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Abstract—In this paper, inspired from the nuclei in brain, we
propose a nucleus neural network (NNN) and corresponding
connecting architecture learning method. In a nucleus, the
neurons are not assigned as regular layers, i.e., a neuron may
connect to any neurons in the nucleus and the connections
are self-organized according to data distribution. This type of
architecture gets rid of layer limitation and makes full use of
processing capability of each neuron. It is crucial to assign
connections between all the neuron pairs. To address the time
demanding of objectives in traditional architecture learning
methods, we propose an efficient architecture learning model for
the nucleus based on the principle that more relevant input and
output neuron pair deserves higher connecting density. The new
objective measures the information flow through the network
architecture without involvement of weights and biases which
greatly reduces the computational complexity. We find that this
novel architecture is robust to irrelevant components in test data.
So we reconstruct a new dataset based on the MNIST dataset
where the types of digital backgrounds in training and test sets
are different. The new dataset is a great challenge for learners
because training data and test data are not only independent but
also follow different distributions. Experiments demonstrate that
NNN achieves significant improvement over architectures with
regular layers on the reconstructed dataset.

Index Terms—neural network, brain-inspired architecture,
architecture learning, image classification

I. INTRODUCTION

Mimicking the architecture and mechanism of nature crea-
tures’ learning for creating efficient and robust learners is
one of the challenges in artificial intelligence research [1].
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Foundation of Jiangsu Province, China (Grant No. BK20190451).

This work was conducted when Jia Liu was a visiting scholar at the
Department of Electrical, Computer, and Biomedical Engineering, University
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Artificial neural networks (ANNs) which are inspired form
nature neural systems have excellent learning capability in
many applications. Specially, neural networks with deep hier-
archical layers have achieved many breakthroughs in machine
learning, which leads to the great research interests in deep
learning [2]. Most existing ANN models are based on the
classic hierarchical architectures which are composed of reg-
ular layers with no connections between neurons in the same
layer or nonadjacent layers as shown in Fig. 1(a), especially
those for supervised learning. The learning architecture of
human brain is also hierarchical but with multiple nuclei
with inner connections, such as lateral geniculate nucleus.
The connections in each nucleus is much more complex than
that of ANN which simply omits connections in the same
layer. Residual network [3] successfully introduces additional
connections between nonadjacent layers which leads to deeper
network architecture and larger learning capability.

In this paper, inspired from the nuclei in brain where
architectures are apparently irregular but subtly organized,
we attempt to fully relax the layer limitation and evolve the
network architecture freely given a set of neurons. A neuron
is able to connect to any neurons as shown in Fig. 1(b) and
the connections are organized according to data and tasks.
Then a compact network that makes full use of each neuron
is constructed and we call it nucleus neural network (NNN).
But since we focus on classification problem in this paper,
the only limitation is that there are no feed-back connections.
To launch NNN, it is crucial to determine the connections
between numerous neuron pairs which is a great challenge.

Architecture optimization for ANN has been a research
interest for decades with various optimization methods [4]–
[8]. The architecture parameters are searched and determined
by an objective function. They follow traditional hierarchical
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Fig. 1. Difference between multi-layer network and the proposed architecture.
(a) Multi-layer network (b) Architecture of NNN

architectures and find the optimal depth, layer width, kernel
size (convolutional neural network), and connections between
each two layers. For example, NEAT algorithm used in [4]
evolves the nodes, connections and weights for a network.
In [7] and [8], the sparse connecting structure is focused
and redundant connections are removed from a hierarchical
compact network. In [5], a complex architecture is evolved
with involvement of not only multi-layer configurations but
also skip connections. Nowadays, there are increasing interests
in architecture learning based on network blocks or cells [6],
[9]–[11]. A block or cell is a directed acyclic graph consisting
of an ordered sequence of nodes [6].

However, with numerous free binary variables, searching the
optimal connecting assignment of NNN is of great difficulty.
Most of architecture learning methods search the optimal
architecture based on task itself as the objective, for instance,
test error for classification. But to compute the objective, it
is necessary to train the weights and biases. Therefore, it is
computationally demanding even though the searching space
in them is not that large. For example, 1800 GPU days of rein-
forcement learning is required to search a superior architecture
in [9] and 3150 GPU days of evolution in [11]. There are
also many methods proposed to speed up the learning process,
such as weight sharing [12], Bayesian optimisation [13], and
differentiable network architecture search [6]. However, most
of them focus on reducing the searching space or increasing
searching efficiency. In NNN, the optimizer should search in a
binary space with over ten thousand dimensions which is much
larger than that of most existing architecture learning prob-
lems. Moreover, it is difficult to train the weights and biases
in NNN by existing parallel devices. It will take even years
to obtain a reasonable connecting architecture for NNN via
traditional architecture learning methods. As a consequence,
we propose a substitutable but more efficient objective function
with respect to the architecture. We define a connecting density
between a neuron and an input neuron. Then if an input neuron
is more relevant to an output neuron according to the mutual
information computed from the training data, the connecting
density between them should be larger. The objective function
is defined based on this principle via the modeling approach of

products of experts (PoE) [14] in order to capture the distribu-
tion of observed data directly by the architecture without the
involvement of weights and biases. This will greatly reduce
the computational complexity of objective function and an
architecture which is well adapted to input distribution can be
learned. A binary particle swarm optimizer (BPSO) algorithm
[15] is utilized to optimize the objective function. After the
architecture is optimized, the connecting weights and biases
are then learned by a novel error driven probabilistic model
to well represent the input data.

After training, we find an interesting phenomenon of NNN.
Since the architecture is evolved based on the input and
output relevance, NNN gives high response to the data where
patterns of irrelevant components are never seen by NNN
during training. This means that NNN is robust to background
changes when trained only by images with pure background in
image classification. To highlight the superiority of NNN, we
construct a new dataset based on the MNIST digit where the
background types of training and test data are different. The
training and test sets in the dataset not only are independent but
also follow different distributions. The potential application
is significant where the learner is expected to learn to infer
new patterns like human learning. The new dataset is a great
challenge for traditional learners since most of them assume
that training and test data are independent but follow identical
distribution or follow different distributions but should be not
independent.

II. NNN’S ARCHITECTURE LEARNING

NNN is composed of input layer, output layer and a nucleus
as shown in Fig. 1(b). In the nucleus, there are no regular
layers and a neuron can connect to any neurons. But for time
independent data, feedback connections are unallowed. The
goal of architecture learning is to determine the connections
between those neurons in the nucleus. It is a popular way to
evolve network architectures via an objective function [4], [5].
In order to reduce the computational complexity, we define
an objective function via directly modeling the connections
without considering the connecting weights and biases. It is
established based on the principle that higher relevance leads
to higher connecting density so as to learn the relationship
between input and output nodes. First the connecting density
is defined.

A. Connecting Density

To evaluate the architecture, we should consider not only
depth but also width of the information flow between an input
and an output neurons. Therefore, we define a propagated
connecting density with the initial density between an input
neuron and itself being 1. Then the density Dij(ϕ) between a
neuron i in the nucleus and an input neuron j can be computed
as follows:

Dij(ϕ) =

∑
k∈Ωi

Dkj(ϕ)

NΩi

(1)

where ϕ denotes the architecture of the network which is a
binary matrix indicating the connecting status between each



pair of neurons with 1 denoting connected and 0 unconnected.
Ωi denotes the set of lower neurons that directly connect to
i and NΩi is the number of neurons in the set. It means the
average connecting density from the lower neural nodes and
can be simply read as the residue of input information. The
connecting density starts from the input neurons, propagates
through the connections, and finally that between input and
output neurons is obtained. The connecting density represents
a information path between an input and an output neurons.
From Eq. (1), higher density means wider and shallower path
with more processing nodes and less information degression. If
the path is deeper, the information of this input neuron will be
combined with information from other neurons. Therefore, the
density will be lower. The information path should well adapt
to the relevance between input and output neurons. Based on
this principle, we then construct the model of each output
neuron.

B. Modeling Single Output Neuron

Here we utilize the normalized pointwise mutual informa-
tion (NPMI) [16] to represent the relevance between input
and output neurons for each data. Suppose an input neuron
j and an output neuron i, given a pair of input and output
neurons’ status {xj , yi} with input vector x and referenced
output vector y, the NPMI between them N(xj ; yi) can be
computed by:

N(xj ; yi) =
I(xj ; yi)

H(xj , yi)
= log

P (xj , yi)

P (xj)P (yi)
/ log

1

P (xj , yi)
(2)

where I denotes the pointwise mutual information (PMI) and
H denotes the self-information. P (·) denotes the probability
which is counted from the dataset. The NPMI normalizes PMI
into an interval of [−1, 1] with −1 denoting the two values
will never occur together, 0 independence, and 1 complete
co-occurrence. Because the probability of a negative valued
N(xj ; yi) is very small and can be omitted, we define the rel-
evance between xj and yi as R(xj , yi) = max(N(xj ; yi), 0)
[17] to avoid unexpected overflow.

The connecting density should follow the relevance for a
better information flow of input and output neurons. Therefore,
the possibility that an output neuron and its corresponding
information path can well represent the input vector is mea-
sured by the cosine distance between relevance and connecting
density:

pi(x, yi;ϕ) = cos(Di(ϕ),R(yi)) (3)

where Di(ϕ) and R(yi) respectively denotes the con-
necting density and relevance vectors with n dimensions,
i.e., Di(ϕ) = [Di1(ϕ),Di2(ϕ), ...,Din(ϕ)]T and R(yi) =
[R(x1, yi),R(x2, yi), ...,R(xn, yi)]

T where n is the number
of input neurons. For an architecture that best captures the
relevance between an output neuron and input neurons, the
possibility, i.e., cosine distance will be close to 1. While if
there is no enough connecting density for transforming the
information, the possibility will be close to 0.

C. Modeling the Whole Network

The whole network can be modeled by combining the
models of output neurons. For better modeling the high-
dimensional space of input data, in this paper, we combine
the neurons by multiplying them together and renormalizing
as in PoE. PoE has the advantage that they can produce much
sharper distributions [14]. In NNN, the whole network model
is formulated as follows:

p(x, y;ϕ) =

∏
i pi(x, yi;ϕ)∑

(χ,γ)

∏
i pi(χ, γi;ϕ)

(4)

where (χ, γ) denotes one of all the possible data in the whole
data space which (x, y) belongs to. The denominator is the
renormalization term used to guarantee that the probability
sum over the whole data space is 1. The model follows PoE
where simple models pi(x, yi;ϕ) are multiplied and renor-
malized to construct a complex model p(x, y;ϕ). Optimizing
this model means to increasing the representation capability
of observed data while decreasing that of all the other data.
Then the architecture ϕ will well capture the distribution of
observed data.

However, optimizing this model is of great difficulty due
to the unreachable fantasy data in the whole data space. In
PoE [14], the model is optimized by using the gradient of a
log-likelihood. Gibbs sampling is used to estimate the gradient
expectation of the whole data space. However, in this model,
the decision variable is the architecture ϕ which is binary. Such
a problem is suitable to be solved by evolutionary algorithms
or population based methods [8], [18]. A computable objective
function is necessary to be derived.

D. Objective Function

Fortunately, the value of the denominator in Eq. (4) depends
only on the architecture ϕ. Optimizing this model amounts to
maximizing the numerator wile minimizing the denominator.
Therefore, the denominator can be replaced by a computable
function with respect to ϕ and taken as a new term. Here we
use the L2-norm of connecting density vector of each output
neuron:

ρ(ϕ) =
∑
i

‖Di(ϕ)‖2 (5)

The denominator in Eq. (4) aims to represent the whole
data space by connecting density. Since the whole data space
contains all the possible cases, connecting density controls the
representation ability of the architecture for all the possible
data. Therefore, minimizing ρ(ϕ) will decrease the denomina-
tor in Eq. (4).

Since there is no evidence to suggest the linear relationship
between ρ(ϕ) and the denominator in Eq. (4), the new objec-
tive function is reconstructed by adding the two terms, i.e.,
numerator in Eq. (4) and Eq. (5):

max J(ϕ) =
∑

(x,y)∈D

∏
i

pi(x, yi;ϕ)− λρ(ϕ) (6)

where D is the training set and λ is a user defined parameter
that controls the importance of the two terms. In this objective
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Fig. 2. A toy example of learned architecture from a simulated dataset. Red
lines represents the connections from input neurons.

function, the denominator in Eq. (4) is replaced by a simplified
function but can achieve similar effectiveness to that of Eq.
(4). Maximizing this function amounts to assigning more
probability to the observed data (increasing numerator) while
restraining the probability of all the other data (decreasing
denominator). Then the architecture will capture the distribu-
tion of observed data and well represent the input and output
relationship of the data in dataset D. Finally we utilize a BPSO
algorithm [15] which is a popular optimization method in wide
applications [19], [20] to optimize the objective function.

E. Toy Example of Learned Architecture

To better explain the whole story, we provide a toy example
of the learned architecture from a simulated dataset. The
dataset is constructed as a classification problem. There are 4
attributes in the input data with the first 3 attributes following
the joint Gaussian distribution and the last attribute follows the
uniform distribution. In the learning process, we set 9 neurons
in the nucleus and Fig. 2 shows the learned architecture. It
is intuitive that the first 3 attributes contribute more to the
classification, and therefore more connections are connected
to them. They also directly connect to the output neurons.
The last attribute has no contributes to the output neurons, the
depth of it is over 3 layers. The learned architecture follows
the principle in appearance which demonstrates the effect of
the objective function and learning method.

The connecting density of some neurons and Ωi of a neuron
i are shown in Fig. 2. All the initial connecting densities of
input neurons are 1. As shown in the figure, the connecting
density between a neuron and input neurons is represented as
a vector. Then they propagate through the whole network and
Di(ϕ) for each output neuron is obtained.

III. NNN’S PARAMETER LEARNING

After the architecture is learned, the network parameters,
i.e., the weights on each connection and bias on each neuron,
have also to be learned to achieve the function of classification
or other tasks. Back-propagation [21] is the common method
that trains multi-layer neural networks. In multi-layer network,
the errors can be back-propagated layer by layer and then
the gradient of parameters can be obtained by the back-
propagated errors. However, in NNN, there are no regular
layers which leads to irregular depth. Even though the errors

can also back-propagate from output layer, the different depth
leads to different error decay. Then, the difference leads to
uneven impact of reference output on input neurons. Therefore,
some weights may not be well trained by directly using back-
propagation.

A. Probabilistic Model

In the parameter learning process, we should not only
consider the errors in the output layer, but also consider the
representation capability for input data. As a consequence,
similar to restricted Boltzmann machine (RBM) [24], we
construct a probabilistic model with the errors in the output
layer as the energy:

p(x|y; θ) =
exp(−E(x, y; θ))∑
χ exp(−E(χ, y; θ))

(7)

where E(x, y; θ) is the square error between output of the
network fθ(x) and reference output y, i.e., E(x; θ) = ‖y −
fθ(x)‖22 with θ being the network parameter set. Similar to the
architecture model, χ denotes all the possible data in the whole
data space. This model denotes a parameterized probability
density that captures the distribution of observed data given a
reference output.

B. Optimization

This model can be solved via the gradient of log-likelihood:

4θ =
∂ log p(x|y; θ)

∂θ

=− ∂E(x)

∂θ
+
∑
χ

[
exp(−E(χ))∑
χ exp(−E(χ))

∂E(χ)

∂θ
]

=− ∂E(x)

∂θ
+ Ep(χ|y;θ)

∂E(χ)

∂θ

(8)

where E denotes the expectation. The first term in Eq. (8) is
easy to compute with the back-propagation algorithm. For the
second term, we use the data x̂ sampled from the distribution
p(x|y; θ) to estimate the expectation of gradients. However,
different from the simple architecture of RBM [24], for NNN,
it is difficult and even impossible to compute the probability
of each input neuron’s statues. Therefore, we propose to solve
the problem in reverse.

The sampled data is more likely to locate in the high
density region of the distribution. Therefore, we can drive a
sample to move to the high density region by gradient, i.e.,
4x̂ = ∂ log p(x̂|y; θ)/∂x̂. Fortunately, during the sampling
process, the network parameter set θ is fixed which leads to
the dominator in Eq. (7) being a constant. Then the updating
gradient is computed as follows:

4x̂ =
∂ log exp(−E(x̂))

∂x̂
= −∂E(x̂)

∂x̂
(9)

The gradient is computed by the error back-propagated from
the output layer. Then a random generated data can be driven
to the high density region by using gradient descent. After
several iterations, the sampled data x̂ is obtained which is used



to estimate the gradient expectation of fantasy data. Then the
gradient of network parameters is computed by:

4θ = −∂E(x)

∂θ
+
∂E(x̂)

∂θ
(10)

The whole parameter learning process is summarised in Al-
gorithm 1.

Algorithm 1 Parameter Learning Process of NNN
Initialization: initialize the connecting weights and biases
randomly.
Repeat:
FOR each batch in the dataset:

Sampling: Obtain the sampled data batch x̂ by gradient
descent with the gradient in Eq. (9) from random sample
batches.
Updating: Compute the gradients ∂E(x)

∂θ and ∂E(x̂)
∂θ and

generate the updating gradient of θ as Eq. (10). Update θ.
end FOR
Stop Criterion: stop the iteration process when the training
error is lower than a threshold or the number of iterations
exceeds maximum value.

This new model and learning process can relieve the uneven
impact of output neurons. The updating gradient is the differ-
ence between gradients of observed data and sampled data. For
a deep path, there is more error decay from the output layer.
Then the components of deep paths in a sampled data is more
random. Thus the gradient difference between observed data
and sampled data will be larger. While for a shallow path, the
gradient difference will be smaller. Then the uneven impact
will be offset by the uneven difference.

C. Toy Example and Potential Application

Similarly, we provide a toy example to explain the observed
distribution and sampled distribution by the network. We
train the network architecture and parameters by a simulated
dataset. There are 3 attributes in each data. The first two
attributes follow the joint Gaussian distribution and the last
attribute is a constant. The distribution of the simulated data is
shown by the blue points in Fig. 3. There are two classes and
different classes follow Gaussian distribution with different
parameters.

In Fig. 3, the distribution sponsored by the network is shown
by the red points. With the randomly initialized network,
the sampled data x̂ are randomly distributed. During the
learning process, the network begins to capture the distribution
of observed data. After learning, the learned network can
well capture the distribution of the first two attributes in the
observed data. Because the first two attributes play important
roles in decision, the network assigns more connecting density
for them. Then the network can learn to follow the distribution
of them by connecting weights and biases. The last dimension
has no contributions to classification and thus that of the sam-
pled data is approximately randomly distributed after learning.

This novel phenomenon demonstrates NNN is robust to
irrelevant components, i.e., the background. The sampled dis-
tribution represents the energy driven response of the network
to different data. That means, the samples at the higher
density region have lower energy, i.e., output difference from
reference. Therefore, NNN assigns high response to the data
indicated by red points in Fig. 3. In practical, there are more
complex data and some attributes are not always background.
But since the connecting density is also not binary, with the
generative model derived objective function, the architecture
and the learned network parameters are expected to well
capture the distribution of input data. As a consequence, in
this paper, we construct a novel dataset to test NNN.

IV. RECONSTRUCTED DATASET AND EXPERIMENTS

In supervised learning, it is usually supposed that the
training dataset and test dataset are independent and identically
distributed. Therefore, large scale labeled dataset coving most
cases in practical applications is necessary to train a robust
model. Transfer learning [22] poses this problem and solves it
by transferring the knowledge from labeled data in source do-
main to unlabeled data in target domain. But transfer learning
methods suppose that source domain and target domain are not
independent. They estimate the distribution bias with the help
of target data. From the toy example, NNN shows significant
potential applications. Therefore a new dataset is constructed
based on the MNIST dataset to verify the superiority of NNN
over traditional learners.

A. Dataset

In the new dataset, we train the learners by the training
set in the MNIST dataset1 and apply the trained learner to
digits with various backgrounds2. Fig. 4 shows some images
in the training set and test set. MNIST dataset is a collection
of handwritten digits (0-9). However, in practice, there are
also digits on various backgrounds. Then some derivatives
of MNIST dataset are created, including MNIST digits with
random image background (bg-img) and random noise back-
ground (bg-rand) [23] which will be used as testing data
in the new dataset. Traditional learners learn to recognize
digits on various backgrounds relying on a large scale labeled
dataset containing most cases (supervised learning) or the
test cases are available (transfer learning) during learning
process. But a smarter learner is expected to recognize digits
on various backgrounds after learned only from the digits on
the blackboard. The inference capability seems more important
for a learner. Therefore, the new problem is significant in real
applications but a great challenge for most existing learners.

In the experiments, 60000 training digits in the MNIST
dataset are used to train the classifiers. Then 50000 digits
with bg-img and 50000 digits with bg-rand are used to test
the classifiers. It deserves to be noted that training and test
processes are independent, i.e., the digits in test set have
no influence on the training process. To my knowledge, few

1available at http://yann.lecun.com/exdb/mnist/
2available at http://www.iro.umontreal.ca/˜lisa/icml2007
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Fig. 3. Distribution of observed data and sampled data in different learning stages. The blue points denote the observed data and red ones are sampled data.
(a) Sampled distribution by randomly initialized network. (b) Sampled distribution by the network during the learning process. (c) Sampled distribution by
the network after training.

(a) (b) (c)

Fig. 4. Some images in training and test datasets. (a) Training set with pure
background. (b) Test set with random image patches as background. (c) Test
set with random noise as background.

methods could well solve this problem. We set the number of
neurons in the nucleus to be 200 and λ = 1. We compare
the proposed NNN with architectures of DBN and CNN.
There are many architecture learning methods as introduced
above. But they follow the multi-layer architectures including
DBN and CNN. Moreover, they optimize the architectures with
the objective of minimizing test error which is estimated by
the training data. The test set follows different distribution
from training set which leads to the wrong estimation of test
error in traditional architecture learning methods. They cannot
learn additional gains except for a lower error in traditional
machine learning problems. In this paper, the architecture is
totally new without baseline architectures. Therefore, other
architecture learning methods are not compared because they
will achieve similar performance to their baselines due to the
same objective of them. We set the scale of DBN as “784-
500-300-10” [24] and CNN as LeNet in [25]. In BPSO, we
set 100000 as the maximum number of generations. All the
three architectures are trained by both back-propagation (BP)
and the proposed error driven probabilistic model (EDPM).
The experimental results are evaluated by receiver operating
characteristic (ROC) curve, precision-recall (PR) curve, area
under ROC curve (AUC), average precision (AP), and the
classification accuracy (CA). Since the irregular architecture
is difficult to be accelerated GPU parallel computation, all the
algorithms are conducted by visual studio 2017 on CPU (Intel
I7 3.7GHz) and the code of NNN is available at GitHub3.

3https://github.com/liusiqinqinqin/nucleus-neural-network
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Fig. 5. ROC and PR curves of the test result on digits in MNIST test set.
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B. Experimental Results

First we demonstrate the learning capability of NNN on
traditional classification problem where both training and test
sets are from MNIST dataset. The ROC and PR curves of
each classifier is shown in Fig. 5. It can be found that NNN
cannot outperform traditional classifiers in this problem. The
values of AUC, AP, and CA are listed in Table I (test set
of MNIST). CNN achieves the best performance from the
criteria due to its special architecture. Although NNN achieves
the lowest classification accuracy, the accuracy is close to
that of DBN. It deserves to be noted that there are only 200
neurons in the nucleus and 146686 connections in the whole
network after training. In DBN, there are 800 hidden units and
545000 connections and much more in CNN. Therefore, NNN
achieves equivalent performance to that of DBN with less
processing units and parameters. This demonstrates that NNN
is a compact architecture and can make full use of each neuron.
This is due to that a connection can connect to any neurons
instead of only to the neurons in the next layer. However,
since the architecture of NNN is not regularly assigned, it is
difficult to accelerate the parameter learning process parallelly
via existing computing platforms such as Tensorflow. It is
a great training burden with more neurons. The superiority
of NNN is its robustness to irrelevant components in input
data, i.e., background in images. Therefore, we continue to
use the trained classifiers to classify the digits with various
backgrounds.

The ROC and PR curves of results on the two test sets, i.e.,
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Fig. 6. ROC and PR curves of the test result on digits with currupted background. (a) ROC curves on test data with bg-img (b) PR curves on test data with
bg-img (c) ROC curves on test data with bg-rand (d) PR curves on test data with bg-rand

MNIST digits with bg-img and bg-rand, are shown in Fig.
6. It is obvious that the curves of NNN cover all the other
curves. Traditional architectures are exhausted to deal with
such a problem. Because they are composed of hierarchical
layers, input neurons have approximately equal impact on the
output neurons from architecture. During the back-propagation
process, the output errors will not influence the weights of
background pixels a lot due to the weak contribution of them.
Therefore, back-propagation could not weaken the influence of
background changes on output. Then when images in training
and test set are with different backgrounds, the classification
results will be different a lot. In NNN, the less relevant neurons
will be directed into deeper and narrower paths because they
have less direct impact on the output neurons. Therefore,
NNN is more robust and greatly outperforms the traditional
architectures.

Then the AUC, AP, and CA values of the two test sets are
listed in Table I (test sets of bg-img and bg-rand, respectively).
It can be found that CNN achieves worst performance in this
problem. Because in CNN, the parameters in local convo-
lutional kernels are shared, the background and foreground
use the same kernels. Therefore, the influence of background
neurons on the output neurons will be larger compared with
the architectures of DBN and NNN. The proposed parameter
learning method decreases the performance of hierarchical
architectures because the model increases the energy, i.e.,
the training error of other data and decreases the energy of
observed data. This means that with a distribution that is
even a little different from distribution of training data, the
output will be much different. Thus with different background
in the test set, the performance decays a lot. However, in
NNN, the background are restrained by the architecture, thus
the model will specially focus on the foreground. Therefore,
NNN greatly improves the performance in this problem. The
digits with bg-img are more difficult to recognize because the
background greatly disturb the digits as shown in Fig. 4. Al-
though NNN cannot achieve equivalent performance compared
with traditional classifiers trained by images with the same
kind of background as shown in [23] (77.39% and 85.42%
respectively by SVM, and 83.32% and 89.70% respectively by
denoising auto-encoder), it outperforms traditional classifiers
greatly when the backgrounds of training and test sets are
different. The robust learning and inference capability of NNN

TABLE I
AUC, AP, AND CA VALUES OF THE TEST RESULT ON DIGITS IN

DIFFERENT TEST SET. ARC. DENOTES ARCHITECTURE AND PAR. DENOTES
PARAMETER LEARNING METHOD.

Test Set Arc. DBN CNN NNN
Par. BP EDPM BP EDPM BP EDPM

MNIST
AUC .9898 .9864 .9968 .9888 .9846 .9921
AP .9941 .9896 .9953 .9921 .8734 .9814

CA(%) 98.97 98.74 99.14 98.73 98.69 98.86

bg-img
AUC .6395 .4005 .6002 .4139 .7205 .7434
AP .2860 .0389 .1514 .0379 .3300 .3776

CA(%) 29.71 10.28 24.24 13.14 37.18 57.33

bg-rand
AUC .6230 .3671 .5981 .4183 .7082 .8926
AP .3020 .0340 .1478 .0323 .3658 .5685

CA(%) 30.66 9.55 22.18 15.62 32.84 67.00

is larger than that of traditional network architectures in this
dataset.

V. CONCLUSIONS AND FUTURE WORK

This paper attempts a new neural network architecture
which is called nucleus neural network (NNN). NNN mimics
nuclei in brain where there is no regular layers so as to relax
the limitation of layers. To evaluate the architectures effi-
ciently, we directly model the architecture without involvement
of connecting weights and biases. The objective function is
defined to well represent the relationship between input and
output neurons with the architecture and is optimized by the
widely used particle swarm optimization algorithm. With the
optimized architecture, the connecting weights and biases are
learned by establishing a probability model in order to well
represent the input data. After optimization of architecture and
parameters respectively, we find that this novel architecture is
robust to irrelevant components in data. This means that NNN
works when the background of test data is different from that
of training data. Therefore, we reconstruct a new dataset based
on the MNIST dataset. From the experiments, NNN is superior
over traditional deep learners on this dataset.

However, since NNN is a brand new architecture, there
are still many defects including the low architecture and
parameter learning efficiency due to difficult parallelization
and unsatisfactory classification accuracy. In the future work,
we will further improve the efficiency of learning methods
via parallel computation and attempt feedback connections.



Moreover, we will stack NNN to mimic the hierarchical
architecture in brain.
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