
Neural Network based Explicit Mixture Models and
Expectation-maximization based Learning
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Abstract—We propose two neural network based mixture
models in this work. The proposed mixture models are explicit.
The explicit models have analytical forms with the advantages
of computing likelihood and efficiency of generating samples.
Expectation-maximization based algorithms are developed for
learning parameters of the proposed models. We provide suf-
ficient conditions to realize the expectation-maximization based
learning. The main requirements are invertibility of neural
networks that are used as generators and Jacobian computation
of functional form of the neural networks. The requirements
are practically realized using a flow-based neural network. In
our first mixture model, we use multiple flow-based neural
networks as generators. Naturally the model is complex. A
single latent variable is used as the common input to all the
neural networks. The second mixture model uses a single flow-
based neural network as a generator to reduce complexity.
The single generator has a latent variable input that follows a
Gaussian mixture distribution. The proposed models are verified
via training with expectation-maximization based algorithms on
practical datasets. We demonstrate efficiency of proposed mixture
models through extensive experiments for generating samples and
maximum likelihood based classification.

Index Terms—Generative model, mixture models, expectation
maximization, neural network, classification.

I. INTRODUCTION

The paradigm of neural network based implicit distribution
modeling has received a significant attention. In this paradigm,
a neural network being a powerful non-linear function acts as
an efficient generator. Prominent examples of neural network
based implicit distributions are generative adversarial networks
(GANs) [1] and its variants [2], [3]. GANs are efficient for
generating samples and successful in several applications [4],
[2]. For a GAN, a latent variable is used as an input to
the generator neural network of the GAN and the output
of the neural network is considered to be a data sample
from the implicit distribution. In implicit distribution modeling
by GANs, neither analytical form of the distribution nor
likelihood for a data sample is available. Naturally the use of
neural network based implicit distribution models like GANs
is restricted to many applications where it is important to
compute likelihood, for example, maximum likelihood based
classification.

In this work, we focus on neural network based explicit
distribution modeling. An explicit distribution model has an
analytical functional form and we are able to compute likeli-
hood. While use of neural network based generators in GANs

for distribution modeling is powerful, we look for further
improvements. In this regard, a standard practice is to use
mixture models assuming that the underlying distribution is
multi-modal, or data are spread over multiple manifolds and
subspaces. Therefore we propose to design neural network
based explicit mixture models such that they
(a) have analytical forms,
(b) offer the advantage of computing likelihood, and
(c) retain the advantage of generating samples efficiently.

With the advantage of computing likelihood, our proposed
neural network based mixture models are suitable for max-
imum likelihood based classification.

An important question is how to design practical algo-
rithms to learn parameters of the proposed mixture models.
In literature, expectation-maximization (EM) [5] is a standard
approach for learning parameters of an explicit mixture model
in a maximum likelihood framework, such as learning param-
eters of a Gaussian mixture model (GMM) [6]. For realizing
EM, computation of the posterior distribution of a hidden
variable (related to identity of a mixture component) given the
observation (visible signal/data) is required in the expectation
step (E-step). In addition, it is required to compute the joint
log-likelihood of the observation signal and the hidden variable
in the maximization step (M-step). For example, EM for
GMM can be realized due to fullfilment of the above two
requirements. Typically it is challenging to fulfill these two
requirements for many other mixture distribution models. We
also face the challenge to realize EM for learning parameters
of neural network based explicit mixture models. This is
due to the fact that use of neural networks in design of a
system/algorithm/method often leads to loss of required level
of analytical tractability.

In pursuit of neural network based explicit mixture models,
our contributions in this work are as follows.
(a) Proposing two mixture models - a high-complexity model

and a low-complexity model. The low-complexity model
uses shared parameters.

(b) Finding theoretical conditions for the models such that
EM can be applied for their parameter learning. The
theoretical conditions help to find explicit posterior and
computation of expected likelihood.

(c) Designing practical algorithms for realization of EM
where gradient search based optimization is efficiently
embedded into M-step.
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(d) Demonstrating efficiency of proposed mixture models
through extensive experiments for generating samples and
maximum likelihood based classification.

At this point we mention the conditions of realizing EM to
learn neural network based explicit mixture models. The suffi-
cient conditions are invertibility of associated neural networks
and Jacobian computation of functional form of the neural
networks. This helps to compute likelihood using change of
variables. In practice we address the sufficient conditions using
a flow-based neural network [7].

A. Related Work and Background

While GANs have high success in many applications, they
are known to suffer in a mode dropping problem where a
generator of a GAN is unable to capture all modes of an under-
lying probability distribution of data [8]. To address diversity
in data and model multiple modes in a distribution, variants of
generative models have been developed and usage of multiple
generators has been considered. For instance, methods of mini-
batch discrimination [2] and feature representation [9] are used
to construct new discriminators of GANs which encourage the
GANs to generate samples with diversity, and bidirectional
backpropagation with noise injection is used to relieve the
mode collapse problem [10]. Multiple Wasserstein GANs [11]
are used in [8] with appropriate mutual information based
regularization to encourage the diversity of samples generated
by different GANs. A mixture GAN approach is proposed in
[12] using multiple generators and multi-classification solution
to encourage diversity of samples. Multi-agent diverse GAN
[13] similarly employs k generators, but uses a (k + 1)-
class discriminator instead of a typical binary discriminator
to increase the diversity of generated samples. These works
are implicit probability distribution modeling and thus prior
distribution of generators can not be inferred when multiple
generators are used.

Typically, for a GAN, the latent variable is assumed to
follow a known and fixed distribution, e.g., Gaussian. The
latent signal for a given data sample can not be obtained
since generators which are usually based on neural networks
are non-invertible. The mapping from a data sample to its
corresponding latent signal is approximately estimated by
neural networks in different ways. [14] and [15] propose
to train a generative model and an inverse mapping (also
neural network) from the data sample to the latent signal
simultaneously, using the adversarial training method of GAN.
Alternatively, [16] proposes to approximately minimize a
Kullback-Leibler divergence to estimate the mapping from the
data sample to the latent variable, which leads to a nontrivial
probability density ratio estimation problem.

Another track of mixture modeling is based on ensembling
method that combines weaker learners together to boost the
overall performance [17], [18]. In this approach mixture mod-
els are obtained as follows. Based on how well the current-
step mixture model captures the underlying distribution, a new
generative model is trained to compensate the miss-captured
part. However, measuring the difference between current-step

z ∼ p(z) x ∼ p(x; Φ)

g1

g2

gK

s ∼ π

Fig. 1: Diagram of Generator Mixture Model (GenMM).

mixture model and underlying distribution of dataset quan-
titatively is a nontrivial task. In addition, since incremental
building components are used in the mixture modeling, parallel
training of model components is not feasible.

II. GENERATOR MIXTURE MODEL AND EM

In this proposed generative model, we have K separate
neural networks. All the K neural networks have a com-
mon input latent variable z ∈ RM . Here, a neural network
gk(z) : RM → RN acts as the k-th generator and depends on
a set of parameters θk as gk(z) = g(z;θk). For simplicity,
we assume that all K neural networks have the same signal-
flow structure. Furthermore, the distribution of z is fixed as
Gaussian N (0, I). The induced probability density function
(pdf) of x ∈ RN of the proposed mixture model with K
mixture components is given as:

p(x; Φ) =
∑K
k=1 πkpk(x)

=
∑K
k=1 πkp(gk(z))

=
∑K
k=1 πkp(g(z;θk)). (1)

Their parameters θk, however, are different. We use Φ to
denote the set of all parameters {π,θ1, . . . ,θK}, where π =
[π1, . . . , πK ]

T is the prior distribution of the generators. Note
that πk > 0 and

∑K
k=1 πk = 1. The mixture model in (1)

is called a generator mixture model (GenMM). The diagram
of GenMM is illustrated in Figure 1. The GenMM can be
considered as a high-complexity model because each mixture
component pk(x) has its own parameter set θk.

The maximum likelihood estimation problem is

Φ̂ = arg max
Φ

log
∏
i p(x

(i); Φ), (2)

where the superscript (i) corresponds to the i’th data sample
in a given dataset. We address the above maximum likelihood
estimation problem using EM. Let us use a categorical variable
s = [s1, s2, · · · , sK ] for 1-of-K representation to be a hidden
variable that indicates which generator is the actual one.
Elements of s follow sk ∈ {0, 1},

∑K
k=1 sk = 1, and

P{sk = 1} = πk. The variable s is the hidden variable
in EM. We will use γk to denote the posterior probability
P{sk = 1|x} calculated as

γk = P{sk = 1|x; Φ} =
πkp(g(z;θk))∑K
l=1 πlp(g(z;θl))

. (3)



The posterior probability γk is also known as responsibility in
the EM framework. Assume that a value Φold of the parameter
set Φ is given, the iterative steps in EM algorithm update Φ
as follows.

1) E-step: Evaluation of γ(i)k is

γ
(i)
k (Φold) =

πold
k p(g(z(i);θoldk ))∑K

l=1 π
old
l p(g(z(i);θoldl ))

. (4)

2) M-step: Evaluation of Φnew given by

Φnew = arg max
Φ
Q(Φ,Φold), (5)

where the expected likelihood is

Q(Φ,Φold) =
∑
i

∑
k

γ
(i)
k (Φold) log πkpk(x(i)). (6)

For the GenMM in (1), the main technical challenges
in realizing EM are computation of γk in the E-step and
computation of the joint likelihood log πkpk(x) in the M-
step. They require explicit computation of the conditional
density pk(x) = p(gk(z)) = p(g(z;θk)). Thus, the problem
statement is how to design the neural network gk(·) = g(·;θk)
such that pk(x) = p(g(z;θk)) can be computed.

A. On Theoretical Requirement

We provide sufficient conditions for realizing EM algorithm
associated with learning parameters of GenMM.

Proposition 1 (Sufficient conditions). EM algorithm for
GenMM distribution (1) is realizable if every generator neural
network is an one-to-one mapping function and M = N . That
means gk(z) : RN → RN ,∀k are invertible.

Proof: We use the multivariate transformation method to
prove the proposition. To realize EM for GenMM, it is
required to compute pk(x),∀k. Without loss of generality
we consider computation of γk = P(sk = 1|x; Φ) and
pk(x) = p(gk(z)) = p(g(z;θk)). Let us denote the output
of the k-th generator by x̃ and g̃(z) = g(z;θk). We have
x̃ = g̃(z). Under the conditions M = N and invertible
gk(z) = g̃(z), there exists an inverse function g̃−1(x̃) =
[g̃−11 (x̃), g̃−12 (x̃), . . . , g̃−1N (x̃)]> = z. Then, the Jacobian of
this multivariate transformation is

J =


∂g̃−1

1

∂x̃1
. . .

∂g̃−1
1

∂x̃N

... . . .
...

∂g̃−1
N

∂x̃1
. . .

∂g̃−1
N

∂x̃N

 . (7)

Let det(J) denotes the determinant of J . Then, the pdf is

pk(x) = p(x̃) = p(z)

∣∣∣∣det(J)
∣∣
z=g̃−1(x̃)

∣∣∣∣. (8)

Similarly, we can compute the pdf of other mixture compo-
nents.

B. Algorithm for Learning

In this section we first discuss about a suitable neural
network model for gk(z) in GenMM and then design the EM
algorithm for GenMM.

1) Use of a flow-based neural network: We use a feed-
forward neural network to implement every generator. With
some notational abuse, assume that g̃ is a feed-forward neural
network: x̃ = g̃(z) that has multiple hidden layers g̃ = g̃[L] ◦
g̃[L−1] ◦ · · · ◦ g̃[1] and is invertible f̃ = g̃−1. Then the signal
flow can be depicted as

z = h0 h1 x̃ = hL

g̃[1]

f̃ [1]

g̃[2]

f̃ [2]

g̃[L]

f̃ [L]

,
where g̃[l] and f̃ [l] are the l-th layer of g̃ and f̃ , respectively.
In a feed-forward neural network, if every layer is invertible,
the full feed-forward neural network is invertible. The inverse
function is given by z = f̃(x̃). The flow-based network
(flow model), proposed in [19], is such a feed-forward neural
network, which is further improved in subsequent works [7],
[20]. It also has additional advantages as efficient Jacobian
computation and low computational complexity.

For a flow-based neural network architecture, let us assume
that the feature hl at the l’th layer has two subparts as
hl = [hTl,a , h

T
l,b]

T where (·)T denotes transpose operation.
Then considering h0 = z, we have the following forward and
inverse relations between (l − 1)’th and l’th layers:

hl−1 =

[
hl−1,a
hl−1,b

]
=

[
hl,a

ma(hl,a)� hl,b +mb(hl,a)

]
,

hl =

[
hl,a
hl,b

]
=

[
hl−1,a

(hl−1,b −mb(hl−1,a))�ma(hl−1,a)

]
,

(9)
where � denotes element-wise product, � denotes element-
wise division, and ma(·),mb(·) can be complex non-linear
mappings (implemented by neural networks). For the flow-
based neural network, the determinant of Jacobian matrix is

det(J)|z=f̃(x̃) =
∏L
l=1 det(Jl)|hl

, (10)

where Jl is the Jacobian of the transformation from the l-th
layer to the (l − 1)-th layer, i.e., the inverse transformation.
We compute the determinate of the Jacobian matrix as

det(Jl)|hl
= det

[
∂hl−1
∂hl

]
= det

[
Ia 0

∂hl−1,b

∂hl,a
diag(ma(hl,a))

]
= det (diag(ma(hl,a))) , (11)

where Ia is identity matrix and diag(·) returns a square matrix
with the elements of (·) on the main diagnal. Then the pdf is

p(x̃) = p(z)
∣∣det(J)|z=f̃(x̃)

∣∣
= p(z)

L∏
l=1

|det (diag(ma(hl,a))]) |. (12)

Equation 9 describes a coupling mapping between layers.
Since the coupling has a partial identity mapping, direct con-
catenation of multiple such coupling mappings would result



in a partial identity mapping of the whole neural network g̃.
Alternating the positions of identity mapping [20] or inserting
1×1 convolution operations [7] before each coupling mapping
is used to treat the issue. Furthermore, [20] [7] split some
hidden layer signal h and model a part of it directly as standard
Gaussian to reduce computation and memory burden.

2) EM Algorithm for GenMM: The mixture model GenMM
is illustrated in Figure 1, where K generators with a certain
prior distribution share the same latent distribution p(z). With
a flow-based neural network used as the generator gk for the
k’th mixture component in GenMM, the pdf pk(x) for any
x can be computed exactly. Recall that pk(x) = p(gk(z)) =
p(g(z;θk)). Let fk be the inverse of gk. Then, the posterior
probability can be computed further from Equation 4 as

γk(Φold) =
πold
k p(g(z;θk))∑K

j=1 π
old
j p(g(z;θj))

=
πold
k p(fk(x))

∣∣det
(
∂fk(x)
∂x

) ∣∣∑K
j=1 π

old
j p(fj(x))

∣∣ det
(
∂fj(x)
∂x

) ∣∣ , (13)

and the objective function in the M-step can be written as

Q
(
Φ,Φold

)
=

n∑
i=1

K∑
k=1

γ
(i)
k (Φold)

[
log πk

+ log p(fk(x(i))) + log

∣∣∣∣ det

(
∂fk(x(i))

∂x(i)

) ∣∣∣∣], (14)

where n denotes the number of data samples. We usually deal
with a large dataset for model learning, i.e. n is large. In that
case we implement the EM algorithm in batch fashion. Recall
that Φ = {π,θ1, . . . ,θK} and hence the M-step optimization
problem arg maxΦQ(Φ,Φold) is addressed in two steps: (a)
optimization of {θk}Kk=1, and (b) optimization of π.

Finding a closed-form solution for the problem
arg max{θk}Kk=1

Q(Φ,Φold) is challenging. Instead, we
do the batch-size gradient decent to optimize w.r.t. {θk}Kk=1.
Further, optimization in the batch fashion leads to a practical
problem as follows. Since θk is the parameter set of neural
networks gk, one update step of gradient decent would update
the generator gk and we would lose the old mixture model
parameter set Φold that is needed to compute the posteriors
γk(Φold) and to update π. Thus, in learning GenMM, we
maintain two such models with parameter sets Φ and Φold,
respectively. At the beginning of an EM step, Φ = Φold.
While we optimize {θk}Kk=1 of Φ with batch-size gradient
decent, we use the model with old parameter set Φold to do
posterior computation and update of π. This optimization
gives local optima in M-step. At the end of the EM step, the
old parameter set is replaced by the updated one: Φold ← Φ.

Then we discuss the optimization of the prior distribution
π. The optimization problem is

πnew = arg max
π
Q(Φ,Φold), s.t.

K∑
k=1

πk = 1. (15)

Algorithm 1 EM for learning GenMM

1: Input: Latent distribution: p(z). Empirical distribution
Pd(x) of the input dataset;

2: Set a total number of epochs T for training, a prior
distribution π, EM update gap tEM;
Set a learning rate η.

3: Build two models with parameter sets:
Φold = {πold,θold1 , . . . ,θoldK },
Φ = {π,θ1, . . . ,θK}.

4: Initialize the generator prior distribution πk = 1/K;
5: Initialize θk of gk, for all k = 1, . . . ,K randomly.
6: Φold ← Φ.
7: for epoch t < T do
8: for the iteration in epoch t do
9: Sample a batch of data

{
x(i)

}nb

i=1
from the dataset

Pd(x)

10: Compute γ(i)k (Φold) as in Equation 13, for all x(i)

and k = 1, . . . ,K
11: Compute Q

(
Φ,Φold

)
as in Equation 14

12: ∂gk ← ∇θk 1
nbQ

(
Φ,Φold

)
, ∀θk ∈ Φ

13: θk ← θk + η · ∂gk, ∀θk ∈ Φ
14: end for
15: if (t mod tEM) = 0 then
16: πk ← EPd

[γk]
17: Φold ← Φ.
18: end if
19: end for

The update of prior follows the solution

πnew
k =

1

n

n∑
i=1

γ
(i)
k (Φold). (16)

The detail to get the solution is derived in the subsection II-B3.
For a given dataset with empirical distribution Pd(x), γk
is evaluated with batch data in order to calculate the cost
Q
(
Φ,Φold

)
and to update the parameter θk of gk. We

accumulate the values of γk of batches and average out for
one epoch to update π, i.e., πk ← EPd

[γk].
We summarize the EM algorithm for GenMM in Algo-

rithm 1. In implementation, to avoid numerical computation
problem, log p(g(z;θk)) is scaled by the dimension of signal
x in order to compute γk.

3) Proof for update of π: The optimization of π is ad-
dressed in the following Lagrangian form

F(Φ) = Q(Φ,Φold) + λ

(
1−

K∑
k=1

πk

)
, (17)

where λ is the Lagrange multiplier. Then

πnew = arg max
π
F(Φ)

= arg max
π

n∑
i=1

K∑
k=1

γ
(i)
k (Φold) log πk + λ

(
1−

K∑
k=1

πk

)
,

(18)



where fk = g−1k . Then solving

∂F
∂πk

= 0, k = 1, 2, · · · ,K, (19)

we get πk = 1
λ

∑n
i=1 γ

(i)
k (Φold),∀k. With condition∑K

k=1 πk = 1, we have λ =
∑K
k=1

∑n
i=1 γ

(i)
k (Φold) = n.

Therefore, the solution is πk = 1
n

∑n
i=1 γ

(i)
k (Φold),∀k. Note

that the updated prior parameter πk is non-negative due to the
non-negativity of the posterior γk(i).

C. On Convergence of GenMM
In general the convergence of EM is guaranteed only in

some cases, cf. [21]. However, under some conditions our
GenMM converges. In what follows we present the conver-
gence arguments.

Proposition 2. Assume that for all k, the parameters θk are
in a compact set such that the corresponding mapping gk is
invertible. Assume further that all generator mappings fulfill
that fk and ∂fk

∂x are continuous functions of θk. Then GenMM
converges.

Proof. Assume that the assumption holds. Then the determi-
nant term det(J) in Equation 8 is a continuous function of θk.
Due to Equation 8 and the continuity of Gaussian density p(z),
the pdf pk(x) is a continuous function of θk. Therefore, p(x)
given in Equation 1 is a continuous function of Φ. Denote
the likelihood in Equation 2 as L(Φ) = log

∏
i p(x

(i); Φ).
The maximum value of L(Φ) is bounded due to conti-
nuity of p(x) w.r.t. Φ. Define B(Φ) = Q

(
Φ,Φold

)
−∑n

i=1

∑K
k=1 γ

(i)
k (Φold) log γ

(i)
k (Φold). It is well known that

B(Φ) is a lower bound on the likelihood function L(Φ), i.e.
L(Φ) > B(Φ). Note that the essence of EM algorithm is
that the likelihood function value is elevated by increasing the
value of its lower bound B(Φ). Since the maximum value
of the log-likelihood L(Φ) is finite, B(Φ) can not grow
unbounded.

III. A LOW-COMPLEXITY MODEL

There are K neural networks in GenMM, which makes
GenMM a high-complexity model. We now propose a low-
complexity model where parameters are shared. This is moti-
vated by many machine learning setups where model param-
eters are shared across model components. For example, this
techniques is applied as use of shared covariance matrices in
a tied Gaussian mixture model, in linear discriminant analysis
[6], [22], and use of common subspace in non-negative matrix
factorization [23]. Based on the idea of sharing parameters, we
propose a low-complexity model which we refer to as latent
mixture model as follow.

A. Latent mixture model
In this generative model, we use a latent variable z that has

the following Gaussian mixture distribution

p(z) =

K∑
k=1

πkpk(z), (20)

z1 ∼ p1(z)

z2 ∼ p2(z)

zK ∼ pK(z)

x ∼ p(x; Φ)g

s ∼ π

Fig. 2: Diagram of Latent Mixture Model (LatMM).

where pk(z) is pdf of Gaussian distribution N (z;µk,Ck)
with mean µk and covariance Ck. The data x is assumed
to be generated in the model using a single neural network
g(z) : RM → RN as x = g(z;θ), where θ is the set of
parameters of the neural network. The diagram of this mixture
model is shown in Figure 2. Similarly, we use Φ to denote
the set of all parameters {π,µ1, . . . ,µK ,C1, . . . ,CK ,θ}.
Furthermore, we also have a categorical variable s to indicate
which underlying source is chosen. The density function of
the proposed latent mixture model (LatMM) is given as

p(x; Φ) =
∑K
k=1 πkpk(x)

=
∑K
k=1 πkp(g(z;θ)|sk = 1)

=
∑K
k=1 πkp(g(z;θ);µk,Ck). (21)

The LatMM is illustrated in Figure 2 where the neural network
g is shared. Learning of LatMM requires solving the maximum
likelihood estimation problem

Φ̂ = arg max
Φ

log
∏
i

p(x(i); Φ), (22)

which we address using EM. We have

γk = P(sk = 1|x; Φ) =
πkp(g(z;θ);µk,Ck)∑K
l=1 πlp(g(z;θ);µl,Cl)

. (23)

Similar to the case of GenMM, realization of the corre-
sponding EM algorithm associated with LatMM in Equa-
tion 21 also has technical challenges on computing the pos-
terior distribution γk and the joint likelihood log πkpk(x).
They require explicit computation of the conditional density
function pk(x) = p(g(z;θ)|sk = 1) = p(g(z;θ);µk,Ck). In
LatMM, g(z) : RN → RN is also required to be invertible.
We model g by a flow-based neural network as explained in
subsubsection II-B1. Then, the problem is how to learn the
parameters of LatMM.

1) EM Algorithm for LatMM: LatMM is used to learn one
generative model that gets input from a mixture latent source
distribution with one single generator g. For simplicity, we
set the covariance matrix of each latent Gaussian source as a
diagonal matrix, Ck = diag(σ2

k). Each component pk(z) of
the latent source p(z) can be obtained by an affine transform
from the standard Gaussian, i.e. zk ∼ pk(z) can be obtained
by a linear layer of neural network with zk = µk +σkε, ε ∼



N (0, I). According to subsection III-A, the posterior and
objective function in M-step of LatMM can be computed as

γk(Φold) =
πold
k pk (z)∑K

j=1 π
old
j pj (z)

∣∣∣∣
z=f(x)

, (24)

Q
(
Φ,Φold

)
=

n∑
i=1

log

∣∣∣∣det

(
∂f(x(i))

∂x(i)

) ∣∣∣∣
+

K∑
k=1

γ
(i)
k (Φold)

[
logπk + logpk

(
f(x(i));µk,σ

2
k

)]
, (25)

where f is the inverse of g. Similar to subsubsection II-B2,
update of prior π follows πk ← EPd

[γk(x)]. However, we
need to consider the following issue when learning the param-
eters of Gaussian mixture source p(z) =

∑K
k=1 πpk(z). If a

component of the mixture source overfits and collapses onto
a data sample, the likelihood can be large but the parameter
learning can be problematic. This problem is known as the
singularity problem of Gaussian mixture [6]. We avoid this
problem by using the following alternatives:
• Assume that for each ∀k = 1, 2, · · · ,K, there is a

parameter prior distribution for Ck = diag(σ2
k). To be

specific, assume that the parameter prior distribution of
the precision σ−1k is Γ(σ−1k ; a, b), where Γ(·; a, b) is
Gamma distribution with parameter a and b. Then, the
objective function of the optimization problem w.r.t. Φ is
reformulated as

max
Φ

1

n
Q
(
Φ,Φold

)
+

1

K
log

K∏
k=1

Γ(σ−1k ; a, b). (26)

• Alternatively, we use an l2 regularization on σk, which
formulates the optimization step as

max
Φ

1

n
Q
(
Φ,Φold

)
− λ

K∑
k=1

(1− σk)2

K
, (27)

where λ is the regulation parameter.

B. On complexity of models and new variant models

We have proposed two models, GenMM and LatMM.
GenMM has a high complexity whereas LatMM has a low
complexity. Due to their difference in model complexity as
well as training complexity, their usage efficiency is highly
application-dependent. For example, when the training data is
limited, it may be advisable to use LatMM.

It is possible to combine GenMM and LatMM to obtain new
models. A simple way is to replace the latent source p(z) of
GenMM by a LatMM model. This new combined model has
a higher complexity than both GenMM and LatMM.

To get a less complex model than GenMM, another new
model can be derived by modifying the architecture of LatMM.
There are multiple latent sources pk(z), k = 1, 2, · · · ,K, in
LatMM. If we assume that each such latent source pk(z) is
induced by a latent generator network, we can obtain a new
model that has a common-and-individual architecture. Each
latent generator of its corresponding latent source has its own
parameters and acts as an individual part. The common part

of the new model transforms signal between observable signal
x and latent signal z (generated by the latent generator net-
works). The common-and-individual technique is prevalently
used in machine learning systems [24], [25].

Therefore several new models can be derived using our
proposed models, GenMM and LatMM. In spite of the scope
and potential, development of analytical methodology to derive
new model architectures turns out to be challenging. Tradition-
ally the development is trial-and-error driven. Development of
new model architectures by combining GenMM and LatMM
is not going to be pursued here.

IV. EXPERIMENTS RESULTS

In this section, we evaluate our proposed mixture models
for generating samples and maximum likelihood classification.
We will show encouraging results.

A. Experimental setup

We use the flow-based neural network for implementing
generators {gk}Kk=1 in GenMM and g in LatMM. Specifically,
we use the Glow structure [7] that is developed based on
RealNVP [20] and NICE [19]. As introduced in subsubsec-
tion II-B1, the operation in Equation 9 is a coupling layer.
Since only a part of the input is mapped non-linearly after a
coupling layer and the rest part remains the same, permutation
[20] or 1 × 1 convolution operation [7] is used to alternate
the part of signal that goes through identity mapping. In Glow
structure, a basic flow step is the concatenation of three layers:
Actnorm (element-wise affine mapping) → 1× 1 Convolution
(for permutation purpose) → Coupling layer. A flow block
consists of: a squeeze layer, several flow steps, a split layer. A
squeeze layer reshapes signal. A split layer allows flow model
to split some elements of hidden layers out and model them
directly as standard Gaussian, which relieves computation
burden. In our experiments, there are also split layers that
make dimension of z one fourth of dimension x, and split
signal in hidden layers are modeled as standard Gaussian.

All generators used in our experiments are randomly ini-
tialized at training. In addition, the prior distribution π update
in both GenMM and LatMM is every 5 epochs, i.e. tπ = 5.
For the training of LatMM, we adopt the Gamma distribution
Γ(σ−1k ; a, b) as the parameter prior for σ−1k ,∀k, with shape
parameter a = 2 and rate parameter b = 1. Our models are
implemented using Pytorch and experiments are carried out
on Tesla P100 GPU. Code is available at github repository1.

B. Evaluation of Proposed Models

In order to see if the proposed algorithms of GenMM
and LatMM help to improve probability distribution modeling
capacity, we assess our proposed algorithms with varying num-
ber of mixtures (K). Since our models are explicit models, the
negative log likelihood (NLL) is used for comparison of our
models. Apart from NLL, another four different metrics are
used in assessment of models. The metrics are Inception Score
(IS) [2], [26], [27], Frechet Inception Distance (FID) [28],

1https://github.com/FirstHandScientist/EM-GM
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Fig. 3: NLL (Unit: nat/pixel) of GenMM and LatMM versus training epochs with different number of mixture component
k.(10000 images per training instance) (a) GenMM on MNIST, (b) GenMM on Fashion-MNIST. (c) LatMM on MNIST, (d)
LatMM on Fashion-MNIST.
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Fig. 4: IS, FID, MMD and 1NN of GenMM and LatMM for MNIST dataset. GenMM and LatMM are trained on 60000 images
of MNIST. The results are evaluated on 2000 samples per simulation point (1000 samples generated by GenMM or LatMM
for corresponding K, 1000 samples from MNIST). 5 experiments are carried out for each assessed score at each setting of K.
Curve with marker denotes mean score and shaded area denotes the range of corresponding score.

1 3 5 7 9
K

5.6

5.8

6.0

IS

GenMM, IS

1 3 5 7 9
K

0.20
0.22
0.24
0.26
0.28

FI
D

GenMM, FID

1 3 5 7 9
K

0.15

0.16

M
M

D

GenMM, MMD

1 3 5 7 9
K

0.84

0.86

1N
N

GenMM, 1NN

1 3 5 7 9
K

6.0

6.5

IS

LatMM, IS
1 3 5 7 9

K

0.20

0.25

0.30

FI
D

LatMM, FID

1 3 5 7 9
K

0.10

0.12

0.14

0.16

M
M

D

LatMM, MMD

1 3 5 7 9
K

0.84

0.86

1N
N

LatMM, 1NN

Fig. 5: IS, FID, MMD and 1NN of GenMM and LatMM for Fashion-MNIST dataset. The rest configuration is the same as
that in Figure 4.

Maximum Mean Discrepancy (MMD) [27] and two-sample
test based 1-Nearest Neighbor (1NN) score [29]. IS measures
statistically if a given sample can be recognized by a classifier
with high confidence. A high IS stands for high quality for
generated samples. FID measures a divergence between two
distributions under testing by assuming these two distribution
are both Gaussian. We also use MMD with Gaussian kernel
to test how dissimilar two distributions are. Small values of
FID and MMD mean that the mixture distribution model is
close to the underlying distribution of dataset. 1NN score
measures if two given distributions are empirically close by
computing 1NN accuracy on samples from two distributions

under testing. The closer 1NN score is to 0.5, the more likely
two distributions under testing are the same. Therefore, a
high IS is good, while low FID and MMD scores, and 1NN
score close to 0.5 are good. We use the evaluation framework
of [27] to compute these metrics scores, where we train a
ResNet on datasets MNIST and Fashion-MNIST, respectively,
as the feature extractor for evaluation of the four performance
metrics.

The NLL curves of GenMM and LatMM models during
model training phase are shown in Figure 3, respectively.
Subsets of MNIST and Fashion-MNIST are used to train our
mixture models in order to assess their performance w.r.t. NLL



(a) Generated Samples.
(GenMM, K=7)

(b) Generated samples.
(GenMM, K=3)

(c) Generated samples.
(LatMM, K=3)

(d) Generated samples.
(LatMM, K=7)

Fig. 6: Generated samples by GenMM and LatMM for MNIST and Fashion-MNIST datasets.

when different number of mixture components K is used. All
the curves in Figure 3 show that NLL decreases as training
epoch number increases in general. There is fluctuation of
these decreasing NLL curves due to: (a) the iteration of E-step
and M-step of EM, and (b) the use of batch-size gradient in op-
timization at M-step. The latent Gaussian mixture has to match
the generator again after each prior update in LatMM, resulting
in more rugged NLL curves. In each figure of Figure 3,
NLL curve corresponding to larger total number of mixture
components, K, reaches smaller NLL value after training for
same number of epochs. The results are consistent since as
K increases, both GenMM and LatMM have smaller NLL.
These results confirm our hypothesis that mixture models fit
real data better. The lowest NLL values of curves in Figure 3
in training GenMM models are reported in Table I.

Table I The lowest NLL value of GenMM for curves in
Figure 3a and Figure 3b (nat/pixel).

Dataset K=1 K=3 K=5 K=7

MNIST 1.8929 1.8797 1.8719 1.8579
FashionMNIST 2.3571 2.3429 2.3353 2.3323

As for the scores of IS, FID, MMD, and 1NN, we increase
K for the proposed models and check how the four metrics
vary. We do several trials of evaluation and report the results.
The results are shown in Figure 4 for MNIST datset and
Figure 5 for Fashio-MNIST dataset. Let us first address the
results in Figure 4. It can be observed that IS increases
with number of mixtures K. The IS improvement shows a
saturation and decreasing trend for GenMM when K = 9.
The FID, MMD and 1NN scores show a decreasing trend
with increase in K. Their trends also saturate with increase in
K. The trends obey a statistical knowledge that performance
improves with increase in the model complexity, and then
deteriorates if the model complexity continues to increase. As
that in Figure 4, similar trends are also observed in Figure 5.
In some cases, performance for K = 3 is poorer than K = 1.
We assume that the random initialization of parameters in
mixture models has a high influence in this regard. Considering
the trends in all the scores for both the figures, we can

conclude that GenMM and LatMM can model the underlying
distributions of data and the mixture models are good.

C. Sample Generating and Interpolation

Next we show generated samples from the proposed models
trained with MNIST and Fashion-MNIST in Figure 6. In the
figure, we show generated samples from GenMM and LatMM
for MNIST and Fashion-MNIST datasets. We use different
value of K to generate images. It can be observed that LatMM
is able to produce good quality image samples as GenMM.
While we argue that LatMM has a lower level of complexity
than GenMM, it is seen that LatMM works good in practice.

In the second experiment, we explore power of invertibility
for interpolation in the latent domain. We use samples from
MNIST and Fashion-MNIST datasets for this ‘interpolation’
experiment. In Figure 7, we have six subfigures. For each
subfigure, the first row and the last row are comprised of the
real (true) data samples from MNIST and Fashion-MNIST
dataset. In each column, we find latent codes corresponding
to the real samples of the first row and the last row, z1, z2.
This is possible as the neural networks are invertible. Then,
we perform a convex combination of the two latent codes as
αz1 + (1−α)z2, where 0 < α < 1. The latent code produced
by the convex combination is used to generate a new sample
using the trained models. All other rows except the first and
the last rows of the figure are the generated samples by varying
α. In Figure 7, we observe the change visually from the first
row to last row - how the first row slowly changes to the last
row. We use GenMM for Figure 7a, Figure 7b, Figure 7c,
and LatMM for Figure 7d, Figure 7e, Figure 7f. Interpolation
experiment for LatMM is easier than GenMM. GenMM has
a set of neural network generators {gk(z)}Kk=1 and a fixed
Gaussian distribution for latent variable z. We compute γk
for a real image x, and then find the latent code z of x using
g−1k∗ (x) = fk∗(x), where k∗ = arg maxk γk. For two real
images (one image is in the first row and the second image in
the last row), we find the corresponding latent codes, compute
their convex combination as interpolation, and then pass the
computed latent code through a generator gk(z) to produce a
generated sample x. Identity of the generator of GenMM is



(a) Interpolation by GenMM, K=7.
Identity of gk is argmaxk γk.

(b) Interpolation by GenMM, K=7.
Identity of gk is randomly chosen.

(c) Interpolation by GenMM, K=9.
Identity of gk is argmaxk γk.

(d) Interpolation by LatMM, K=9. (e) Interpolation by LatMM, K=9. (f) Interpolation by LatMM, K=9.

Fig. 7: Interpolation in latent space to generate samples. First and last rows are real samples from MNIST. For each row,
images are generated by interpolating latent variables of empirical images in first and last rows.

chosen as k∗ corresponding to the image of the first row if
α < 0.5, or to the image of the last row if α > 0.5.

The second experiment on interpolation shows interesting
result for modeling multi-modal data. The distribution of
ten digits in MNIST dataset is expected to be multi-modal.
The aspect of multi-modal distribution is addressed using
the experimental result shown in Figure 7b. We use similar
experimental steps as that in Figure 7a but with modifications.
It is evident that the generated digit images do not correspond
to the real images of the first row and the last row. For
example, in the first column of Figure 7b, we observe presence
of digits two and eight, while we expect that the column should
be comprised of only images of digit zero. Natural question
is why interpolation leads to generation of digits that are un-
expected. The answer lies in the procedure of performing our
experiment. The key difference for this experiment compared
to the experiment in Figure 7a is that a sample is produced by
a randomly selected generator gk(z) from K possible choices.
We compute interpolated latent code using the same procedure
as that in Figure 7a, but use the generator where its identity k
is randomly sampled from the prior π directly. The generated
images in this interpolation experiment reveals a clue that each
generator models a subset of the whole training dataset. We
can qualitatively argue that use of multiple generators helps
for modeling the multi-modal distribution.

D. Application to Classification Task

In this section, we apply our proposed mixture models to
classification tasks using the maximum likelihood criterion.
We compare classification performance with the state-of-art
results. The state-of-art results are produced by discrimina-
tive learning approaches. The major advantage of maximum
likelihood based classification is that any new class can be
accommodated on-the-fly. On the contrary a discriminative
learning approach requires retraining whenever new classes
appear.

For a given dataset with Y classes, we divide the dataset
by sample labels and each subset has the same label y. Then
we train one GenMM model per class of data, i.e. p(x; Φy) is
trained with the y-th class’s data. After we have all p(x; Φy),
∀y = 1, 2, · · · , Y trained, a new sample x is predicted by
argmaxy p(x; Φy).

The maximum likelihood based classification experiment as
described above is carried out in three different datasets: Let-
ter, Satimage, and Norb. For each dataset, we train our models
for 300 epoches on the training data of the corresponding
dataset, and the test accuracy is reported in Table II. The
state-of-art accuracy of each dataset in literature is also listed
in this table for comparison. For each dataset, we increase
the total number of mixture components K and the neural
network generators have the same structure. The table shows
that the classification accuracy on each dataset is increased



Table II Test Accuracy Table of GenMM for Classification Task

Dataset K=1 K=2 K=3 K=4 K=10 K=20 State Of Art

Letter 0.9459 0.9513 0.9578 0.9581 0.9657 0.9674 0.9582 [30]

Satimage 0.8900 0.8975 0.9045 0.9085 0.9105 0.9160 0.9090 [31]

Norb 0.9184 0.9257 0.9406 0.9459 0.9538 0.9542 0.8920 [32]

as we increase the number of generators in GenMM. When
K is 10 or 20, maximum likelihood based classification by
GenMM outperforms the state-of-art accuracy. The state-of-art
accuracy results are obtained by using discriminative learning
approaches. For dataset Norb, more significant performance
gain is observed. Our classification accuracy is boosted from
0.9184 to 0.9542 when K is increased from 1 to 20 and a large
improvement margin is obtained over reference accuracy. We
also test LatMM on classification task, but its accuracy is more
or less around the accuracy of GenMM with K = 1. Note that
LatMM is a relatively low-complexity model than GenMM.

V. CONCLUSION

We conclude that the principal of expectation maximization
can be used for neural network based probability distribution
modeling. Our approach leads to explicit distribution modeling
and the experimental results show an important aspect that the
normal statistical behaviour of modeling performance versus
model complexity remains valid. The proposed models are
able to generate images which have good visual quality. This is
also supported by several metric scores. Practical applications
of our models for classification tasks are also carried out. The
results confirm that our approach is good for modeling multi-
modal distributions.
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