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Abstract—Continual learning, which updates machine learning
models according to streaming data, is increasingly needed
in the dynamic systems. Such a scenario requires both the
preservation of previous knowledge, as well as the adaptation
to new observations, with high computational and memory
efficiency at the edge. Previous approaches attempt to learn the
knowledge class by class from scratch, using either regularization
based or memory replay-based methods. However, they still
suffer from severe accuracy drop, a.k.a catastrophic forgetting,
during this incremental process. Moreover, as the entire model is
involved in each updating, their computation cost is too expensive
for edge computing. In this work, we propose a novel brain-
inspired paradigm named acquisitive learning (AL). Different
from previous approaches that focus only on model adaptation,
AL emphasizes the importance of both knowledge inheritance
and acquisition: the model is first pre-trained and selected in the
cloud (the selective inherited model) and then adapted to new
knowledge (the acquisition). The quality of the inherited model
is monitored by the landscape of the loss function, while the
acquisition is realized by segmented training. The combination
of both steps reduces accuracy drop by >10x on the CIFAR-
100 dataset. Furthermore, AL benefits edge computing with 5Xx
reduction in latency per training image on FPGA prototype and
150x reduction in training FLOPs.

Index Terms—Continual learning, acquisitive learning, deep
neural networks, brain inspiration, model adaptation, knowledge
inheritance, knowledge acquisition

I. INTRODUCTION

The rapid development of machine learning algorithms and
computing hardware has accelerated the implementation of
many modern edge applications, such as autonomous vehicles,
surveillance drones, and robots. These emerging edge devices
are required to handle more complicated and dynamic sce-
narios locally and in real-time, as compared to conventional
edge devices such as mobile phones. One of the critical
demands is the capability to learn from a data stream over
time, i.e. the capability of continual learning [1]-[5]. Such a
capability requires the system to learn from new observations
without interfering or overwriting previous learned knowledge
(i.e. model parameters). Furthermore, the learning should be
bounded by computation and energy resources, including but
not limited to the model size, the computation cost and storage,
while still completing the process in real-time.

Today the biggest challenge in continual learning is known
as catastrophic forgetting [6]. When a model is updated to a
sequence of new tasks with very limited or even no access to
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(a) Conventional continual learning: incrementally learn one class after
another from scratch.
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(b) Conventional scheme vs. Acquisitive Learning.

Fig. 1. When learning from a data stream of CIFAR-10, conventional
continual learning suffers from catastrophic forgetting, while the proposed
acquisitive learning successfully mitigates such forgetting by >6X on CIFAR-
10. A well selective inherited model and memory replay all contribute to the
accurate learning. Among them, the quality of the inherited model is more
vital than the amount of memory used to replay. Model 1 refers to ResNet-56
with better landscape; model 2 refers to ResNet-56-NS with worse landscape.

previous input data, previously acquired knowledge is deteri-
orated, leading to severe accuracy drop (i.e. forgetting). While
there have been multiple attempts to mitigate catastrophic
forgetting [1], [3], [4], [7]-[10], they all follow a conventional
procedure of continual learning: updating the model task by
task, from scratch, as shown in Fig. 1(a). To be specific, when
the learning system starts to learn new knowledge from a
data stream, there is no prior knowledge embedded in this
model. In this scenario, the network parameters are randomly
initialized, and the learning process only focuses on model
adaptation. Such a conventional learning flow is suffering
from severe accuracy drop, as shown in Fig. 1(b)(left), and
excessive computation cost [5]. Moreover, focusing only on
model adaption is not the complete picture in biology. It is
observed that the brain inherits knowledge in specific neuro-
physiological structures (i.e. hardwired), through a long and
careful evolution process [11]-[13]. Besides model adaptation,
the hardwired model that is selected and inherited is also
critical to the quality of intelligence.

To overcome the above limitations of conventional continual
learning scheme, we propose acquisitive learning (AL), as
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Fig. 2. The flow of acquisitive learning emphasizes both the importance of
knowledge inheritance and knowledge acquisition.

shown in Fig. 2. Inspired by the inherited brain model, AL
emphasizes both the importance of knowledge inheritance
and acquisition: the majority of knowledge is first pre-trained
and preserved in the inherited model, and then the model
is adapted to new streaming data (the acquisition). More
important, we confirm the vital correlation between the quality
of the inherited model and its acquisition capacity on new
knowledge. Though pre-training feature extraction layers of a
model has been previously explored in transfer learning [14],
such a model is still suffering from accuracy drop when the
feature space rarely overlaps between old and new data. Such
an accuracy drop is because the one-shot pre-trained model is
too stochastic to generalize better for new observations.

In this paper, we claim that the pre-trained inherited model
should be elaborately selected to optimize future learning
performance. We propose one selection method via visualizing
the loss landscape [15] and measuring its roughness with
quadratic linear regression. That being said, we believe the
selection criteria should not be limited to what is proposed in
this paper. For the acquisition step, we leverage importance
sampling from Progressive Segmented Training (PST) [5] to
identify and freeze important parameters for the inherited
model, and only train the secondary parameters to acquire new
knowledge. In this process, a small and bounded memory set
is used to retrieve the previous knowledge.

In summary, model inheritance and selection, knowledge
acquisition with importance sampling and memory replay all
contribute to the final accuracy in the learning from streaming
data. The combination of these techniques reduces the accu-
racy drop due to catastrophic forgetting by 6.6 x on CIFAR-10
and 11.5x on CIFAR-100 dataset. Among these techniques,
the selective inherited model plays an indispensable role
in maintaining the accuracy, while memory replay plays a
complementary role, as verified by the results in Fig. 1(b) and
in future sections. Further more, AL is efficient in computation
cost. AL reduces the latency per training image by 5x and
overall training FLOPs by 150x as benchmarked by FPGA
prototype.

To summarize, the contribution of this paper is as below:

e« We propose a brain-inspired scheme for learning from

streaming data, namely acquisitive learning (AL). Differ-
ent from conventional continual learning that only focuses
on model adaptation, AL emphasizes the importance of
both knowledge inheritance and acquisition.

o With experiments on various deep neural networks and
datasets, we demonstrate that the proposed AL effec-
tively reduces catastrophic forgetting when learning from
streamed data.

« Experiments show that the acquisition is strongly related
to the quality of the inherited model and thus, the
inherited model should be elaborately selected rather
than being one-shot attained. In this paper, we leverage
landscape visualization and roughness measurement to
select the model.

« We further implement the training of AL with FPGA
prototype and benchmark the significant reduction in
computation cost, which enables continual learning at the
edge.

II. PRELIMINARIES

This section presents the terminology, previous work the
and biology background.

A. Terminology

A deep neural network (DNN) such as VGG-Net [16] and
ResNet [17] usually consists of a feature extractor ¢ : X — R
and classification weight vectors w € R%, also known as
convolutional layers and fully-connected layers. The network
parameters © (¢ and w) keep being updated according to
input data X, and calculating output J) = w " ¢(X) in order
to predict labels V*.

When learning the first task with input data
{X',...,X*7'}, DNN tries to minimize the loss
L(V;Xs-1;0) of this (s—1)-class classifier. When a

new task with input data {X*,..., X'} arrives, DNN tries to
minimize £(); X;; ©) of this t-class classifier by updating ©.
Usually, after the input data of the new task {X*, ..., X'}
arrives, the input data of previous task {X',..., X*71} is no
longer available, except a small subset stored as the memory
set P = (Pl, .. .7Ps_1).

B. Conventional approach of continual learning

The conventional approach of continual learning starts from
a set of fresh, randomly initialized network parameters ©,
and each incoming task updates entire © or partial ©. They
leverage different techniques such as regularization [1], [3],
parameter isolation [7], [8], memory replay [4], [9], or network
expansion [10], [18] to mitigate catastrophic forgetting.

Regularization-based approaches add penalty term in the
loss function to regularize the parameter updating space.
Parameter isolation approaches assign a subset of parameters
to specific task updating. Memory replay approaches train the
model with a small subset of previously seen data. Network ex-
pansion approaches expand network by adding new branches
or parameters to include new knowledge. However, as the
network is not inheriting any prior knowledge, each new task
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Fig. 3. The main reason of catastrophic forgetting is the drift in the feature
space. Visualizing the Euclidean distance between ¢(X') of each input image
in Task 1 and the feature center (i.e. the normalized ¢(X) of the current
task): (a) after learning 10 classes (Task 1) from CIFAR-100 with ResNet-56,
wrongly classified samples are relatively further from the feature center; (b)
after learning another 10 classes (Task 2) from CIFAR-100, the feature center
drifts so that the correlation between Euclidean distance and classification is
deteriorated.

can easily update the weight distribution and cause feature
drifting, as shown in Fig. 3, and thus causing catastrophic
forgetting. In other words, conventional approaches focus more
on model adaptation to new tasks, without inheriting any
prior knowledge. In contrast to them, acquisitive learning
emphasizes both knowledge inheritance and acquisition.

C. Difference from transfer learning

It is worth some words here to differentiate transfer learning
with the proposed acquisitive learning. Transfer learning (or
domain adaptation) is a method where a network developed
for one task is reused to learn a new task. It can be formulated
as follows: for a new task with input data {X*,..., X'}, DNN
tries to minimize £(Y; Xs. +; ©) of this (¢ — s+ 1)-class clas-
sifier by reusing network ¢ pre-trained on {X*, ..., X*71}
and fine-tuning classification weight vectors w. Thus, the
differences between transfer learning and the proposed AL are:
(1) transfer learning only focuses on the learning of the new
domain while AL requires to learn new tasks and to remember
the old tasks; (2) transfer learning is usually one-shot domain
transfer, while AL requires to learn a sequential of tasks; (3)
transfer learning usually freezes entire feature extractor ¢ and
only fine-tune classification layers, limiting the acquisition of
new knowledge. In AL, we only freeze selected parameters
to help remember previous knowledge and leave enough © to
acquire new knowledge; (4) transfer learning does not select
pre-trained model, but directly uses the one-shot pre-trained
model without quality evaluation.

D. Biology background: Moravec’s paradox

There have been increasing evidences [11]-[13] showing
that the brain inherits knowledge in specific neurophysiolog-
ical structures, through a long and careful evolution process,
while the capability to adapt in the field is comparatively
much more challenging. This was identified as the Moravec’s
paradox [13], and has led to research outcomes that support
the hardwired model of learning. Indeed, the intelligence in
nature may be determined more by the long-term genetics
and inheritance rather than the short-term adaptation [11].

Therefore, to successfully learn new knowledge, the selective
inherited model and knowledge acquisition is both critical.

III. ACQUISITIVE LEARNING

With preliminaries defined in the previous section, we
describe acquisitive learning from two perspectives: model
inheritance and knowledge acquisition.

A. Model inheritance

1) Prepare inherited model: In this subsection, we explain
how to prepare the inherited model. Throughout this paper, we
refer to a network that has been well pre-trained and selected
as the inherited model.

Acquisitive learning first trains the network with randomly
selected classes from a dataset, and then samples crucial
learning units (convolution filters and fully-connected neurons)
for the current task. The importance sampling is based on an
important score that has been proven in [5], [19], [20]. The
score is used to measure how important a filter/neuron is to
the loss function.

For a convolution filer ©F € RIXKXK
formulated as:

the score is
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Based on the importance score, we sort the learning units
layer by layer and identify the top /5 units for the inherited
model. We following the same setting in [5] for 3: it should be
roughly proportional to the amount of the inherited knowledge.
In the following adaptation, these important units are not
updated but kept unchanged, in order to preserve inherited
knowledge.

2) Landscape visualization and roughness measurement:
Following the above-mentioned method, we are able to obtain
inherited models with consolidated knowledge. We leverage
landscape visualization tool [15] to visualize the minima of
the loss function and then calculate the roughness using linear
regression. In [15], filter normalization is used to remove the
scaling effect, and a 3-dimension matrix (X, y, z, where X,
y are the coordinates and z is the loss function) is finally
extracted and plotted for visualization. To further quantify the
roughness of the landscape, we fit this 3D data using quadratic



linear regression and obtain mean square error (MSE) of this
fitting model to represent the roughness:

S 2 2
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where w; represent the fitted coefficients. We denote the
roughness as MSE(z;22,y%, z,y;w). Models with smaller
MSE are more flat and smooth, and vice versa.

B. Knowledge acquisition

With the inherited model fully pre-trained and important
units selected, acquisitive learning leverages techniques pro-
posed in PST [5] to learn new observations. PST techniques
include importance sampling, model segmentation, memory-
assisted training and balancing (we omit model reinforcement
step in PST for simplicity). When a new observation arrives,
only the secondary parameters (i.e. those are not frozen) in the
inherited model are updated while the important parameters
are frozen. In other words, the model is segmented to the
inherited part and the acquisition part. Meanwhile, a small
subset of data containing uniformly and randomly sampled
images per class from all the trained classes (i.e. each class in
{X*', ..., X"} contains the same number of images) so far is
mixed with new observations to train and balance the model.

By using techniques including importance sampling, model
segmentation, memory-assisted training and balancing, the
acquisitive learning scheme is able to acquire new knowledge
based on an inherited model. It is worth mentioning that the
techniques used to consolidate inherited knowledge and to
acquire new knowledge are flexible. In this paper, we focus
more on the acquisitive learning methodology.

IV. EXPERIMENTAL RESULTS

In this section, we develop various experiments to verify
the efficacy of the proposed acquisitive learning flow.

A. Experiment setup

The experiments in Section IV B-D are performed with
PyTorch [21] on one NVIDIA GeForce RTX 2080 platform.
We use stochastic gradient descent with momentum of 0.9 and
weight decay of 0.0005. For each experiment, we shuffle the
class order and run 5 times to report the average accuracy.
In Section IV-E, Intel Stratix-10 GX equipped with the 4Gb
DDR3 with 17Gb/s bandwidth was used as the target hard-
ware. Latency was measured using functional simulation of
the CNN training accelerator [22] at 240MHz.

a) Datasets: The CIFAR dataset [23] consists of 50,000
training images and 10,000 testing images in color with size
32 x 32. CIFAR-10 consists of 10 classes, and CIFAR-100
consists of 100 classes. In the following experiments, we
first train a subset of dataset to produce the inherited model,
and then we treat the unseen classes as new knowledge that
needs to be acquired. The balanced memory set contains 200
and 20 images for each class for CIFAR-10 and CIFAR-
100, respectively, so that the total memory size is bounded
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Fig. 4. Accuracy drop is minimized with the an increasing amount of
knowledge in the inherited model. Top: VGG-16 on CIFAR-10 dataset.
Bottom: ResNet-56 on CIFAR-100 dataset.

within 2,000 images for both datasets, aligning with previous
work [4], [5].

b) Network structure: The network structures of VGG-
16 [16], ResNets [17], DenseNets [24] used in the following
experiment are standard structures following [15]. Since the
total number of classes is unknown in a real-world application,
we leave 1.2Xx space at the final classification layer in the
following experiments, i.e. 12 outputs for CIFAR-10 and 120
outputs for CIFAR-100. Note that the extra space reserved at
the final classification layer does not affect the evaluation since
there is no feedback from vacant outputs.

c) Evaluation protocol: ‘Pre-trained accuracy’ or ‘accu-
racy of the inherited model’ refers to the testing accuracy
of (s — 1)-class classifier if input data is {X*, ..., X*71}.
‘Accuracy on the new task’ refers to the testing accuracy
of (t — s + 1)-class classifier for input data {X*,..., X'}
as new observations. ‘Overall accuracy’ refers to the testing
accuracy of t-class classifier on all the data seen so far.
‘Accuracy forgetting’ refers to the accuracy drop from pre-
trained accuracy to overall accuracy during continual learning.

B. Amount of inherited knowledge

We first explore whether and how the amount of inherited
knowledge impacts the acquisition capacity. We mimic the dif-
ferent amount of inherited knowledge using different numbers
of pre-trained classes and plot the results in Fig. 4. ‘X+Y’
refers to the scenario when X classes are pre-trained in the
inherited model and Y classes need to be acquired. There is
no overlapping of classes in X and Y. The inherited model
size (frozen filters/neurons) is proportional to the number of
classes in X across experiments. For the new task Y, we use
the same number of classes across experiments and keep the
number of active filters/neurons for this new task the same.
In Fig. 4 (top) for ‘1+1’ case on CIFAR-10 with VGG-16
network, the accuracy drops from 100.0% to 50.5% (49.5%
forgetting); but for ‘9+1° case, the accuracy drops from 93.0%
to 88.0% (5.0% forgetting). In Fig. 4 (bottom), the accuracy
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TABLE I
ACQUISITION CAPACITY FOR DIFFERENT MODELS. ‘941’ EXPERIMENT WITH CIFAR-10 DATASET IS PRESENT HERE.

Network | VGG-16 | ResNet-20  ResNet-20-NS | ResNet-56  ResNet-56-NS | DenseNet-121
Pre-trained accuracy 0.927 0.915 0.901 0.923 0.790 0.935
Accuracy on the new task 0.865 0.851 0.810 0.860 0.597 0.883
Accuracy drop | 0062 | 0.064 0.091 | 0.063 0.193 | 0.052
Roughness (x1073) | 1.9 | 111 155 | 82 389 | 18
forgetting is 40.5% for ‘10410’ case but only 7.7% for ‘90+10’ Inheritance: 9 classes Acquisition: 1 class
. . ) 1.0
case. It is concluded that, with more knowledge embedded in
the inherited model, less forgetting is observed for acquisition, §0-3 T
and such a trend gradually saturates. 3064
(]
@®©
C. Quality of the inherited model 204+
Besides the amount of inherited knowledge, the inherited Eo.z- —=— ResNet-56
: : s : it : —o— ResNet-56-NS
model itself is also a critical factor in acquisitive learning. 0.0
As explained in [15], different deep learning models have a 0 10 20 30
Epoch

different landscape of the loss function, where wide and flat
minima generalizes better and sharp minima with many small
regions of convexity generalizes poorly. The quality of the
landscape is influenced by model depth, model size, batch
size, and skip connections (i.e. ‘shortcuts’) between layers.
We plot six representative models that are pre-trained on the
same 9 classes of CIFAR-10 but with different landscapes and
their corresponding roughness measurement in Fig. 5. VGG-
16, ResNet-20 with and without shortcuts, ResNet-56 with
and without shortcuts, and DenseNet-121. Among them, VGG-
16, ResNet-20, ResNet-56 and DenseNet-121 have relatively
flat landscapes and thus lower roughness; ResNet-20 without
shortcuts (ResNet-20-NS) and ResNet-56 without shortcuts
(ResNet-56-NS) have relatively sharp landscapes and higher
roughness. The landscape of ResNet-56-NS is the most rough
one. Note that these six models exhibit the same amount of
inherited knowledge (9 classes) but show different quality in
acquisition.

For each of these six inherited models, we add one new
class to acquire and report the accuracy in Table 1. The first
row shows the pre-trained accuracy of the inherited models on
9 classes, and the second row represents the testing accuracy
on the new task. We focus more on the relative accuracy
between the first row to the second row, shown in the row
‘accuracy drop’, as this data represents the generalization
ability of the pre-trained model on new observations, i.e. the
acquisition capacity of the inherited model. On ResNet-20-
NS and ResNet-56-NS models that have sharper landscapes,

Fig. 6. Learning curve for ‘9+1° experiment on CIFAR-10 with two models.
6.3% and 19.3% accuracy drop is observed for ResNet-56 and ResNet-56-NS,
respectively.

we observe 9.1% and 19.3% accuracy drop, respectively. This
drop is more severe as compared to other models, indicating
that the knowledge acquisition capacity of these two models
are poor. We further zoom in ResNet-56 and ResNet-56-NS
in Fig. 6 by plotting the learning curve of ‘9+1° simulation.
ResNet-56-NS has worse acquisition capacity on new tasks
than ResNet-56. These results indicate that the quality of
the inherited model is another vital factor in knowledge
acquisition.

D. Learning from a data stream with AL

We design experiments to verify that acquisitive learning
is a more effective approach to learn from streaming data as
compared to conventional continual learning scheme. On one
side, we simulate the conventional continual learning that starts
learning from scratch (i.e. no inherited model with pre-trained
knowledge is available for knowledge acquisition) and learns
each task (1 class from CIFAR-10 or 10 classes from CIFAR-
100) in a sequence. We follow the techniques described in
Section III to learn new tasks. (3 is set as 0.1 for the first task.
The overall accuracy of conventional method is plotted in gray
in Fig. 7(a) and Fig. 7(b). On the other side, assuming inherited
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Fig. 7. The comparison of overall accuracy between conventional continual
learning and the proposed acquisitive learning on two datasets. In the figure,
‘15’ means that AL starts training from a model that is pre-trained on 5 classes.
Similarly, ‘190’ means the inherited model is pre-trained on 90 classes.

knowledge contains much more classes than new observations,
we prepare inherited models that are pre-trained on 5 to 9
classes for CIFAR-10 dataset and then incrementally train
the network with 1 class from the rest of dataset (Fig. 7(a)),
following the techniques described in Section III. § is set as
0.5 for the inherited model in ‘IS5’ experiment, and 0.9 for
the inherited model in ‘19’ experiment, and so on. Similarly,
we pre-train 50 to 90 classes on the CIFAR-100 dataset and
then incrementally learn 10 classes from the rest of the dataset
(Fig. 7(b)).

The results of acquisitive learning starting from different
inherited models are plotted in colors in Fig. 7. For CIFAR-
10, with the conventional scheme, the final overall accuracy for
10 classes is 41.5%, while AL achieves 83.8% accuracy. The
accuracy forgetting is 58.5% for the conventional scheme and
8.8% for AL, reducing the accuracy forgetting by 6.6x. For
CIFAR-100, conventional scheme forgets 81.9% accuracy after
learning 100 classes, while acquisitive learning forgets only
7.1% accuracy, reducing the accuracy forgetting by 11.5x.

E. Computation cost and FPGA prototyping

We benchmark the computation cost, including latency,
number of floating-point operations (FLOPs), and energy effi-
ciency of both the conventional scheme and the proposed AL.
For AL, the computation flow of the FPGA training accelerator
remains unchanged during forward pass and backward pass,
which is the same as the conventional continual learning.
However, during the weight update phase, the computation of
gradient and weight update is only performed for the selected
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Fig. 8. Comparison on computation cost between conventional continual
learning and the proposed acquisitive learning.

weights and thus, largely improving computation efficiency.
The proposed learning approach was evaluated based on a
FPGA training accelerator [22]. Details of the selected weights
in each layer were given as an input to the accelerator.
With the segmented training in AL, the FPGA control logic
completely skips the DRAM access of the frozen weights
thereby significantly reducing the off-chip communication and
latency during the weight gradient computation. During the
entire weight update phase, the frozen weights in DRAM
remain untouched.

Fig. 8(a) shows the latency breakdown of ResNet-20 for
Forward Pass (FP), Backward Pass (BP) and Weight Update
(WU) of training, for both the conventional scheme and AL.
The bar graph highlighted with blue colored text shows the
latency of the AL scheme to acquire one class of CIFAR-10,
while the bar with black colored text refers to a conventional
scheme. Using AL, we achieve 5x reduction in latency for
WU phase per training image by only updating the selected
weights (‘AL-WU’ in Fig. 8(a)), compared to the conventional
scheme.

Fig. 8(b) shows the number of training FLOPs. As AL
only needs to acquire a few classes with the main model
segmented, the training FLOPs is largely reduced as compared
to a conventional training. Learning 1 class (‘99+1° scheme)
and 10 classes (‘90+10° scheme) from CIFAR-100 with AL
reduces FLOPs by 15x and 150x, respectively. Based on
FPGA values, Table II further derives the simulated throughput
(TFLOPs/s) required for training different numbers of new ac-
quired classes, on CIFAR-10, CIFAR-100 and ImageNet [25]
with ResNet-56. We assume a typical hardware platform (such
as FPGA and GPU) that manages the input image stream at



TABLE 11
REQUIRED THROUGHPUT (TFLOPS/SECOND) AND THE NUMBER OF
HARDWARE PLATFORMS™ NEEDED TO LEARN VARIOUS NUMBER OF
CLASSES WITH AL.

Number of Classes ‘ 1000 500 100 50 10 5 1
CIFAR-10 - - - - 2.0 1.8
CIFAR-100 - - 2.0 1.8 1.8 1.8
TmageNet 22.0 16.6 14.8 14.7 14.7 14.7 14.7

100 platforms 10 platforms - 2 platforms 1 platform
*We assume that one hardware platform provides 20 GFLOPs/s/Watt with 100W [28].

30 frames/second [26], exhibits power budget of 100W [27],
[28] and energy efficiency of 20 GFLOPs/second/Watt [28] per
platform. As AL effectively reduces computation cost, such a
platform is able to support the acquisition of as many as 50
classes with one platform for CIFAR-100, or 500 classes with
10 platforms for ImageNet.

V. CONCLUSION

In this paper, we propose a new perspective to mitigate
catastrophic forgetting in continual learning: acquisitive learn-
ing (AL). Different from previous continual learning that
learns from scratch and focuses only on model adaptation,
AL addresses both knowledge inheritance and acquisition,
inspired by the Moravec’s paradox. With AL, the accuracy
drop in learning sequential tasks is reduced by 6.6x and
11.5x for CIFAR-10 and CIFAR-100 datasets, respectively, as
compared to the conventional scheme. Meanwhile, we confirm
that the amount of inherited knowledge and the quality of
inherited model are important to the capacity of knowledge
acquisition. Furthermore, benefiting from segmented training,
the weight update latency is reduced by 5x as benchmarked
by FPGA prototype, training FLOPs is reduced by 150X,
enabling knowledge acquisition at the edge. In the future, we
plan to investigate more criteria to select the inherited model,
and techniques to automatically generate better models for
more accurate and robust acquisition. We will also develop
more flexible and efficient hardware techniques for the imple-
mentation of AL.
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