
Learning dynamic weights for an ensemble of deep
models applied to medical imaging classification

Andre G. C. Pacheco
Graduate Program in Computer Science

Federal University of Espirito Santo
Vitoria, Brazil

agcpacheco@inf.ufes.br

Thomas Trappenberg
Faculty of Computer Science

Dalhousie University
Halifax, Canada

tt@dal.ca

Renato A. Krohling
Graduate Program in Computer Science
and Production Engineering Department

Federal University of Espirito Santo, UFES
Vitoria, Brazil

rkrohling@inf.ufes.br

Abstract—An ensemble of deep models is commonly used
to provide more robust and accurate performance for medical
image classification. A drawback of the most common ensemble
aggregation operators is that they give the same importance
to all models in the ensemble. As a consequence, they cannot
identify weak models that may negatively influence the ensemble
performance. In this work, we propose a new method based
on the Dirichlet distribution and Mahalanobis distance to learn
dynamic weights to an ensemble of deep learning models.
Through this method, it is possible to reduce the influence of
weak models for each new sample evaluated by the ensemble
and perform online ensemble pruning. We evaluate this method
for an ensemble of six well-known deep models applied to four
medical imaging datasets. The experiments show that our method
achieves the best balanced accuracy for 2 out of 4 datasets and
increases the confidence of the ensemble predictions.

Index Terms—Ensemble weighting, Ensemble pruning, Deep
learning, Dirichlet distribution, Mahalanobis distance

I. INTRODUCTION

Deep learning models have been achieving remarkable
results for different medical imaging classification such as
skin cancer detection [1], chest radiography diagnosis [2], lung
cancer prediction [3], diabetic retinopathy grading [4], among
others. Nonetheless, the performance of these models may
vary due to multiple reasons such as weights’ initialization,
hyperparameters, data variance, and overfitting. A common
strategy to deal with this issue is to trust in predictions from
an ensemble of different deep models [5], [6], [7], which is
known to be more robust and accurate than single models [8].

For deep learning, it is common to use a stack [9] of
homogeneous or heterogeneous models as an ensemble. In
the homogeneous approach, to achieve diversity, the model
is trained several times using different training sets and/or
parameters. On the other hand, in the heterogeneous method,
diversity is achieved by training different models on the same
training set [10], [11]. Since deep learning is greedy, i.e., it
demands large amounts of training data, the heterogeneous
approach is the most popular one since it does not partition
the training set. Currently, this approach is applied by the top-
ranked deep learning models in well-known computer vision
challenges such as ImageNet [12], ISIC [13], and CheXpert
[2].

The most used method to combine an ensemble of deep
models, regardless it is a heterogeneous or homogeneous

ensemble, is through aggregating the models’ predictions.
Aggregation operators are typically the majority voting [14],
[15], [16], predictions average [5], [17], [18], [19], maximum
prediction [20], and product of predictions [20]. Other known
information fusion techniques such as Choquet integral [21],
[22] and Dempster-Shafer theory [23] are avoided due to the
computational burden, which is an important issue since deep
learning itself is computationally expensive.

A drawback of the most common operators mentioned
above is that they assign the same importance to all models
in the ensemble. As a result, these operators cannot identify
weak models that may negatively influence the ensemble
performance. In order to tackle this issue, Krawczyk and
Woźniak [24] proposed a method based on Gaussian function
to estimate the weights of each model in the ensemble. Harangi
[20] proposed to weight the deep models in an ensemble based
on the models’ accuracy in the validation set. Both approaches
presented an improvement in the ensemble’s performance
since the influence of weak models is reduced. Nonetheless,
they assign static weights to the models, i.e., the weights
are the same for all samples evaluated by the ensemble. A
promising way to deal with this issue is through Dynamic
Selection (DS), a technique to select a single classifier from
the ensemble on the fly, i.e., according to each new sample to
be classified [15].

In this work, we propose a novel approach based on the
Dirichlet distribution [25] and Mahalanobis distance [26] to
learn dynamic weights to an ensemble of deep models. There
are two main advantages of a dynamic weighting: 1) it is
possible to reduce the influence of weak models for each new
sample evaluated by the ensemble; 2) one can apply online
ensemble pruning [27], [28]. The main contributions of this
work are summarized as follows:
• We propose a new approach to learn dynamic weight to

an ensemble of deep models. In brief, we estimate the
Dirichlet distribution of the models’ predictions and apply
the Mahalanobis distance to determine the weight of each
model.

• The weights learned by the proposed approach are used
to reduce the impact of weak models’ predictions on
the aggregation operator. In addition, we introduce a
mechanism to prune k models online.
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• We apply six well-known deep learning models to four
medical imaging classification. We present a discussion
to demonstrate the advantages and limitations of the
proposed approach.

The rest of this paper is organized as follows: in section
2, we introduce the Dirichlet distribution; in section 3, the
proposed approach is described; in section 4, we carry out
the experiments and present a discussion about the results
obtained; and in section 5, we draw some conclusions.

II. DIRICHLET DISTRIBUTION

The Dirichlet distribution is a generalization of the Beta
distribution for multiple random variables. Let us consider
a random variable p = {p1, · · · , pk}. The distribution is
defined for all p ∈ S, where S is the standard simplex
defined as {p ∈ Rk : pi ≥ 0,

∑
pi = 1}. In other words,

the elements of p must be positive and sum up to 1. For
this reason, each pi may be interpreted as a probability itself
and the Dirichlet distribution is known as a distribution over
probability distributions. Thus, it is commonly applied to
estimate proportional data [25].

The Dirichlet probability density function is defined by [25]:

p(p) ∼ D(p;α) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

k∏
i=1

pαi−1
i (1)

where α = {α1, · · · , αk} is the distribution’s parameters and
αk > 0. It is important to note that α and p are both k-
dimensional. Γ is the Gamma function defined as Γ(x) =∫ +∞

0
tx−1e−tdt.

A. Expectation, variance and covariance

Considering a Dirichlet distribution D(p;α), with p =
{p1, · · · , pk} and α = {α1, · · · , αk}, the expectation, vari-
ance, and covariance of this distribution are defined in (2),
(3), and (4), respectively [25].

E[pi] =
αi∑k
j=1 αj

(2)

V ar[pi] =
αi

(∑k
i=1 αi − αi

)
(∑k

i=1 αi

)2 (∑k
i=1 αi + 1

) (3)

Cov[pi, pj ] =
−αiαj(∑k

i=1 αi

)2 (∑k
i=1 αi + 1

) , i 6= j (4)

with i = 1, · · · , k.

B. Estimating a Dirichlet distribution

Let us consider a set of data D = {p1, · · · ,pN}, where
each pn = {p1, · · · , pk}, pn ∈ S, n = 1, · · · , N , and N
is the number of samples in the set. The parameters α of
a Dirichlet distribution may be estimated from D using the
Maximum-Likelihood Estimation (MLE) [29]. The Dirichlet
log-likelihood function of the data is given by [30]:

L(α) = log p(D | α) = log
∏
n

p(pn | α)

= log
∏
n

Γ (
∑
k αk)∏

k Γ(αk)

∏
k

pαk−1
nk

= N

(
log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)+

+
∑
k

(αk − 1) log p̄k

)
(5)

where log p̄k = 1
N

∑
n log pnk. Since the Dirichlet distribution

belongs to the exponential family [31], the objective function
L(α) is convex in α . Thus, it is guaranteed that the function
has a unique optimum [30].

A simple way to maximize L(α) is using the gradient ascent
algorithm. To this end, the gradient of L(α) is computed as
[30]:

∂L
∂αk

= N

(
Ψ

(∑
k

αk

)
−Ψ(αk) + log p̄k

)
(6)

where Ψ = d log Γ(x)
dx is known as Digamma function. From

(6), we can apply the gradient ascent algorithm, considering
that α > 0, to estimate the Dirichlet distribution for the set
of data D. Nonetheless, Minka [30] proposed a fixed-point
iteration for maximizing the log-likelihood and, consequently
estimate α, that is faster than gradient ascent method. The
main idea is to determine an initial value for α and to find a
lower bound function which is tight at α. Then, this function
is optimized in order to find a new value of α. The method
is obtained from the following inequality [32]:

Γ(x) ≥ Γ(x̂)e(x−x̂)Ψ(x̂) (7)

Applying this inequality to Γ(
∑
k αk) the following lower

bound on the log-likelihood is obtained:

L(α) ≥ N

[(∑
k

αk

)
Ψ

(∑
k

α̂k

)
−
∑
k

log Γ(αk)+

+
∑
k

(αk − 1) log p̄k + Const.

] (8)

Next, one maximizes the previous equation by setting the
gradient to zero and solving it for α, which leads to the
following fixed-point iteration [30]:

αnewk = Ψ−1

[
Ψ

(∑
k

αoldk + log p̄k

)]
(9)

Therefore, to estimate α, we determine an initial guess for
alpha and update this value according to (9) for a given
number of iterations or considering a convergence tolerance.
In Algorithm 1 is described the pseudo-code for the Dirichlet
estimation via fixed-point iteration method.



Algorithm 1: Dirichlet estimation using fixed-point
iteration method

1 Input:
2 D = {p1, · · · ,pN};
3 tol and max iter;
4 Dlog = 1

N

∑
n,k log pnk;

5 αold = 1
N

∑
n,k pnk;

6 while j < max iter do:
7 Compute αnew according to (9)
8 Compute L(αold) and L(αnew) according to (5);
9 if L(αold)− L(αnew) < tol:

10 break;
11 αold = αnew;
12 j = j + 1;
13 return αnew;

III. LEARNING DYNAMIC WEIGHTS FOR AN ENSEMBLE OF
DEEP MODELS

In this section, we describe our method to determine the
weight of each deep learning model in an ensemble. The main
idea behind this method is to learn the probability distribution
of the deep models’ predictions for a set of unseen samples
and compute a score that represents the relevance of each of
them in an ensemble. We describe the method in two steps.
First, we describe the probability distribution estimation of
the validation set predictions. Second, we detail the weights
computation.

A. Step 1: estimating the probability distribution

To describe this step, let us consider a classification problem
with X = {x1, · · · ,xN} inputs, Y = {y1, · · · ,yN} outputs,
and c = {c1, · · · , cL} labels, where N and L are the number
of samples and labels, respectively. The first step to train a
deep model on this task is to split X and Y into training (Xtr

and Ytr) and validation (Xval and Yval) partitions. The model
is trained using {Xtr, Ytr} to fit a function f(x) that outputs
an array y containing the logits for the sample x to each label
c. Usually, the logit is converted to the probability of y to
assume a label c, i.e, p(y = c | x). The most common way to
assign this probability is through the softmax function:

pl(yl = cl | x) =
eyl∑L
z=1 e

yz
, l = 1, · · · , L. (10)

Therefore, when a new sample x̂ is presented to f , it outputs
an array of probabilities p that represents the confidence of
this sample for each label cl ∈ c. In such case, we can
interpret each array p as a multivariate random variable and
apply the fixed-point method, described in Algorithm 1, to
estimate the Dirichlet distribution of a given partition of X .
In particular, our goal is to estimate the Dirichlet distribution
for the following sets of probabilities:
• Phl : the set of probabilities obtained by the model to the

validation set considering the label cl ∈ c when the label

is correctly predicted by the network. We name it the hit
set for the label l.

• Pml : the set of probabilities obtained by the model to the
validation set considering the label cl ∈ c when the label
is incorrectly predicted by the network. We name it the
miss set for the label l.

In order to sample in the model space, we applied the
dropout sampling [33] for the validation partition. The dropout
sampling consists of performing the model with the dropout
rate active during the inference phase. Normally, the dropout
is active only during the training phase as a tool to avoid over-
fitting and increase generalization [33]. The goal of activating
it also during inference is to vary the model and assess how
well the model generalizes for unseen samples. In our case,
the sets Phl and Pml are collected after de executions of the
network using dropout sampling with dropout rate equal to dr.
The parameter de controls the number of times that a given
sample x̂ is presented to the model; while the parameter dr is
the rate of nodes in the model that will be active during the
execution. Therefore, if the model is well trained the output
probabilities should not present a high variation for the same
sample.

B. Step 2: computing the dynamic weights

Let us consider an ensemble with G deep models E =
{f1(x), · · · , fG(x)} trained using {Xtr, Ytr}. For each model
fg(x), we apply the step 1, i.e, we perform the dropout
sampling for Xval and estimate the Dirichlet distributions
Dg(P

h
l ;αhl ) and Dg(P

m
l ;αml ), i.e., the distributions for each

Phl and Pml sets. We name them as the hit and miss distribu-
tions for the model g and label l, respectively.

Now, let us consider p̂g the predictions obtained to a new
sample x̂ by a model fg . The main goal of this step is to
measure how far p̂g is from the hit and miss distributions
for each label l. In particular, we observed that a reliable
prediction will be closer to a hit and far from a miss. An
effective method to measure the distance between a random
variable z from its distribution P (z) is the Mahalanobis
distance, defined as [26]:

Mah(z, P (z)) =
√

(z− E[P (z)])TS−1(z− E[P (z)]) (11)

where E[P (z)] is the expectation value of the distribution
P (z) and S−1 is the inverse of the covariance matrix of the
distribution. It is effective because it takes into account not
only the expectation but also the variance of the distribution.
Therefore, we apply the Mahalanobis distance to measure
the difference between p̂g and the distributions Dg(P

h
l ;αhl )

and Dg(P
m
l ;αml ). The Dirichlet expectation is computing

according to (2) and the covariance matrix using (3) and (4).
The standard way to select the label that the model fg

assigns to a sample x̂ is through argmax(p̂g). However,
we interpret p̂g as a multivariate random variable. Thus, to
compute the Mahalanobis distance between p̂g and the hit
and miss distributions, we take into account the contribution



Fig. 1: A schematic diagram illustrating both steps of the proposed algorithm. In the first step, the validation data is used to
get and save the hit and miss distributions. In the second step, the distributions are loaded and used to estimate the weights
for each model within the ensemble according to the probabilities assigned to the new sample.

of each label l according to the probability assigned to it. This
concept is described by (12) and (13).

Mahh
fg =

L∑
l=1

p̂glMah(p̂g,Dg(P
h
l ;α

h
l )), g = 1, · · · , G (12)

Mahm
fg =

L∑
l=1

p̂glMah(p̂g,Dg(P
m
l ;αm

l )), g = 1, · · · , G (13)

Finally, we compute the relevance of the model fg for a new
sample x̂ as:

wfg =
Mahmfg
Mahhfg

, g = 1, · · · , G (14)

As we may note, this simple equation implements the idea
previously mentioned. If p̂g is close to the hit distribution
and far from the miss one, the weight increases. On the other
hand, if p̂g is near to the miss and far from the hit, the weight
decreases. To normalize the weights in the interval [0, 1], we
apply the following equation:

w̃fg =
wfg∑G
j=1 wfj

, g = 1, · · · , G. (15)

The last step of the proposed method is to compute the final
aggregation. It is achieved through the following equation:

Aggfg =

L∑
j=1

w̃fg p̂j , g = 1, · · · , G. (16)

In Fig. 1 is illustrated a schematic diagram of the proposed
algorithm. It is important to note that only the step 2 is com-
puted online. As shown in the figure, the Dirichlet estimations
for each model are saved during step 1. As such, the relevance
of each model in the ensemble is computed online for a new
unseen sample x̂, which means that the weights are dynamic
and changes according to the presented sample. In this context,
using this method we can identify weak models according to

the sample. In addition, it is possible to prune the ensemble
online by selecting the best g models for each new sample or
setting a threshold for the weights.

IV. EXPERIMENTS

In this section, we carry out some experiments to evaluate
the performance of the proposed method. First, we describe the
experiments’ setup, including the datasets and deep learning
models applied. Next, we show the results and compare them
with standard approaches used in this area. Lastly, we present
a discussion about the results.

A. Experiments setup

In order to test our method, we create an heterogeneous
ensemble composed of six well-known Convolution Neu-
ral Networks (CNNs): DenseNet-121 [34], GoogleNet [35],
InceptionV4 [36], MobileNet-v2 [37], ResNet-50 [38], and
VGG-16 [39]. The ensemble was trained on four medical
datasets:
• ISIC 2019 [13]: this dataset contains 25,331 dermoscopy

images with 8 different skin diseases.
• CheXpert [2]: a large chest radiograph dataset containing

224,316 images reporting the presence of different con-
ditions in radiology. For this work, we select the pleural
effusion condition considering the U-MultiClass, which
has 3 classes: positive, negative, or uncertainty of the
condition.

• NCT-CRC-HE-100K [40]: a set of 100,000 histology
images of human colorectal cancer (CRC) and normal
tissue.

• OCT [41]: a dataset containing 83,495 images of retinal
optical coherence tomography (OCT) with 4 labels, 3
diseases and a normal retina.

In Fig. 2 is depicted an image sample of each dataset previ-
ously described.

All models in the ensemble were trained using their original
architecture, except for the last layer that depends on the
number of labels in the dataset. We performed the training



(a) ISIC (b) CheXpert

(c) OCT (d) NCT

Fig. 2: An example of an image from each medical dataset
used in this work. We may observe that they have different
features that affect the level of difficulty of each task.

phase for 120 epochs using Adam optimizer with a learning
rate equal to 0.001, which is reduced by a rate of 0.1 if
the model does not improve for 10 consecutive epochs. In
addition, we used early stopping if the model does not improve
for 15 consecutive epochs. As the datasets are imbalanced, i.e.,
the labels are not represented equally, we applied the weighted
cross-entropy as the loss function in which the weights are
determined according to the labels’ frequency. All images were
resized to 224× 224 and we applied data augmentation using
common image processing operations. For CheXpert and NCT
we applied only horizontal and vertical flips [2], [40], and
for ISIC we also include adjustments in brightness, contrast,
saturation, and hue [18], [19].

For all experiments, we reserved 10% of each dataset for
testing. The remaining 90% of data were used on the training
phase through 5-fold cross-validation for assessing the effec-
tiveness of the models. For each folder, we trained the models
and estimate Dg(P

m
l ;αml ) and Dg(P

m
l ;αml ) as described

in section III. To measure the performance, we computed
the average and standard deviation of the following metrics:
accuracy (ACC), balanced accuracy (BACC), aggregated area
under the curve (AUC), and the cross-entropy (Loss). Finally,
we compared the performance of our method with the most
common aggregation operators: majority voting (MV), pre-
dictions average (PAvg), maximum prediction (Pmax), and
product of predictions (PProd); and with the weighting average
(WAvg) proposed by Harangi [20]. After the aggregation, we
normalize all values to the interval [0, 1]. All procedures were
implemented using Python and PyTorch and performed on
Nvidia Tesla P-100. The code is available upon request.

B. Ensemble performance for medical imaging

In this section, we present the performance obtained by
the deep models and the ensemble for the four medical

imaging datasets previously described. In Table I is reported
the performance for each deep model and each dataset. As
we may note, there are different levels of performance among
the datasets. While the deep models work quite well for NCT
and OCT, they do not present the same performance for ISIC
and CheXpert. In fact, as we can see through the loss metric,
the models struggle to generalize to these latter datasets. It
happens mainly because they present a high variability of
features and strong similarities among diseases. For instance,
in ISIC it is hard to distinguish melanoma and nevus [18],
while in CheXpert it is common to confuse the uncertainty
label between positive and negative [2].

Overall, due to the imbalance among the labels, the BACC
is slightly lower than ACC for ISIC, NCT, and OCT. For
CheXpert, it is approximately 10% lower. The reason for this
difference in performance is that the models are not identifying
the uncertainty label properly. In this context, we consider the
BACC the priority metric in this experiment. Actually, this is
the main metric for several medical task challenges such as
ISIC [13].

Another important observation is that there is no model that
presents the best performance for all datasets. Considering the
average BACC, for ISCI the best performance is presented
by InceptionV4, for CheXpert by Resnet-50, for NCT by
MobileNet-V2, and for OCT by VGG-16. This is a result that
supports the use of ensembles of models as a tool to improve
the performance and robustness of the results.

In Table II is presented the results achieved by the ensemble
of deep models, considering the five aggregation methods and
our proposed approach, for each medical imaging dataset. In
general, the aggregation methods present better performance
than the single models. We highlight the following observa-
tions for each dataset:
• ISIC: for this dataset, our method improved the average

of the BACC in 5.4% comparing to the best single
model and 1.2% comparing to the second-best aggre-
gation method. In addition, it presents the lowest loss,
which means it is predicting the correct label with more
confidence.

• CheXpert: our method improved the average ACC in
3.9% comparing to the best single model. However, the
BACC achieved by the ensemble is quite similar to the
single models. Again, our approach presents the lowest
loss among all aggregation methods.

• NCT: the results got by the ensemble are slightly bet-
ter than the single models and all aggregation meth-
ods present similar performance for ACC and BACC.
Nonetheless, for this dataset, the lowest average loss is
achieved by PAvg.

• OCT: our method improved the average BACC in 1.2%
comparing to the best single model and 1% comparing
to the second-best aggregation method. As the models
perform quite well for this dataset, the remaining metrics
are similar.

Overall, our method presents the lowest average loss for 3
out of 4 datasets and best average BACC for ISIC and OCT.



TABLE I: Performance achieved by each deep model for each medical imaging dataset.

Model ISIC CheXpert
ACC BACC AUC Loss ACC BACC AUC Loss

DenseNet-121 0.720± 0.044 0.702± 0.055 0.932± 0.021 0.822± 0.155 0.676± 0.002 0.560± 0.006 0.781± 0.002 0.824± 0.015
GoogleNet 0.776± 0.035 0.758± 0.037 0.960± 0.010 0.622± 0.085 0.668± 0.002 0.561± 0.002 0.788± 0.001 0.830± 0.001

InceptionV4 0.778± 0.034 0.768± 0.040 0.959± 0.012 0.654± 0.103 0.656± 0.015 0.555± 0.003 0.768± 0.005 0.837± 0.015
MobileNet-V2 0.756± 0.047 0.738± 0.040 0.953± 0.010 0.688± 0.098 0.684± 0.008 0.549± 0.002 0.774± 0.001 0.817± 0.008

Resnet-50 0.768± 0.023 0.746± 0.026 0.956± 0.004 0.640± 0.049 0.685± 0.006 0.568± 0.009 0.794± 0.006 0.803± 0.010
VGG-16 0.745± 0.007 0.735± 0.033 0.944± 0.011 0.713± 0.050 0.675± 0.014 0.561± 0.020 0.789± 0.016 0.825± 0.010

Model NCT OCT
ACC BACC AUC Loss ACC BACC AUC Loss

DenseNet-121 0.934± 0.014 0.909± 0.032 0.992± 0.001 0.403± 0.078 0.976± 0.002 0.956± 0.002 0.999± 0.000 0.064± 0.004
GoogleNet 0.924± 0.008 0.908± 0.003 0.989± 0.006 0.464± 0.191 0.968± 0.007 0.944± 0.013 0.997± 0.002 0.095± 0.026

InceptionV4 0.903± 0.005 0.883± 0.013 0.984± 0.006 0.502± 0.006 0.976± 0.001 0.957± 0.002 0.998± 0.000 0.073± 0.002
MobileNet-V2 0.935± 0.007 0.924± 0.001 0.993± 0.002 0.354± 0.023 0.957± 0.003 0.943± 0.006 0.995± 0.001 0.132± 0.017

Resnet-50 0.926± 0.004 0.920± 0.001 0.992± 0.001 0.442± 0.023 0.972± 0.002 0.952± 0.006 0.998± 0.000 0.081± 0.008
VGG-16 0.914± 0.014 0.911± 0.008 0.995± 0.002 0.392± 0.077 0.978± 0.002 0.960± 0.003 0.999± 0.001 0.065± 0.007

(a) Macro view (b) Micro view

Fig. 3: The receiver operating characteristic (ROC) curves for the ISIC dataset considering the aggregation methods and the
single models. In a) is depicted the full plot and in b) the zoom of the painted region of a).

Nonetheless, PAvg and WAvg present competitive performance
considering all four sets of data. We also observe that the
ensemble improves the AUC only for ISIC and CheXpert.
Lastly, it is worth to note that the PProd and MV present the
highest average loss among all methods. It happens because
whenever there is a disagreement in the ensemble, these
methods allow it to impact too much in the aggregation
prediction.

To conclude this section, in Fig. 3 is shown the receiver
operating characteristic (ROC) curves considering one folder
for the ISIC dataset. As we may see, the aggregation methods
present competitive performance, although our method’s curve
is slightly above the others. In general, the deep models’ curve
is below the aggregations’ ones, except for the GoogleNet that
is better than PMax and MV.

C. Dynamic pruning the ensemble

In this experiment, we online pruned the ensemble of
deep models based on the weights assigned by our proposed
method. For each new sample evaluated by the ensemble,
we selected the best models through ranking the weights.
We performed this experiment using only the ISIC dataset
since the deep models present different results for this set. In
Table III is presented the ensemble pruning that selects 1 to
5 models from the group. As the weights change according

to the sample, the models selected may change each time the
ensemble evaluated a new sample.

As we may note from Table III, the results present a
similar performance when the ensemble is composed of at
least three models, which suggests the weights assigned by
the proposed approach are working properly. In addition, we
observe that the loss decreases as the number of selected
models increases. This result shows that even though it is
possible to achieve similar performance, in terms of BACC,
by pruning the ensemble, the number of models increases the
prediction confidence. In Fig. 4 is shown the ROC curves
considering each deep model and the ensemble pruning. We
can see that the curves of the ensemble containing 1 and 2
models are slightly below the remaining ones, which is in
accordance with the previous analysis.

D. Discussion

The results presented in the previous section show that
an ensemble of deep models worked properly to deal with
medical imaging classification. Although the computational
burden to train several deep models is high, the improvement
presented is very desired, in particular for medical tasks.

The proposed approach to aggregate the ensemble presented
a competitive performance compared to the other methods.
Beyond to achieve the best average BACC for two datasets,



TABLE II: Performance achieved by the ensemble of deep models for each medical imaging dataset considering the different
aggregation methods.

Method ISIC CheXpert
ACC BACC AUC Loss ACC BACC AUC Loss

PAvg 0.822± 0.001 0.810± 0.005 0.964± 0.002 0.557± 0.031 0.697± 0.003 0.571± 0.004 0.800± 0.003 0.800± 0.003
PMax 0.810± 0.010 0.805± 0.011 0.957± 0.003 0.698± 0.043 0.715± 0.007 0.566± 0.002 0.788± 0.003 0.819± 0.001
PProd 0.825± 0.011 0.805± 0.010 0.976± 0.002 1.399± 0.023 0.695± 0.003 0.574± 0.005 0.797± 0.004 1.469± 0.014
MV 0.805± 0.012 0.795± 0.013 0.952± 0.003 2.546± 0.218 0.709± 0.001 0.567± 0.011 0.760± 0.006 3.689± 0.124

WAvg 0.823± 0.010 0.809± 0.016 0.974± 0.002 0.543± 0.032 0.695± 0.003 0.572± 0.004 0.790± 0.006 0.801± 0.004
Ours 0.828± 0.012 0.822± 0.014 0.975± 0.002 0.503± 0.022 0.724± 0.002 0.568± 0.003 0.801± 0.005 0.728± 0.004

Method NCT OCT
ACC BACC AUC Loss ACC BACC AUC Loss

PAvg 0.941± 0.002 0.928± 0.002 0.996± 0.001 0.189± 0.015 0.980± 0.002 0.962± 0.002 0.999± 0.002 0.064± 0.004
PMax 0.940± 0.003 0.931± 0.003 0.995± 0.002 0.201± 0.013 0.979± 0.002 0.960± 0.003 0.999± 0.001 0.095± 0.003
PProd 0.942± 0.002 0.932± 0.003 0.995± 0.000 1.167± 0.051 0.980± 0.002 0.960± 0.004 0.998± 0.001 0.190± 0.033
MV 0.943± 0.001 0.931± 0.003 0.984± 0.002 0.782± 0.092 0.980± 0.003 0.962± 0.005 0.995± 0.001 0.198± 0.011

WAvg 0.932± 0.002 0.922± 0.002 0.996± 0.001 0.196± 0.003 0.980± 0.002 0.961± 0.005 0.998± 0.000 0.063± 0.003
Ours 0.942± 0.001 0.932± 0.004 0.996± 0.002 0.251± 0.002 0.981± 0.002 0.972± 0.004 0.999± 0.000 0.058± 0.007

(a) Macro view (b) Micro view

Fig. 4: The receiver operating characteristic (ROC) curves for the ISIC dataset considering the ensemble pruning approach. In
a) is depicted the full plot and in b) the zoom of the painted region of a).

TABLE III: Ensemble pruning according to the weights as-
signed by our method.

Nº of models ACC BACC AUC Loss
1 0.799± 0.012 0.812± 0.012 0.957± 0.005 0.723± 0.041
2 0.804± 0.011 0.814± 0.011 0.967± 0.003 0.590± 0.031
3 0.816± 0.011 0.820± 0.012 0.971± 0.003 0.538± 0.041
4 0.820± 0.011 0.819± 0.014 0.973± 0.004 0.520± 0.030
5 0.823± 0.014 0.822± 0.014 0.975± 0.003 0.510± 0.040

All 0.828± 0.012 0.822± 0.014 0.975± 0.002 0.503± 0.022

the method increases the confidence of the predictions since it
presented the lowest loss among all methods. The advantage
of providing online weights for each new evaluated sample is
important towards understanding the real contribution of each
model within the ensemble. In addition, it can be applied to
ensemble pruning, as shown in the experiments.

Although the proposed method is promising, it presents a
limitation. As it depends on the validation set to estimate the
Dirichlet distributions of the hit and miss sets, the model is
sensitive to this set. For instance, if the distribution of this set
is too far from the test set, i.e., the real world, the approach
performance may decrease. However, deep learning training
also depends on this assumption, i.e., the data distribution
used in the training phase is close to the one in which the
model will be applied. In any case, it is important to ensure a

representative validation set.

V. CONCLUSION

In this paper, we proposed a new algorithm to learn dy-
namic weights for an ensemble of deep learning models.
This algorithm uses the Dirichlet distribution and Mahalanobis
distance to estimate the relevance of a deep model within the
ensemble. In order to test the proposed method, we carried
out experiments using four different medical imaging tasks.
The method achieved the best averaged balanced accuracy
for 2 tasks and the lowest loss for all of them. Although
the method is promising, we discussed a limitation regarding
the dependence of the validation set. To conclude, we believe
it is possible to improve the ensemble’s performance by
aggregating the models’ weights instead of only working with
the predictions. In the future, we aim to extend the presented
method to deal with this case.
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