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Abstract—Autoencoders are commonly trained using element-
wise loss. However, element-wise loss disregards high-level struc-
tures in the image which can lead to embeddings that disregard
them as well. A recent improvement to autoencoders that helps
alleviate this problem is the use of perceptual loss. This work
investigates perceptual loss from the perspective of encoder
embeddings themselves. Autoencoders are trained to embed
images from three different computer vision datasets using
perceptual loss based on a pretrained model as well as pixel-
wise loss. A host of different predictors are trained to perform
object positioning and classification on the datasets given the
embedded images as input. The two kinds of losses are evaluated
by comparing how the predictors performed with embeddings
from the differently trained autoencoders. The results show that,
in the image domain, the embeddings generated by autoencoders
trained with perceptual loss enable more accurate predictions
than those trained with element-wise loss. Furthermore, the
results show that, on the task of object positioning of a small-
scale feature, perceptual loss can improve the results by a factor
10. The experimental setup is available online. 1

Index Terms—Autoencoder, Perceptual Loss, Image Processing,
Image Classification, Object Positioning, Embeddings

I. INTRODUCTION

Autoencoders have been in use for decades [1], [2] and are
prominently used in machine learning research today [3]–[5].
Autoencoders have been commonly used for feature learning
and dimensionality reduction [6]. The reduced dimensions are
referred to as the latent space, embedding, or simply as z.
However, autoencoders have also been used for a host of other
tasks like generative modeling [7], denoising [8], generating
sparse representations [9], anomaly detection [10] and more.

Traditionally, autoencoders are trained by making the output
similar to the input. The difference between output and input is
quantified by a loss function, like Mean Squared Error (MSE),
applied to the differences between each output unit and their
respective target output. This kind of loss, where the goal of
each output unit is to reconstruct exactly the corresponding
target, is known as element-wise loss. In computer vision,
when the targets are pixel values, this is known as pixel-wise
loss, a specific form of element-wise loss.

A problem related to element-wise loss is that it does not
take into account relations between the different elements;

1https://github.com/guspih/Perceptual-Autoencoders

Fig. 1. A striped image and two reconstructions with their respective element-
wise Mean Squared Error. In the first reconstruction each stripe has been
moved one pixel to the side and the other is completely gray.

it only matters that each output unit is as close as possible
to the corresponding target. This problem is visualized in
Fig. 1, where the first reconstruction with loss 1.0 is the
correct image shifted horizontally by one pixel, and the second
reconstruction with lower loss has only one color given by the
mean value of the pixels. While a human would likely say that
the first reconstruction is more accurate, pixel-wise loss favors
the latter. This is because, for a human, the pattern is likely
more important than the values of individual pixels. Pixel-wise
loss does, on the other hand, only account for the correctness
of individual pixels.

Another problem with element-wise loss is that all elements
are weighted equally although some group of elements may
be more important, for example when solving computer vi-
sion tasks like object detection. This problem is visualized
in Fig. 2 where an otherwise black and white image has
a small gray feature. Despite being perceived as important
by humans, element-wise loss gives only a small error for
completely omitting the gray feature. This is because element-
wise loss considers each element to have the same importance
in reconstruction, even though some elements might represent
a significant part of the input space.

One method that has been used to alleviate these problems
for image reconstruction and generation is perceptual loss.
Perceptual loss is calculated using the activations of an in-
dependent neural network, called the perceptual loss network.
This type of loss was introduced for autoencoders in [11].

Despite the success of perceptual loss for autoencoders
when it comes to image reconstruction and generation, the
method has yet to be tested for its usefulness for maintaining
information in embedded data in the encoding-decoding task
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Fig. 2. An image and three reconstructions with their respective element-wise
Mean Squared Error. The first is the original image. The second is missing
the gray feature. The third has four black pixels removed. In the last the gray
feature have been moved one pixel up and one pixel to the right.

itself. This work investigates how training autoencoders with
perceptual loss affects the usefulness of the embeddings for
the tasks of image object positioning and classification. This
is done by comparing the performance of Multi-Layer Percep-
trons and linear regression on the two tasks when trained and
tested with the embeddings as input. The evaluation compares
autoencoders and variational autoencoders (VAE) trained with
pixel-wise loss to those trained with perceptual loss.

Contribution

This work shows that, on three different datasets, em-
beddings created by autoencoders and VAEs trained with
perceptual loss are more useful for solving object positioning
and image classification than those created by the same
models trained with pixel-wise loss. This work also shows
that if an image has a small but important feature, the ability
to reconstruct this feature from embeddings can be greatly
improved if the encoder has been trained with perceptual loss
compared to pixel-wise loss.

II. RELATED WORK

The VAE is an autoencoder architecture that has seen much
use recently [12]. The encoder of a VAE generates a mean
and variance of a Gaussian distribution per dimension instead
of an embedding. The embedding is then sampled from those
distributions. To prevent the model from setting the variance
to 0 a regulatory loss based on Kullback-Liebler (KL) diver-
gence [13] is used. This regulatory loss is calculated as the
KL divergence between the generated Gaussian distributions
and a Gaussian with mean 0 and variance 1. Through this
the VAE is incentivized not only to create embeddings that
contain information about the data, but that these embeddings
closely resemble Gaussians with mean 0 and variance 1. The
balance between the reconstruction and KL losses incentivizes
the VAE to place similar data close in the latent space which
means that if you sample a point in the latent space close
to a know point those are likely to be decoded similarly. This
sampling quality of the VAE makes it a good generative model
in addition to its use as feature learner.

The VAE has been combined with another generative model,
the GAN [14] to create the VAE-GAN [11]. In order to
overcome problems with the VAE as generative model the
VAE-GAN adds a discriminator to the architecture, which is
trained to determine if an image have been generated or comes
from the ground truth. The VAE is then given an additional

loss for fooling the discriminator and a perceptual loss by
comparing the activations of the discriminator when given the
ground truth to when it is given the reconstruction. This means
that the discriminator network is also used as a perceptual loss
network in the VAE-GAN. While the VAE-GAN was the first
autoencoder to use perceptual loss, it was not the first use of
perceptual loss.

Perceptual loss was introduced in the field of explainable
AI as a way to visualize the optimal inputs for specific classes
or feature detectors in a neural network [15], [16]. Soon after,
GAN were introduced which used perceptual loss to train a
generator network to fool a discriminator network. In order
to use perceptual loss without the need for training a dis-
criminator, which can be notoriously difficult, [17] proposed
using image classification networks in their place. In that work
AlexNet [18] is used as perceptual loss network.

While the use of perceptual loss has been primarily to
improve image generation it has also been used for im-
age segmentation [19], object detection [20], and super-
resolution [21].

III. PERCEPTUAL LOSS

Perceptual loss is in essence any loss that depends on
some activations of a neural network beside the machine
learning model that is being trained. This external neural
network is referred to as the perceptual loss network. In
this work perceptual loss is used to optimize the similarity
between the image and its reconstruction as perceived by
the perceptual loss network. By comparing feature extractions
of the perceptual loss network when it’s given the original
input compared to the recreation, a measure for the perceived
similarity is created. This process is described in detail below.

Given an input X of size n an autoencoder can be defined
as a function X̂ = a(X) where X̂ is the reconstruction of X .
Given a loss function f (like square error or cross entropy)
the element-wise loss for a is defined as:

E =

n∑
k=1

f(Xk, a(X)k) (1)

Given a perceptual loss network y = p(X) where y is the
relevant features of size m the perceptual loss for a is defined
as:

E =

m∑
k=1

f(p(X)k, p(a(X))k) (2)

In either equation the average may be used instead of the sum.
This work, like a previous work [17], uses AlexNet [22]

pretrained on ImageNet [23] as perceptual loss network (p).
For this work, feature extraction is done early in the convolu-
tional part of the network since we are interested in retaining
positional information which would be lost by passing through
too many pooling or fully-connected layers. With that in mind
feature extraction of y from AlexNet is done after the second
ReLU layer. To normalize the output of the perceptual loss
network a sigmoid function was added to the end. The parts
of the perceptual loss network that are used are visualized in
Fig. 3.



Fig. 3. The parts of a pretrained AlexNet that were used for calculating and
backpropagating the perceptual loss.

IV. DATASETS

This work makes use of three image datasets each with a
task that is either object positioning or classification. These
three are a collection of images from the LunarLander-v2 en-
vironment of OpenAI Gym [24], STL-10 [25], and SVHN [26].

A. LunarLander-v2 collection

The LunarLander-v2 collection consists of images collected
from 1400 rollouts of the LunarLander-v2 environment using a
random policy. Each rollout is 150 timesteps long. The images
are scaled down to the size of 64 × 64 pixels. The first 700
rollouts are unaltered while all images where the lander is
outside the screen have been removed from the remaining
rollouts. This process removed roughly 10% of the images
in the latter half. The task of the LunarLander-v2 collection
is object positioning, specifically to predict the coordinates of
the lander in the image.

B. STL-10

The STL-10 dataset consists of 100000 unlabeled images,
500 labeled images, and 8000 test images of animals and
vehicles. The labeled and test images are divided into 10
classes. The task is to classify the images. Specifically the
task is to create a model that uses unsupervised learning on the
unlabelled images to complement training on the few labelled
samples. The images are of size 96× 96.

NOTE: The original task of STL-10 is to only use the
provided training data to train a classifier. However, the
AlexNet part of the perceptual loss that this work uses has
been pretrained on another dataset. Thus, any results achieved
by a network trained with that loss cannot be regarded as
actually performing the original task of STL-10.

C. SVHN

The SVHN dataset consists of images of house numbers
where the individual digits have been cropped out and scaled to
32×32 pixels. The dataset consists of 73257 training images,
26032 testing images, and 531131 extra images. The task is to
train a classifier for the digits. The extra images are intended
as additional training data if needed.

V. AUTOENCODER ARCHITECTURE

The autoencoder architecture used in this paper is the same
for all datasets and is based on the architecture in [3] and the
full architecture can be seen in Fig. 4. The architecture takes

Fig. 4. The convolutional variational autoencoder used in this work.

input images of size 3×64×64 or 3×96×96. For the SVHN
dataset our copies of each image is combined in a 2-by-2 grid
of 64 × 64 pixels that are used as input to the architecture.
The stride for all convolutional and deconvolutional layers is
2. When training a standard (non-variational) autoencoder σ
and the KLD-loss is set to 0.

VI. TESTING PROCEDURE

For each dataset a number of autoencoders were trained
with different numbers of latent dimensions. Since the use of
autoencoder embeddings to minimize the input for a task is
typically helpful when data or labels are limited this work
investigates small sizes of the latent space (∼ 100). With the
actual sizes (z) tested being 32, 64, 128, 256, 512. Not all
values of z were tested for all datasets, with smaller values
used for datasets with lower dimensionality.

For each size of the latent space two standard autoencoders
and two VAEs were trained. One of each with pixel-wise loss



Fig. 5. The system used in this work including both the autoencoding and
prediction pathways.

(AE and VAE) and one of each with perceptual loss (P. AE
and P. VAE). Then for each trained autoencoder a number of
predictors were trained to solve the task of that dataset given
the embedding as input. There were two types of predictors;
(i) Multilayer Perceptrons (MLP) with varying parameters and
(ii) linear regressors.

The full system including the predictor is shown in Fig. 5.
The encoder, z, and decoder make up the autoencoder which is
shown in Fig. 4. The autoencoder is either trained with pixel-
wise loss given by MSE between X and X̂ , or perceptual loss
given by MSE between y and ŷ. The perceptual loss network
is the part of AlexNet that is detailed in Fig. 3. The predictor
is either a linear regressor or an MLP as described below.

The MLPs had 1 or 2 hidden layers with 32, 64, or
128 hidden units each and with ReLU or Sigmoid activation
functions. The output layer either lacked activation function
or used Softmax. The entire search space of hyperparameters
were considered with the restriction that the second hidden
layer couldn’t be larger than the first.

Each dataset is divided into three parts: One for training and
validating the autoencoders, one for training and validating the
predictors, and one for testing. Table I shows which parts of
each dataset are used for what part of the evaluation. Of the
autoencoder and predictor parts 80% is used for training and
20% is used for validation.

For each trained autoencoder the MLP and regressor with
the lowest validation loss was tested using the test set. For the
LunarLander-v2 collection the results are the distance between
the predicted position and the actual position averaged over the
test set and for the other datasets the results are the accuracy
of the predictor on classifying the test set. Additionally the
decoders of all autoencoders were retrained with pixel-wise
MSE loss to see if the reconstructions using perceptually
trained embeddings would be better than with pixel-wise
trained embeddings.

TABLE I
PARTS OF THE DATASETS USED FOR TRAINING AND TESTING THE

AUTOENCODERS AND PREDICTORS

LunarLander STL-10 SVHN
Autoencoder Unaltered Unlabeled Extra
Predictor 80% altered Training Training
Test 20% altered Test Test

VII. RESULTS

The results are broken into seven tables. Tables II, III,
and IV show the performance of the MLPs with the lowest
validation loss on the test sets. Tables V, VI, and VII show the
performance of the regressors on the test sets. For reference the
state-of-the-art accuracy, at the time of writing, on STL-10 and
SVHN are 94.4% [27] and 99.0% [28] respectively. Table VIII
shows the relative performance on image reconstruction (as
measured with the L1 norm) for the best of each type of
autoencoder on each dataset.

Actual reconstructed images from the LunarLander-v2 col-
lection are visualized in Fig. 6. The image contains the original
image and its reconstructions by a pixel-wise and a perceptu-
ally trained autoencoder before and after retraining. For this
image the reconstruction by the perceptual autoencoder has
higher pixel-wise reconstruction error before as well as after
retraining of the decoder.

Over all tests, the use of perceptual loss added 12 ± 3%
to the training time of the autoencoders. Since the perceptual
loss is only used during autoencoder training it had no effect
on the time for inference or training predictors.

TABLE II
AVERAGE TEST DISTANCE ERROR IN PIXELS FOR LUNARLANDER-V2

COLLECTION FOR THE MLPS WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
32 13.44 12.70 2.11 1.28
64 13.28 13.22 1.60 1.15
128 13.31 13.31 1.44 1.15
256 13.22 13.28 1.44 1.28
Any 13.22 12.70 1.44 1.15

TABLE III
ACCURACY ON STL-10 TEST SET FOR VARIOUS Z SIZES FOR THE MLPS

WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
64 38.5% 41.9% 61.4% 63.4%
128 39.0% 42.4% 62.6% 62.3%
256 41.5% 38.9% 63.4% 64.8%
512 45.0% 39.2% 63.3% 64.4%
Any 45.0% 42.4% 63.4% 64.8%

VIII. ANALYSIS

The most prominent result of the experiments is that for all
three datasets and all tested sizes of z the perceptually trained



TABLE IV
ACCURACY ON SVHN TEST SET FOR VARIOUS Z SIZES FOR THE MLPS

WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
32 76.5% 76.8% 77.0% 69.6%
64 81.5% 81.8% 82.2% 76.8%
128 81.9% 82.7% 84.0% 81.2%
Any 81.9% 82.7% 84.0% 81.2%

TABLE V
AVERAGE TEST DISTANCE ERROR IN PIXELS FOR LUNARLANDER-V2

COLLECTION FOR THE REGRESSORS WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
32 13.73 12.67 7.23 7.46
64 13.60 12.99 6.85 5.50
128 14.18 12.96 6.72 5.54
256 15.17 13.38 6.40 5.18
Any 13.60 12.67 6.40 5.18

autoencoders performed better than the pixel-wise trained
ones. Furthermore, for both the LunarLander-v2 collection and
STL-10 the pixel-wise trained autoencoder is outperformed
significantly. On the LunarLander-v2 collection the perceptu-
ally trained autoencoders have an order of magnitude better
performance.

While the performance on object positioning and classifi-
cation is better for perceptually trained autoencoders this is
not the case with image reconstruction. On LunarLander-v2
collection the perceptual autoencoder is only slightly better
at reconstruction. For the other two datasets the pixel-wise
trained autoencoders have a much lower relative reconstruction
error. Furthermore in Fig. 6 the reconstructed image where the
lander is actually visible has higher reconstruction loss. This
is an actual demonstration of the problems with pixel-wise
reconstruction metrics that were visualized in Fig 1 and Fig. 2.
This lack of correlation between low reconstruction error and
performance on a given task is in line with the findings of [29].

The results suggest that perceptual loss gives, for the tasks
at hand, better embeddings than pixel-wise loss. Taking it even
further however, these results combined with earlier work [11]
suggests that pixel-wise reconstruction error is a flawed way
of measuring the similarity of two images.

However, while the results are better for perceptual loss
this comes at the cost of training time. While a 12% increase
of training time is not a significant amount, especially since
training and inference of downstream tasks is not noticeably
affected, this increase depends on the perceptual loss network’s
size in comparison to the size of the remaining model.
If the autoencoder is small or the perceptual loss network
significantly large the effect on training time could become
significant.

Another interesting aspect is the difference in performance
when switching from MLPs to linear regression. The error of
perceptually trained autoencoders on LunarLander-v2 collec-

TABLE VI
ACCURACY ON STL-10 TEST SET FOR VARIOUS Z SIZES FOR THE

REGRESSORS WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
64 34.6% 36.8% 56.3% 58.1%
128 35.4% 39.7% 59.7% 57.4%
256 40.2% 43.6% 59.5% 63.7%
512 44.4% 45.9% 60.1% 64.9%
Any 44.4% 45.9% 60.1% 64.9%

TABLE VII
ACCURACY ON SVHN TEST SET FOR VARIOUS Z SIZES FOR THE

REGRESSORS WITH LOWEST VALIDATION LOSS.

z size AE VAE P. AE P. VAE
32 25.5% 32.0% 61.6% 58.9%
64 24.8% 41.2% 67.2% 66.3%
128 29.3% 47.5% 70.6% 71.2%
Any 29.3% 47.5% 70.6% 71.2%

TABLE VIII
PERFORMANCE OF RECONSTRUCTION OF THE BEST AUTOENCODERS

AFTER RETRAINING AS MEASURED BY THE PERFORMANCE RELATIVE TO
THE AUTOENCODER WITH THE LOWEST L1-NORM ERROR.

Dataset AE VAE P. AE P. VAE
LunarLander 93% 77% 100% 73%
STL-10 100% 92% 60% 44%
SVHN 100% 97% 75% 57%

tion is increased by a factor 5 when switching from MLPs
to linear regression. This suggests that while the embeddings
of the perceptually trained autoencoders contains much more
details as to the location of the lander, this information is
not encoded linearly which makes linear regressors unable to
extract it properly. This is in contrast to STL-10 on which
the performance remains roughly the same for both predictor
types, which suggests that all the information needed to make
class prediction is encoded linearly.

On SVHN performance were similar for all autoencoders
with MLP predictiors. However, the performance of pixel-wise
trained AE and VAE lose 50 and 40 percentage points respec-
tively when using linear regression. This indicates that the
autoencoders manage to encode similarly useful information
for solving the task but that the pixel-wise trained embeddings
demand a non-linear model to extract that information.

All this comes together to suggests that perceptually trained
autoencoders either have more useful embeddings or the useful
information in the embeddings require less computational
resources to make use of. The accessibility of the information
is important as one of the primary uses of autoencoders is
dimensionality reduction to enable the training of smaller
predictors for the task at hand. If the information is com-
putationally heavy to access a significant part of the already
small model may be dedicated to unpacking it instead of doing



Fig. 6. A comparison of the reconstructed images from pixel-wise and
perceptually trained embeddings.

prediction.
It is important to note the scope of this work. Only three

datasets have been investigated, and for only a single percep-
tual loss network. The work shows that there is promise in
investigating this use of perceptual loss, but further studies
are needed. Specifically to see if these results generalize to
other datasets and perceptual loss networks.

IX. CONCLUSION

Element-wise loss disregards high-level features in images
which can lead to embeddings that do not encode the features
sufficiently well. This work investigates perceptual loss as
an alternative to element-wise loss to improve autoencoder
embeddings for downstream prediction tasks. The results show
that perceptual loss based on a pretrained model produces bet-
ter embeddings than pixel-wise loss for the three tasks investi-
gated. This work demonstrates that it is important to research
on alternatives to element-wise loss and to directly analyze
the learned embeddings. Future investigations of perceptual
loss should investigate the importance of which perceptual loss
network one chooses, how the features are extracted, and in
general apply perceptual loss in other domains than images.
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