbian, pseudo-inverse [23], Storkey [26], all of the descent-
type learning rules, and a Krauth-Mezard rule [16].

A. Comparison of incremental rules

The performance of incremental class rules is depicted in
figure 1. Not surprisingly, Gardner-Krauth-Mezard rule per-
forms better than the other rules since the rule relies on weak-
pattern-first update strategy, although simpler Krauth-Mezard
rule outperforms other rules in the high load regime. Storkey
rule is the rule with the best storing capacity if we consider

TABLE III
NON-INCREMENTAL RULES AND PARAMETERS

Learning rule Parameters

Hebbian sc = True, λ = 1

Storkey sc = True, λ = 1

Pseudoinverse —

Krauth-Mezard sc = True, lr = 10−2, maxiter = 200

DescentExpBarrier sc = True, tol = 10−3, λ = 0.5, α = 10−3

DescentL1 sc = True, tol = 10−3, λ = 0.5, α = 10−3

DescentL2 sc = True, tol = 10−3, λ = 0.5, α = 10−3

DescentExpBarrierSI sc = True, tol = 10−3, λ = 0.5

Gardner-Krauth-Mezard sc = True, lr = 10−2, k = 1.0,

maxiter = 100

*sc - self-coupling, lr - learning rate, tol - criteria for optimisation
termination, maxiter - maximum length of sequence of patterns to learn

Fig. 1. The pε(k) curve for incremental rules ε = 0.95, N = 75 (description
in Sec. V). The curve denotes the threshold at which the normalised dot
product between recovered and intended state is 0.95. The greater the area
under the curve the better the performance of a learning rule.

only sequential updates in a predefined order. From theoretical
considerations, it was also anticipated that DescentL1 and
DescentL2 would perform analogously to Diederich and Opper
rules I and II correspondingly [4].

B. Comparison of non-incremental rules

The performance is depicted in Figure 2. The storing capac-
ity of Hopfield Network with Gardner-Krauth-Mezard rule is
still comparable to the ones of best non-incremental rules: it
outperforms any other non-incremental rule in the moderate-
flips-moderate-patterns region. In the high-load region, the
newly proposed DescentExpBarrierSI exhibits higher memory
capacity than any other rule. As could be seen in the figure,
we have experimentally confirmed that the performance of a
DescentL2 rule is similar to the one of a pseudo-inverse rule,
since these rules minimise the same quantity. There is also
not much difference in performance between the DescentL1
rule and the pseudo-inverse, as the corresponding curves are
practically aligned. Krauth-Mezard rule handles memorising
lots of patterns quite well (the upper-left region in the figure),
but it fails to keep up with the descent-type rules when there
are fewer memories needed to be retained. Finally, although
one of the best incremental rules, Storkey rule performs on par
with the Hebbian prescription, when the update is done non-
incrementally. This could be anticipated, since the net inputs
hi are close to zero when the network is in a blank-slate state,
and one-off non-incremental update effectively renders the rule
to be an instance of Hebbian learning.

C. Dependence of the performance on self-connectivity

In this section, we address the following question: how
self-connectivity affects learning performance? It has been
debated whether self-coupling is beneficial for memory stor-
age in [3] [13] [6], but, it seems, the issue is still not
resolved. Here, we give experimental results to investigate
the effects of self-coupling on the performance of various
learning rules, namely, Hebbian, DescentL2 (Pseudo-inverse),
Gardner-Krauth-Mezard and DescentExpBarrierSI. We present
the comparison only for non-incremental learning. The param-
eters for the simulations, apart from self-coupling parameter,
are the same as presented in the table I.

From the results depicted in Fig. 3, it could be inferred that
self-coupling may be preferable for some learning prescrip-
tions. For instance, the performance of the Hebbian learning
only gets better with the self-coupling parameter turned on.
The positive effect of self-connectivity is also apparent for
the Gardner-Krauth-Mezard learning rule in the high noise re-
gion. DescentExpBarrierSI demonstrate superior performance
in high-load-low-noise region when the self-connectivity is
present. In agreement with the investigations done in [6],
DescentL2 (and its one-off equivalent pseudo-inverse) learning
rule has better performance when there is no self-connectivity.

D. Incremental learning vs. one-off update

If one considers strictly incremental versus non-incremental
learning, there is a trade-off between learning in portions and
the robustness. When the learning is done in an incremental
way, each time a new linear constraint is presented, the system
has to adjust the parameters to satisfy it. As a result, the point
in the weights-biases space, representing the weights of the
network, is bouncing off from the hyper-plane corresponding

Fig. 2. The pε(k) curve for non-incremental rules ε = 0.95, N = 75
(description in Sec. V). The curve denotes the threshold at which the
normalised dot product between recovered and intended state is 0.95. The
greater the area under the curve the better the performance of a learning rule.

to a newly imposed constraint. However, it may leap too far,
so that some of the constraints set previously may be broken.
If it is the case, the network forgets the pattern associated with
the broken constraint.

As the online learning in living organisms is done incremen-
tally, the forgetting is natural. Nevertheless, to counteract this
problem species have likely developed some countermeasures
to make the learning not so purely incremental. Several such
mechanisms may be at work, including unlearning spurious
states [11] [15] [31] and re-iterating amongst the weakest
patterns (as have been proposed by Krauth and Mezard [16]).
Since these mechanisms could not be performed online, as
that would interfere with the ongoing activities, it has been
hypothesised that non-incremental learning may occur during
the REM sleep [2].

VII. CONCLUSION

We have presented new insights into how the learning may
be performed in Hopfield Neural Networks using gradient-
descent: we have relaxed the task of learning down to a prob-
lem of minimisation a smooth differentiable function. Using
this principle, we have established the equivalence of some of

Fig. 3. The pε(k) curve for non-incremental rules ε = 0.95, N = 75 with
varying self-connectivity parameter. The curve denotes the threshold at which
the normalised dot product between recovered and intended state is 0.95. The
greater the area under the curve the better the performance of a learning rule.

the previously proposed learning algorithms to minimisation
of the particular objectives. Guided by the described idea, we
were able to formulate a new family of learning rules. We
also have made an extensive comparison of several learning
rules with the new ones we proposed in this paper. We have
clarified the role of biases in the learning task: the biases could
be regarded as weights of connections incoming from a neuron
from outside of the network fixed in “up”-state. The effects
of the presence of self-connections on the memory capacity
were simulated. Finally, we have discussed a trade-off between
incremental and robust learning.

ACKNOWLEDGMENT

Pavel Tolmachev would like to thank Andrei Pavlov for the
invaluable discussions.

REFERENCES

[1] Abbott, L. F. (1990). Learning in neural network mem-
ories. Network: Computation in neural systems, 1(1):105–
122.

[2] Crick, F., Mitchison, G., et al. (1983). The function of
dream sleep. Nature, 304(5922):111–114.

[3] Davey, N., Hunt, S. P., and Adams, R. (2004). High
capacity recurrent associative memories. Neurocomputing,
62:459–491.

[4] Diederich, S. and Opper, M. (1987). Learning of correlated
patterns in spin-glass networks by local learning rules.
Physical review letters, 58(9):949.

[5] Gardner, E. (1988). The space of interactions in neural
network models. Journal of physics A: Mathematical and
general, 21(1):257.

[6] Gorodnichy, D. O. (1999). The optimal value of self-
connection. In IJCNN’99. International Joint Conference
on Neural Networks. Proceedings (Cat. No. 99CH36339),
volume 1, pages 663–668. IEEE.

[7] Hameed, S. M. and Ali, L. M. M. (2018). Utilizing
hopfield neural network for pseudo-random number gen-
erator. In 2018 IEEE/ACS 15th International Conference
on Computer Systems and Applications (AICCSA), pages
1–5. IEEE.

[8] Hebb, D. O. (2005). The organization of behavior: A
neuropsychological theory. Psychology Press.

[9] Hillar, C., Mehta, R., and Koepsell, K. (2014). A hopfield
recurrent neural network trained on natural images performs
state-of-the-art image compression. In 2014 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 4092–
4096. IEEE.

[10] Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abilities. Pro-
ceedings of the national academy of sciences, 79(8):2554–
2558.

[11] Hopfield, J. J., Feinstein, D., and Palmer, R. (1983).
‘unlearning’has a stabilizing effect in collective memories.
Nature, 304(5922):158–159.

[12] Hsu, W.-Y. (2012). Application of competitive hopfield
neural network to brain-computer interface systems. Inter-
national journal of neural systems, 22(01):51–62.

[13] Kanter, I. and Sompolinsky, H. (1987). Associative recall
of memory without errors. Physical Review A, 35(1):380.

[14] Kepler, T. B. and Abbott, L. F. (1988). Domains
of attraction in neural networks. Journal de Physique,
49(10):1657–1662.

[15] Kleinfeld, D. and Pendergraft, D. (1987). ” unlearning”
increases the storage capacity of content addressable mem-
ories. Biophysical journal, 51(1):47–53.

[16] Krauth, W. and Mézard, M. (1987). Learning algorithms
with optimal stability in neural networks. Journal of
Physics A: Mathematical and General, 20(11):L745.

[17] Lansner, A. (2009). Associative memory models: from
the cell-assembly theory to biophysically detailed cortex
simulations. Trends in neurosciences, 32(3):178–186.

[18] Li, R., Qiao, J., and Li, W. (2016). A modified hopfield
neural network for solving tsp problem. In 2016 12th World
Congress on Intelligent Control and Automation (WCICA),
pages 1775–1780. IEEE.

[19] Nadal, J., Toulouse, G., Changeux, J., and Dehaene,
S. (1986). Networks of formal neurons and memory
palimpsests. EPL (Europhysics Letters), 1(10):535.

[20] Pajares, G., Guijarro, M., and Ribeiro, A. (2010). A
hopfield neural network for combining classifiers applied
to textured images. Neural Networks, 23(1):144–153.

[21] Parisi, G. (1986). Asymmetric neural networks and the
process of learning. Journal of Physics A: Mathematical
and General, 19(11):L675.

[22] Pereira, U. and Brunel, N. (2018). Attractor dynamics
in networks with learning rules inferred from in vivo data.
Neuron, 99(1):227–238.

[23] Personnaz, L., Guyon, I., and Dreyfus, G. (1986). Col-
lective computational properties of neural networks: New
learning mechanisms. Physical Review A, 34(5):4217.

[24] Recanatesi, S., Katkov, M., Romani, S., and Tsodyks,
M. (2015). Neural network model of memory retrieval.
Frontiers in computational neuroscience, 9:149.

[25] Smith, K., Palaniswami, M., and Krishnamoorthy, M.
(1998). Neural techniques for combinatorial optimization
with applications. IEEE Transactions on Neural Networks,
9(6):1301–1318.

[26] Storkey, A. (1997). Increasing the capacity of a hopfield
network without sacrificing functionality. In International
Conference on Artificial Neural Networks, pages 451–456.
Springer.

[27] Storkey, A. J. (1999). E cient Covariance Matrix Meth-
ods for Bayesian Gaussian Processes and Hop eld Neural
Networks. PhD thesis, Citeseer.

[28] Taghizadeh-Sarabi, M., Niksirat, K. S., Khanmoham-
madi, S., and Nazari, M. (2013). Eeg-based analysis of
human driving performance in turning left and right using
hopfield neural network. SpringerPlus, 2(1):1–10.

[29] Tanaka, G., Nakane, R., Takeuchi, T., Yamane, T.,
Nakano, D., Katayama, Y., and Hirose, A. (2019). Spa-
tially arranged sparse recurrent neural networks for energy
efficient associative memory. IEEE transactions on neural
networks and learning systems.

[30] Tirdad, K. and Sadeghian, A. (2010). Hopfield neural
networks as pseudo random number generators. In 2010
Annual Meeting of the North American Fuzzy Information
Processing Society, pages 1–6. IEEE.

[31] Van Hemmen, J., Ioffe, L., Kühn, R., and Vaas, M.
(1990). Increasing the efficiency of a neural network
through unlearning. Physica A: Statistical Mechanics and
its Applications, 163(1):386–392.

[32] Wen, U.-P., Lan, K.-M., and Shih, H.-S. (2009). A re-
view of hopfield neural networks for solving mathematical
programming problems. European Journal of Operational
Research, 198(3):675–687.

