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Abstract—The paper presents the deep learning ensemble of 

classifiers in recognition of melanoma on the basis of dermoscopy 

image analysis. The ensemble is based on 9 units supplied by the 

activation signals from the convolutional neural network. To 

provide the independence of unit operation few different feature 

selection methods combined with three types of classification 

networks have been used. The pre-trained Alexnet CNN structure 

has been used in this application. The experiments have been 

performed using two data bases in recognition of melanoma and 

non-melanoma cases. One of them is very well known large ISIC 

base and the second smaller data base collected in Warsaw 

Memorial Cancer Center and Institute of Oncology. The results 

have shown advantage of the ensemble over individually running 

classifiers. The accuracy was increased by few percentage points. 

Keywords—CNN, ensemble of classifiers, melanoma 

recognition. 

I. INTRODUCTION  

Melanoma is the most dangerous skin cancer in world-wide 
extent [1]. When not cured in proper time it may spread and 
lead finally to death. The recognition of melanoma is usually 
done on the basis of dermoscopic images of the lesions. 
However, recognition of the melanoma from non-melanoma 
changes on the basis of such image is still very difficult task, 
due to many reasons, such as visual similarity between 
melanoma and non-melanoma lesions, large differences 
between images representing samples of the same class, 
differences in color, shape, size of images, etc. Therefore, the 
automatic systems, which are able to recognize between 
melanoma and non-melanoma changes are very useful in 
medical practice. 

The typical aspects of image characterization, proposed by 
medical experts form the so called ABCDE rules [2],[3],[4]. 
They consider: asymmetry (different shape of the image from 
the left and right as well as from bottom and upper side), 
border (irregular, blurry or ragged lesions), color (great 
changes of shades from brown to black, inconsistent 
pigmentation), diameter (usually greater than 6mm, and with 
progressive changes in size), evolution representing history of 
changes over time.  

In conventional computer aided melanoma recognition the 
additional features, that characterize the images, such as 
percolation descriptors and maximum subregions measures 
based on Kolmogorov-Smirnov distance [7], as well as textural 
and color features [5],[6] are also added to enhance the image 
description. 

Many works devoted to automatic melanoma recognition 
have proposed various solutions, differing by the methods of 
defining structures of the classifiers. They include clustering 
approach, linear discriminant analysis, neural networks, fuzzy 
and neuro-fuzzy systems, support vector machines (SVM), K-
nearest neighbors (KNN), naïve Bayes, random forest, 
convolutional neural networks, etc. [8], [9],[10]. 

The reported sensitivity and accuracy vary from case to 
case and depend greatly on the applied data base. For example, 
in [9] Sabouri et al., have shown a sensitivity of 83.06% and 
specificity of 90.05% in the solution employing cascade 
classifiers in recognition of melanoma from non-melanoma. 
The results presented in [6] show an accuracy of 91.26% on the 
set of 289 dermoscopic images (114 malignant, 175 benign), 
partitioned into train, validation and test image subsets. In [10] 
authors have shown application of combination of ABCDE 
parameters, pigment distribution and texture features combined 
with the ensemble of 5 classifiers. The declared accuracy was 
96.8% in recognition of melanoma from non-melanoma. It 
should be stressed, that the results of classification are 
dependent not only on the applied method of image processing, 
but first of all on the data base used in the investigations.  

Especially difficult is the International Skin Imaging 
Collaboration (ISIC) data base available in Internet [15],[16], 
which was investigated in some papers [18],[19]. The results 
presented in these works differ significantly, depending on the 
chosen subset of data and the applied method. However, the 
best results have been achieved by using deep learning in the 
form of CNN and ensemble of such networks. In [18] Esteva et 
al., have presented results of application of CNN networks for 
large number of samples (129450 clinical images used in 
training), which come from 18 different clinician-curated, 
open-access online repositories (including ISIC), as well as 
from Stanford University Medical Center. The validation 
results referring to 3 class recognition problem have shown an 
average accuracy of 72.1 ± 0.9%, which was better than the 
results of 21 board-certified dermatologists. In [11] authors 
declared the best validation score of 76% for recognition of six 
classes of data from ISIC 2018 data base using ensemble of 
CNN networks. In [20] Yang et al., declared the area under 
ROC curve AUC = 0.880 for two classes of images (melanoma 
versus non-melanoma) taken from ISIC 2017 data base. In [21] 
authors have proposed an ensemble of CNN networks, which 
combined the whole image context with the cropped region 
context from the ground true segmentation of images in the 
data base containing 900 training and 379 testing images 
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representing two classes. The declared AUC in recognition of 2 
classes of samples was equal 0.843 and precision 64.9%. The 
average accuracy measured on 100 test images was equal 76%, 
sensitivity 82% and specificity 62%.  

This paper presents a new ensemble approach organized in 
a different way. The main tool is the pre-trained CNN Alex 
network [14]. The activations obtained from fc7 (fully 
connected layer) are subject to selection using four selection 
methods (stepwise fit, nearest neighbor analysis, reliefF and 
Fisher discriminant). Each of the selection methods create 
different set of features, which are next supplied as the input 
attributes to two types of classifiers: support vector machine 
(SVM) and random forest (RF). These 8 members of ensemble 
are supplemented by the classical softmax classifier based on 
randomly selected activation signals of CNN. In this way the 
ensemble is built from 9 members. Final decision of ensemble 
is taken by majority voting.  

The results obtained for both ISIC and our own data base 
have shown high advantage of the proposed solution over 
individual results. The accuracy of this 2-class recognition 
problem was much better than the results of individual 
classifiers forming the same ensemble.  

The rest of the paper is organized as follows. Section 2 
describes two data bases used in experiments. Section 3 is 
devoted to the segmentation of images. Section 4 presents the 
ensemble of classifiers used in image recognition problem. 
Section 5 is devoted to presentation of the results of numerical 
experiments. The concluding section summarizes the presented 
considerations. 

II. DATA BASES OF MELANOMA IMAGES 
Two data bases have been used in experiments. The first 

one is ISIC data base of melanoma images [15]. It is an open 
source public access archive of skin images to test and validate 
the proposed methods in automated diagnostic systems.  

The data base used in experiments contained images 
representing two classes: 

• Melanoma – 945 images 
•  non-melanoma – 1543 images 

 

  
 

 
Fig. 1. The representative images belonging to melanoma (upper row) and 

non-melanoma (bottom row) classes. 
 

The original exemplary images taken from ISIC data base 
are presented in Fig. 1. They cover not only lesion region, but 
also the background of no importance in recognition process. 
The first and second row represent melanoma and non-

melanoma samples, respectively. The variety of shapes and 
colors of the lesions are visible. They are differently 
distributed within the image, the background in each image is 
different and the size and shape of region of interest 
representing the skin lesions change from sample to sample. 
Moreover, we can see high similarity of the samples 
representing two opposite classes.  

In this particular data base the first task is to segment the 
regions of lesions (so called ROI), replacing the background 
pixels by zero values and leaving only the most important 
parts of the images, which carry the information of skin 
changes. The segmented regions will be saved in separate files 
and used in recognition of melanoma. 

The second data base was collected in Warsaw Memorial 
Cancer Center and Institute of Oncology, Department of Soft 
Tissue/Bone Sarcoma and Melanoma. The images are also 
acquired in the form of dermoscopic images, coded in RGB 
format. The size of images was varying from 465×599 to 
1077×1899 pixels. All of them have been stored in JPEG 
format. The acquired dermoscopic image base contains 174 
samples representing the melanoma (lentigo maligna 
melanoma and nodular melanoma) and 186 of non-melanoma 
(seborrheic keratosis, angioma, pigmented nevus and atypical 
nevus). This way the total number of images was 360. All 
cases have been qualified to the proper class by experienced 
dermatologists at application of ABCDE criteria [3]. Their 
results have been confirmed by pathomorphological analysis 
and histological diagnosis.  

 

   

Fig. 2. The chosen examples of melanoma and non-melanoma cases: the first 
row images represent melanoma and second ones – the non-melanoma cases. 

Fig. 2 presents some chosen examples of images, 
representing both classes. The samples show the lesions 
acquired from both adults and children. They come from 
different parts of the body: face, back, hand, etc. Some cases 
representing nevus were innate and come into existence at later 
years of life of the patients. Once again, large differences 
among the images belonging to the same class can be observed.  

The images prepared by dermatologists were cropped by 
them to the most important lesion regions. Therefore, there was 
no need to apply the additional segmentation procedure. As a 
result the whole images from this base have been used in 
further experiments. 



III. SEGMENTATION OF IMAGES 
The original melanoma ISIC images are given in a general 

form with possible presence of many undesirable factors and 
the background area representing no information connected 
with the skin changes. The first step is to crop the image to 
only lesion region, and then train the system using only this 
area of the images. Therefore, segmentation is one of the 
important stages for computer aided diagnosis of melanoma 
with dermoscopic images. This step may be regarded as 
elimination of the background “noise”. Choosing the right 
segmentation technique is a very important factor in cropping 
the image.  

The process of an automatic localization of neoplastic 
lesion in the analyzed image is based on the modified region 
growing procedure called flood fill algorithm [22]. The 
assumption of the algorithm is the following: the input is a 
digital RGB image – Imgrgb and the output is a white mask 
imposed on the pixels of this image, which belong to the 
recognized neoplastic lesion – Imgmask. This mask will be used 
to segment proper region of the original color image. 

The applied algorithm exploits the fact that neighboring 
pixels have a similar gray level. The algorithm is applied for 
the gray scale version of the image. The RGB image is first 
converted to the gray scale Imggsi according to 

 

Img ( , ) Img ( , ) Img ( , ) Img ( , )
gsi r g b

x y x y x y x y= + +  (1) 
 

Two parallel flood fill processes are applied (towards outside 
and inside) on the gray scale image, starting from two chosen 
reference areas Refa and Refb. The algorithm calculates the 
similarity measure K(x,y) based on the pixel values of 
reference areas for all neighboring pixels. The value K(x,y) of 
the (x,y) pixel is calculated according to  
 

Img ( , )
( , ) 255

(Ref (Img ))
gsi

gsi

x y
K x y

avg
= ⋅    (2) 

The areas of similar value of K(x,y) are merged together in 
both reference areas, respectively. The areas Refa and Refb 
have been defined in the following way. The reference Refa 
has been assumed as a region outside a circle of the radius Ra 
defined by 

max( , )
0.8

2a

iw ih
R = ⋅     (3) 

where ��  is the image width and ��  is the image height. It 
starts from the region of the highest mean intensity level of the 
image. The Refb represents the area of pixels within a circle of 
a constant radius �� � 50	
�, starting from the region of the 
lowest mean intensity level of the image. These values were 
determined based on the analysis of some chosen images 
(around 10% of the available data base). 

The flood fill processes are executed in parallel 
(alternately) until both areas meet together. At the border 
points of both flood fill areas, a created boundary defines the 
found object (neoplastic lesion). Next, the image is pruned 
from four sides (up, down, left, right) until proper size of 
image is obtained. The final Imgmask is filled by the new area 

of a texture taken from original image Imgrgb. The scheme of 
the algorithm for finding the mask Imgmask, which represents 
the lesion, is depicted in Fig. 3. 

 

Fig. 3. The scheme of algorithm for finding Imgrgb mask. 
 
The illustration of the consecutive steps of the algorithm is 
depicted in Fig. 4. Fig. 4a presents the original RGB image. 
The next image in Fig. 4b is its version in gray scale. The 
following pictures (from 4c to 4f) illustrate the process of 
growing both areas: Refb starting from red circle (Fig. 4c) and 
Refa representing the green area. Both areas walk toward 
themselves and the meeting border is presented in Fig. 4g. 
 
a) b) c) 

d) e) f) 

g) 

 

h) 

 

i) 

 

Fig. 4. The consecutive steps of the algorithm for finding the cropped image 
representing the lesion. 

This border defines the limitation of lesion. Fig. 4h 
represents the white mask and Fig. 4i – the final ROI of the 
image in RGB scale, extracted by the algorithm. The pixels in 
the area outside the contour of lesion have been transformed to 
zero values.  

Fig. 5 presents some examples of the segmented images 
representing different neoplastic lesions. They characterize 
both: melanoma and non-melanoma cases (the first row – 
melanoma and the second row – non-melanoma). The lesion 
region in each image occupies now the maximum part of the 
image. The background area, carrying no diagnostic 
information, is limited to minimum.  
 



 

 

  

   

 

Fig. 5. The sample images representing the cropped original images obtained 
by using the presented algorithm: the first row presents the melanoma and the 

second one – the non-melanoma cases. 

IV. ENSEMBLE OF CLASSIFIERS 

The ensemble of classifiers has been arranged on the basis 
of 9 members, all strictly connected with deep convolutional 
neural network built on the basis of pre-trained AlexNet 
[12],[14]. It was trained on more than a million images from 
the ImageNet database. The crucial condition in arranging the 
ensemble of classifiers is to provide the independent operation 
of its members. This was achieved in various ways:  

• Each classifier was trained on a set of diagnostic features 
selected in different ways. 

• The ensemble members have applied three different types 
of classifiers: softmax, support vector machine (SVM) and 
random forest of decision trees (RF). 

• Each classifier was trained on different, randomly selected 
sets of learning images. 

• In the case of softmax the structure of fully connected 
network was varying, by applying different number of 
hidden neurons in fc7 layer (changing from 300 to 1500), 
as well as using different dropout ratio (from 0.3 to 0.6) 
 

The ensemble was composed of 9 units, based on the CNN 
structure as the starting fundamental building block for all 
classifiers. The data, processed by the few local convolutional 
layers of CNN, were used for creating the input attributes to 
particular members of ensemble. The first classifier was 
defined in a classical form as the softmax built in the structure 
of CNN. Different drop-out ratio values have been used. The 
other 8 units built on the basis of SVM and RF are supplied by 
the selected signals of the activation vector created by fully 
connected layer (fc7 containing 4096 elements). The selection 
process was arranged in 4 different ways: stepwise fit (SWF), 
neighborhood component analysis (NCA), reliefF (RelF) and 
Fisher discriminant analysis (FD).  

Stepwise fit (SWF) selection [24] is based on adding or 
removing variables from the general set of features. After a 
new variable is added or removed, a test is made to check, if 
some variables from the set can be deleted without significant 
increasing the error of classification. The procedure terminates 

when the actual quality measure is maximized, or when the 
available improvement falls below some critical value. 

Nearest neighbor analysis (NCA) method of selection [27] 
uses the KNN classifier. However the distances between 
vectors are subject to scaling. For N-dimensional feature 
vectors x the distance between xi and xj is defined in the form 

2

1

( , )
N

i j l il jl

l

D w x x
=

= −∑x x      (4) 

The parameter wl is associated with the lth feature. The higher 
this value the more important the feature is.  

In reliefF (RelF) method of selection [26] each feature vector x 
looks for the closest instances from each class in the data base. 
The closest same-class instance is called 'nearHit', and the 
closest different-class instance is called 'nearMiss'. Each ith 
component of feature vector x is associated with the weight wi, 
which is subject to adaptation according to formula [12],[26] 

( ) ( )
2 2

:i i i i i iw w w nearHit w nearMiss= − − + −    (5) 

The weight representing particular feature decreases if it differs 
from that near feature of the same class more than nearby 
instances of the other class, and increases in the reverse case. 
After n iterations each weight is divided by n and represents 
the relevance vector. Features of their relevance values greater 
than the assumed threshold are selected as the most important.  

In Fisher discriminant (FD) criterion [24], the importance 
of feature f is represented by the so called discrimination 
coefficient SAB(f). For two classes A and B it is defined as 
follows 

( ) ( )
( )

( ) ( )
A B

AB

A B

c f c f
S f

f fσ σ

−
=

+
     (6) 

The parameters cA and cB are the mean values of the feature 
f in the class A and B, respectively. The variables σA and σB 
represent the standard deviations determined for both classes. 
The larger the value of SAB(f), the better is separation ability of 
the feature f for these two classes. As it is seen the applied 
selection methods are relied on different principles and hence 
their results are highly independent.  

Further increase of the independence of the members of 
ensemble has been achieved by applying three types of 
classifiers, which rely their decision on different principles of 
operation. The first one is the softmax built in the classical 
CNN structure. It is supplied by the set of activation signals 
with the randomly selected dropout ratio, serving as the applied 
selection. The second classifier is support vector machine and 
the third random forest of decision tress.  

The support vector machine [23] works in high dimensional 
feature space obtained by the non-linear mapping of input 
vector x into a L-dimensional feature space (L>N) by using a 
kernel function K(x,xi). The SVM of the Gaussian kernel was 
used in our application. The regularization constant C and 
Gaussian kernel width have been adjusted by repeating the 
learning experiments for the set of their predefined values and 
choosing the best one on the basis of the validation data set. 



The Breiman random forest represents an ensemble of 
many decision tress for classification [25]. By constructing 
many different decision trees at training time it outputs the 
class being the mode of the classes output pointed by 
individual trees. The good generalization ability is obtained by 
applying randomness in selecting the learning data and using 
the limited set of decision variables chosen randomly in each 
node of the tree. 

Both classifiers have very good reputation as the most 
accurate classification tools. To increase the independence of 
classifiers we have added small amount of noise of normal 
distribution to each learning sample. The structure of the used 
ensemble is presented in Fig. 6. This structure is trained 10 
times on the randomly selected learning data (at the same 
subset of testing data). Testing results of each run are used in 
voting to elaborate final decision of ensemble. 

 

Fig. 6. The general structure of ensemble of classifiers. 

The process of learning was performed by using 70% of 
available images. The learning phase of each unit used 90% 
randomly selected samples from this learning part, leaving 
10% for validation. The remaining 30% of data were used only 
for testing purposes. The testing images were the same for all 
members of ensemble. Ten epochs were enough to train the 
whole circuit structure and the time of learning each CNN unit 
was around 2 minutes on PC with graphical processing unit.  

V. RESULTS OF EXPERIMENTS  

The first experiments have been performed on ISIC 2017 
data base in recognizing two classes: melanoma and non-
melanoma cases. The first class contained 945 and the second 
1543 samples (2488 samples together). The experiments of 
training and testing have been repeated many times and the 
results averaged and compared. Due to different contents of 
learning and testing data they are varying slightly. Table I 
depicts the statistics of individual results of classifiers obtained 
in 10 repetitions of experiments using ISIC 2017 data base. It 
is evident, that individual classifier results differ a lot. The 
most accurate is SVM in combination with stepwise fit 
selection. The least accurate is softmax. 

TABLE I.   
THE STATISTICAL RESULTS OF ACCURACY IN MELANOMA RECOGNITION OF 9 

INDIVIDUAL CLASSIFIERS IN 10 RUNS OF EXPERIMENTS (EXPRESSED IN %). 
 
 Mean Std Median Max 

Softmax 64.76 2.62 66.19 67.40 
SWF+SVM 76.37 1.75 75.85 79.27 
SWF+RF 73.64 1.31 73.34 76.25 
NCA+SVM 69.67 1.89 69.81 72.03 
NCA+RF 72.99 1.02 72.93 75.05 
RelF+SVM 74.26 0.91 74.04 75.85 
RelF+RF 73.58 1.13 73.94 74.64 
FD+SVM 74.72 2.03 74.74 77.86 
FD+RF 73.58 1.13 73.94 74.64 
Average 72.62 1.53 72.75 74.78 

 

In next experiments we have investigated the ensemble 
composed of the same classifiers and integrated by majority 
voting. Different arrangements of parameters of individual 
classifiers have been tried. The best setting was used in final 
experiments. The integration process has included the results of 
9 units tested on the same contents of testing data. The average 
accuracy results of ensemble testing have been changing from 
79% to 81% in experiments at different (random) split of data 
into learning and testing parts. The detailed statistical results 
(accuracy – ACC, sensitivity –SENS, specificity – SPEC, 
precision - PREC and area under ROC curve - AUC) of 10 
runs are depicted in table II. They represent the average of 10 
repetitions of experiments. 

TABLE II.   
THE STATISTICAL RESULTS OF MELANOMA RECOGNITION OF THE ENSEMBLE 

COMPOSED OF 9 UNITS 
 

ACC SENS SPEC PREC(class1) PREC(class2) AUC 

80.86% 66.14% 89.61% 79.62% 81.18% 0.853 
 

The plot of receiver operating characteristic corresponding to 
one case is presented in Fig. 6. The area under ROC curve is 
equal AUC=0.853.  

 

Fig. 7. ROC curve of the ensemble of classifiers. 

The results of ensemble are much better than that of the 
individual classifiers. It is well seen on the example of statistics 
corresponding to results of accuracy of individual classifiers 
involved in ensemble (in 10 runs of experiments). The average 
accuracy of the same classifiers not integrated in ensemble 
were as follows: mean =72.62%, std=1.53%, median=72.75%, 
max =79.27%.  



Fig. 8 depicts comparison of the accuracy of individual 
classifier and the ensemble in a graphical way. Evidently the 
ensemble has delivered the best result. 

 
Fig. 8. The comparison of accuracy of individual classifiers and ensemble: 1- 

Softmax, 2 -SWF+SVM, 3 – SWF+RF, 4 –NCA+SVM, 5 – NCA+RF, 6 – 
RelF+SVM, 7 – RelF+RF, 8 – FD+SVM, 9 – FD+RF, 10 – Average of 

individual classifiers, 11- Ensemble. 

The next experiments have been done using another data 
base collected in Warsaw Memorial Cancer Center and 
Institute of Oncology, Department of Soft Tissue/Bone 
Sarcoma and Melanoma. This time the images were cropped 
by the medical experts to the proper regions presenting the 
lesions.  

The ensemble was created once again by 9 CNN classifiers, 
integrated by majority voting. Each time the verdict of 
ensemble was compared to the mean of results of all individual 
members of ensemble. The accuracy, sensitivity and specificity 
have been compared.  

The results of individual runs change, because of small size 
of the available samples in the data base. To obtain statistically 
reliable results, we have performed 10 runs of experiments 
with randomly selected sets of learning data by keeping the 
testing subset the same in each run.  

Table III presents the average accuracy of melanoma versus 
non-melanoma recognition in 10 repetitions of experiments at 
application of this small data base (only testing results are 
presented in the table). These are the results of ensemble and 
the mean of the same classifiers working independently. 

The average sensitivity in melanoma recognition obtained 
by ensemble in 10 repetitions (learning/testing sessions) of 
experiments was equal 97.69%, while the specificity was 
89.07%. In the case of individual classifiers (not arranged in 
the form of ensemble) the average sensitivity was equal 
94.30% and specificity 85.76%. The precision of melanoma 
and non-melanoma class recognition of the ensemble was 
89.3% and 91.3%, respectively. These values for average of 
individual classifiers were 86.7% and 87.3%, respectively. The 
area under ROC was AUC=0.8424 for ensemble and 
AUC=0.8227 for the mean of individual classifiers. There is an 
evident superiority of ensemble over the individual operation 

of classifiers. All quality measures (accuracy, sensitivity and 
specificity) have been significantly increased with respect to 
the average of individual classifiers.  

TABLE III.   
THE AVERAGE ACCURACY OF MELANOMA VS NON-MELANOMA OBTAINED IN 

10 RUNS OF THE ENSEMBLE OF CNN CLASSIFIERS. 
 

Repeating 

sessions 

Applied approach Accuracy [%] 

1 
Mean of classifiers 90.83±2.46 
Ensemble of classifiers 94.44 

2 
Mean of classifiers 88.58±3.71 
Ensemble of classifiers 90.74 

3 
Mean of classifiers 89.72±4.28 
Ensemble of classifiers 92.61 

4 
Mean of classifiers 88.79±5.31 
Ensemble of classifiers 94.48 

5 
Mean of classifiers 90.37±6.12 
Ensemble of classifiers 96.30 

6 
Mean of classifiers 94.63±2.99 
Ensemble of classifiers 98.15 

7 
Mean of classifiers 89.35±4.45 
Ensemble of classifiers 92.61 

8 
Mean of classifiers 91.20±4.28 
Ensemble of classifiers 94.39 

9 
Mean of classifiers 91.11±3.15 
Ensemble of classifiers 92.59 

10 
Mean of classifiers 88.05±3.70 
Ensemble of classifiers 92.65 

Mean 
Mean in all sessions 90.26±1.88 

Ensemble of classifiers in all sessions 93.89±2.14 

 

The quality measures obtained in deep learning approach 
are much better than traditional results obtained at application 
of specially prepared features. For example the enlarged set of 
features (textural, colorimetric, Kolmogorov-Smirnov, 
percolation and maximum subregions descriptors) combined 
with SVM and random forest classifiers [7] applied to the same 
data base of Warsaw Memorial Cancer Center has resulted in 
accuracy changing from 83.1% to 92.76% depending on the 
applied classification system. The maximum sensitivity and 
specificity obtained in the best case were equal 95.2% and 
92.4%, respectively.  

VI. CONCLUSIONS 

The paper has proposed the ensemble of CNN based 
classifiers in recognition of images representing melanoma 
versus non-melanoma. We have used the activations generated 
by the locally connected convolutional layers of CNN to create 
the set of diagnostic features. These features were subject to 
selection by using different procedures. The selected features 
represent the input attributes to three different classifiers: 
SVM, RF and softmax, integrated into ensemble.  

Thanks to different form of classifiers and selection 
methods high independence of classification units forming the 
ensemble has been obtained. Integrating the results of its 
members has led to significant quality improvement of the 
class recognition system. The results of ensemble verdicts have 
been compared to the average results of individual classifiers 
forming this ensemble. The quality measures of ensemble were 
much better than the mean of the individual classifiers, proving 
the advantage of the proposed solution.  



The important conclusion from these experiments is that 
application of many individual classifiers based on the 
activation signals of CNN and arranged in the form of 
ensemble, provides better results in mammogram recognition. 
The cooperation of many units integrated into one final 
decision leads to the significant improvement of the whole 
system operation and affects simultaneously accuracy, 
sensitivity, precision and specificity values.  

Future research in this field will be directed toward the 
following tasks: 

• Increasing the number of classifiers by including different 
architectures of CNN (among other [28]) and coupling 
them in an ensemble. More types of ensemble members 
will provide new points of view on recognition problem, 
hopefully increasing the final accuracy of the system.  

• Additional experiments should be done to check the 
performance of the system on other data bases of melanoma 
and implement this procedure in large scale in medical 
practice for supporting the melanoma diagnosis.  
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