
OvA-INN: Continual Learning with
Invertible Neural Networks

Guillaume Hocquet
CEA, LIST

Gif-sur-Yvette CEDEX, France
guillaume.hocquet@cea.fr

Olivier Bichler
CEA, LIST

Gif-sur-Yvette CEDEX, France
olivier.bichler@cea.fr

Damien Querlioz
CNRS, Université Paris-Saclay
Gif-sur-Yvette CEDEX, France

damien.querlioz@u-psud.fr

Abstract—In the field of Continual Learning, the objective is
to learn several tasks one after the other without access to the
data from previous tasks. Several solutions have been proposed
to tackle this problem but they usually assume that the user
knows which of the tasks to perform at test time on a particular
sample, or rely on small samples from previous data and most
of them suffer of a substantial drop in accuracy when updated
with batches of only one class at a time. In this article, we
propose a new method, OvA-INN, which is able to learn one
class at a time and without storing any of the previous data.
To achieve this, for each class, we train a specific Invertible
Neural Network to extract the relevant features to compute
the likelihood on this class. At test time, we can predict the
class of a sample by identifying the network which predicted
the highest likelihood. With this method, we show that we can
take advantage of pretrained models by stacking an Invertible
Network on top of a feature extractor. This way, we are able
to outperform state-of-the-art approaches that rely on features
learning for the Continual Learning of MNIST and CIFAR-100
datasets. In our experiments, we reach 72% accuracy on CIFAR-
100 after training our model one class at a time.

Index Terms—Continual Learning, Catastrophic forgetting

I. INTRODUCTION

A typical Deep Learning workflow consists in gathering
data, training a model on these data and finally deploying
the model in the real world [1]. If one would need to update
the model with new data, it would require to merge the old
and new data and process a training from scratch on this
new dataset. Nevertheless, there are circumstances where this
method may not apply. For example, it may not be possible
to store the old data because of privacy issues (health records,
sensible data) or memory limitations (embedded systems, very
large datasets). In order to address those limitations, recent
works propose a variety of approaches in a setting called
Continual Learning [2].

In Continual Learning, we aim to learn the parameters w of
a model on a sequence of datasets Di = {(xji , y

j
i)}

ni
j=1 with the

inputs xji ∈ X i and the labels yji ∈ Yi, to predict p(y∗|w, x∗)
for an unseen pair (x∗, y∗). The training has to be done
on each dataset, one after the other, without the possibility
to reuse previous datasets. The performance of a Continual
Learning algorithm can then be measured with two protocols :
multi-head or single-head. In the multi-head scenario, the task
identifier i is known at test time. For evaluating performances
on task i, the set of all possible labels is then Y = Yi. Whilst

in the single-head scenario, the task identifier is unknown, in
that case we have Y = ∪Ni=1Yi with N the number of tasks
learned so far. For example, let us say that the goal is to learn
MNIST sequentially with two batches: using only the data
from the first five classes and then only the data from the
remaining five other classes. In multi-head learning, one asks
at test time to be able to recognize samples of 0-4 among the
classes 0-4 and samples of 5-9 among classes 5-9. On the other
hand, in single-head learning, one cannot assume from which
batch a sample is coming from, hence the need to be able to
recognize any samples of 0-9 among classes 0-9. Although the
former one has received the most attention from researchers,
the last one fits better to the desiderata of a Continual Learning
system as expressed in [3] and [4]. The single-head scenario
is also notoriously harder than its multi-head counterpart [5].
We will mainly be focusing on the single-head setting in the
present work.

Updating the parameters with data from a new dataset
exposes the model to drastically deteriorate its performance
on previous data, a phenomenon known as catastrophic forget-
ting [6]. To alleviate this problem, researchers have proposed
a variety of approaches such as storing a few samples from
previous datasets [7], adding distillation regularization [8],
updating the parameters according to their usefulness on
previous datasets [9], using a generative model to produce
samples from previous datasets [10]. Despite those efforts
toward a more realistic setting of Continual Learning, one can
notice that, most of the time, results are proposed in the case of
a sequence of batches of multiple classes. This scenario often
ends up with better accuracy (because the learning procedure
highly benefits of the diversity of classes to find the best tuning
of parameters) but it does not illustrate the behavior of those
methods in the worst case scenario. In fact, Continual Learning
algorithms should be robust in the size of the batch of classes.

In this work, we propose to implement a method specially
designed to handle the case where each task consists of only
one class. It will therefore be evaluated in the single-head sce-
nario. Our approach, named One-versus-All Invertible Neural
Networks (OvA-INN), is based on an invertible neural network
architecture proposed by [11]. We use it in a One-versus-All
strategy : each network is trained to make a prediction of a
class and the most confident one on a sample is used to identify
the class of the sample. In contrast to most other methods, the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

training phase of each class can be independently executed
from one another.

The contributions of our work are (i) a new approach for
Continual Learning with one class per batch; (ii) a neural
architecture based on Invertible Networks that does not require
to store any of the previous data; (iii) state-of-the-art results
on several tasks of Continual Learning for Computer Vision
(CIFAR-100, MNIST) in this setting.

We start by reviewing the closest methods to our approach
in Section II, then explain our method in Section III, analyse
its performances in Section IV and identify limitations and
possible extensions in Section V.

II. RELATED WORK

Generative models: Inspired by biological mechanisms
such as the hippocampal system that rapidly encodes recent
experiences and the memory of the neocortex that is consol-
idated during sleep phases, a natural approach is to produce
samples of previous data that can be added to the new data to
learn a new task. FearNet [10] relies on an architecture based
on an autoencoder, whereas Deep Generative Replay [12] and
Parameter Generation and Model Adaptation [13] propose to
use a generative adversarial network. Those methods present
good results but require complex models to be able to generate
reliable data. Furthermore, it is difficult to assess the relevance
of the generated data to conduct subsequent training iterations.

Coreset-based models: These approaches alleviate the con-
straint on the availability of data by allowing the storage of
a few samples from previous data (which are called coreset).
iCaRL [7] and End-to-end IL [14] store 2000 samples from
previous batches and rely on respectively a distillation loss
and a mixture of cross-entropy and distillation loss to alleviate
forgetting. The authors of SupportNet [15] have also proposed
a strategy to select relevant samples for the coreset. Gradient
Episodic Memory [16] ensures that gradients computed on new
tasks do not interfere with the loss of previous tasks. Those
approaches give the best results for single-head learning. But,
similarly to generated data, it is not clear which data may
be useful to conduct further training iterations. In this paper,
we are challenging the need of the coreset for single-head
learning.

Distance-based models: These methods propose to embed
the data in a space which can be used to identify the class of
a sample by computing a distance between the embedding of
the sample and a reference for each class. Among the most
popular, we can cite Matching Networks [17] and Prototypical
Networks [18], but these methods have been mostly applied
to few-shot learning scenarios rather than continual.

Regularization-based approaches: These approaches
present an attempt to mitigate the effect of catastrophic forget-
ting by imposing some constraints on the loss function when
training subsequent classes. Elastic Weight Consolidation [9],
Synaptic Intelligence [19] and Memory Aware Synapses [20]
prevent the update of weights that were the most useful to
discriminate between previous classes. Hence, it is possible to
constrain the learning of a new task in such a way that the most

relevant weights for the previous tasks are less susceptible to
be updated. Learning without forgetting [8] proposes to use
knowledge distillation to preserve previous performances. The
network is divided in two parts : the shared weights and the
dedicated weights for each task. When learning a new task
A, the data of A get assigned “soft” labels by computing
the output by the network with the dedicated weight for each
previous task. Then the network is trained with the loss of task
A and is also constrained to reproduce the recorded output
for each other tasks. In [21], the authors propose to use an
autoencoder to reconstruct the extracted features for each task.
When learning a new task, the feature extractor is adapted
but has to make sure that the autoencoder of the other tasks
are still able to reconstruct the extracted features from the
current samples. While these methods obtain good results for
learning one new task, they become limited when it comes to
learn several new tasks, especially in the one class per batch
setting.

Expandable models: In the case of the multi-head setting,
it has been proposed to use the previously learned layers and
complete them with new layers trained on a new task. This
strategy is presented in Progressive Networks [22]. In order to
reduce the growth in memory caused by the new layers, the
authors of Dynamically Expandable Networks [23] proposed
an hybrid method which retrains some of the previous weights
and add new ones when necessary. Although these approaches
work very well in the case of multi-head learning, they cannot
be adapted to single-head. On the contrary, it is possible to
run OvA-INN in a multi-head setting, we demonstrate this in
section IV-D.

III. CLASS-BY-CLASS CONTINUAL LEARNING WITH
INVERTIBLE NETWORKS

A. Motivations and Challenge

We investigate the problem of training several datasets in
a sequential fashion with batches of only one class at a time.
Most approaches of the state-of-the-art rely on updating a
feature extractor when data from a new class are available. But
this strategy is unreliable in the special case we are interested
in, namely batches of data from only one class. With few or
no sample of negative data, it is very inefficient to update
the weights of a network because the setting of deep learning
typically involves vast amounts of data to be able to learn to
extract valuable features. Without enough negative samples,
the training is prone to overfit the new class. Recent works
have proposed to rely on generative models to overcome this
lack of data by generating samples of old classes. Nevertheless,
updating a network with sampled data is not as efficient as with
real data and, on the long run, the generative quality of early
classes suffer from the multiple updates.

B. Out-of-distribution detection for Continual Learning

Our approach consists in interpreting a Continual Learn-
ing problem as several out-of-distribution (OOD) detection
problems. OOD detection has already been studied for neural
networks and can be formulated as a binary classification

problem which consists in predicting if an input x was sampled
from the same distribution as the training data or from a
different distribution [24], [25]. Hence, for each class, we can
train a network to predict if an input x is likely to have been
sampled from the distribution of this class. The class with the
highest confidence can be used as the prediction of the class of
x. This training procedure is particularly suitable for Continual
Learning since the training of each network does not require
any negative sample.

Using the same protocol as NICE [11], for a class i, we
can train a neural network fi to fit a prior distribution p and
compute the exact log-likelihood li on a sample x :

li(x) = log(p(fi(x)) (1)

To obtain the formulation of log-likelihood as expressed in
Equation 1, the network fi has to respect some constraints
discussed in Section III-C. Keeping the same hypothesis as
NICE, we consider the case where p is a distribution with
independent components pd :

p(fi(x)) =
∏
d

pd(fi,d(x)) (2)

In our experiments, we considered pd to be standard normal
distributions. Although, it is possible to learn the parameters
of the distributions, we found experimentally that doing so
decreases the results. Under these design choices, the compu-
tation of the log-likelihood becomes :

li(x) =
∑
d

log(pd(fi,d(x)) (3)

= −
∑
d

1

2
fi,d(x)

2 +
∑
d

log

(
1√
2π

)
(4)

= −1

2
‖fi(x)‖22 + β (5)

where β = −n log
(√

2π
)

is a constant term.
Hence, identifying the network with the highest log-

likelihood is equivalent to finding the network with the small-
est output norm.

C. Invertible Neural Networks
The neural network architecture proposed by NICE is de-

signed to operate a change of variables between two density
functions. This assumes that the network is invertible and
respects some constraints to make it efficiently computable.

Invertible Network can be modeled as a stack of several
invertible blocks. An invertible block (see Figure 1) consists
in splitting the input x into two subvectors x1 and x2 of
equal size; then successively applying two (non necessarily
invertible) networks f1 and f2 following the equation :{

y1 = f1(x2) + x1

y2 = f2(y1) + x2,
(6)

and finally, concatenate y1 and y2. The inverse operation can
be computed with :{

x2 = y2 − f2(y1)
x1 = y1 − f1(x2).

(7)

+

f2

+

f1

x0:n/2

xn/2:n

y0:n/2

yn/2:n

Fig. 1: Forward pass in an invertible block. x is split in x0:n/2
and xn/2:n. f1 and f2 can be any type of Neural Networks as
long as the dimension of their output dimension is the same
as their input dimension. In our experiments, we stack two
of these blocks one after the other and use fully-connected
feedforward layers for f1 and f2.

These invertible equations illustrate how Invertible Net-
works operate a bijection between their input and their output.
Other invertible architectures can be used to learn a trans-
formation that maximizes the likelihood on a dataset but we
choose this one for its simplicity.

D. Continual Learning setting

We propose to specialize each Invertible Network to a
specific class by training them to output a vector with small
norm when presented with data samples from their class.
Given a dataset Xi of class i and an Invertible Network fi,
our objective is to minimize the loss L :

L(Xi) =
1

|Xi|
∑
x∈Xi

‖fi(x)‖22 (8)

Once the training has converged, the weights of this network
will not be updated when new classes will be added. At
inference time, after learning t classes, the predicted class
y∗ for a sample x is obtained by running each network and
identifying the one with the smallest output :

y∗ = argmin
y=1,...t

‖fy(x)‖22 (9)

As it is common practice in image processing, one can also
use a preprocessing step by applying a common pretrained fea-
ture extractor beforehand. Using a pretrained feature extractor
allow to save time and memory since it is usually not necessary
to retrain low level features to discriminate new classes. This
fixed representation of data can be transfered from a model
trained on Imagenet or from unlabelled data [26]. Noting φ
this fixed pretrained model, the inference equation can be
expressed as :

y∗ = argmin
y=1,...t

‖fy(φ(x))‖22. (10)

IV. EXPERIMENTAL RESULTS

We compare our method against several state-of-the-art
baselines for single-head learning on MNIST and CIFAR-100
datasets.

A. Implementation details

Topology of OvA-INN: Due to the bijective nature of
Invertible Networks, their output size is the same as their
input size, hence the only way to change their size is by
changing the depth or by compressing the parameters of
the intermediate networks f1 and f2. In our experiments,
these networks are fully connected layers. To reduce memory
footprint, we replace the square matrix of parameters W of
size n× n by a product of matrices AB of sizes n×m and
m × n (with a compressing factor for the first and second
block m = 16 for MNIST and m = 32 for CIFAR-100).

Regularization: When performing learning one class at
a time, the amount of training data can be highly reduced:
only 500 training samples per class for CIFAR-100. To avoid
overfitting the training set, we found that adding a weight
decay regularization could increase the validation accuracy.
More details on the hyperparameters choices can be found in
Appendix A.

Rescaling: As ResNet has been trained on images of size
224 × 224, we rescale CIFAR-100 images to match the size
of images from Imagenet.

B. Evaluation on MNIST

We start by considering the MNIST dataset [27], as it is a
common benchmark that remains challenging in the case of
single-head Continual Learning.

Baselines: We compare our approach with methods based
on generative models such as Parameter Generation and
Model Adaptation (PGMA) [13] and Deep Generative Replay
(DGR) [12]; and with methods based on exemplar storage
such as iCaRL [7], SupportNet [15], GEM [16] and with RPS-
Net [28] which rely on a random path selection algorithm.

We report the results from the original papers; except for
iCarL and SupportNet where we use the provided code of
SupportNet to compute the results for MNIST with two layers
of convolutions with poolings and a fully connected last layer.
We have also set the coreset size to s = 800 samples.

Analysis: We report the average accuracy over all the
classes after the networks have been trained on all batches
(See Table I). Our architecture does not use any pretrained
feature extractor common to every classes (contrarily to our
CIFAR-100 experiment) : each sample is processed through
an Invertible Network, composed of two stacked invertible
blocks. Our approach presents better results than all the other
reference methods while having a smaller cost in memory and
being trained by batches of only one class.

C. Evaluation on CIFAR-100

We now consider a more complex image dataset with
a greater number of classes [29]. This allows us to make
comparisons in the case of a long sequence of data batches and

TABLE I: Comparison of accuracy and memory cost in
number of parameters (and memory usage for storing samples
if relevant) of different approaches on MNIST at the end of
the Continual Learning. The Learning type column indicates
the number of classes used at each training step.

Model Accuracy Memory cost Learning type
PGMA [13] 81.70% 6,000k 2 by 2
SupportNet [15] 89.90% 940k 2 by 2
GEM [16] 92.20% 4,919k 2 by 2
DGR [12] 95.80% 12,700k 2 by 2
iCaRL [7] 96.00% 940k 2 by 2
RPS-Net [28] 96.16% 4,919k 2 by 2
OvA-INN 96.40% 520k 1 by 1

0 20 40 60 80 100
Number of classes

0

10

20

30

40

50

60

70

80

90

100

Ac
cu
ra
cy
 (%

)

OvA-INN (1 by 1)
FearNet (1 by 1)
Nearest prototype (1 by 1)
RPS-Net (10 by 10)
End-to-End IL (10 by 10)
iCaRL (10 by 10)
End-to-End IL (2 by 2)
iCaRL (2 by 2)

Fig. 2: Comparison of the accuracy of several Continual
Learning methods on CIFAR-100 with various batches of
classes. FearNet’s curve has no point before 50 classes because
the first 50 classes are learned in a non-continous fashion.

to illustrate the value of using a pretrained feature extractor
for Continual Learning.

Baselines: FearNet [10] is based on a generative model.
It uses a pretrained ResNet48 features extractor. In their
experiments, the authors rely on a warm-up phase. Namely,
the network is first trained with all the first 50 classes of
CIFAR-100, and subsequently learns the next 50 classes one
by one in a continual fashion. iCaRL [7], End-to-end IL [14]
both use 2k exemplars from previous classes and retrain a
ResNet32 features extractor respectively with a distillation
loss and with a cross-entropy together with distillation loss.
RPS-Net [28] also use 2k exemplars from previous classes
but it trains several ResNet18 in parallel and assign different
paths for predicting each classes. Nearest prototype is our
implementation of the method consisting in computing the
mean vector (prototype) of the output of a pretrained ResNet32
for each class at train time. Inference is performed by finding
the closest prototype to the ResNet output of a given sample.

Analysis: Image data are provided by batch of classes.
When the training on a batch (Di) is completed, the accuracy
of the classifier is evaluated on the test data of classes from all

TABLE II: Comparison of the accuracy of several multi-head
Continual Learning methods on CIFAR-100 on 10 taks of 10
classes.

Model Accuracy
EWC [9] 81.34%
Progressive Networks [22] 88.19%
DEN [30] 92.25%
OvA-INN 92.58%

previous batches (D1, ...,Di). We report the results from the
literature with various sizes of batch when they are available.

OvA-INN uses the weights of a ResNet32 pretrained on
ImageNet and never update them. FearNet also uses pretrained
weights from a ResNet. iCaRL, End-to-End IL and RPS-Net
use a similar architecture but retrain it from scratch at the
beginning and fine-tune it with each new batch.

The performance of the Nearest prototype baseline proves
that there is high benefit in using pretrained feature extractor
on this kind of dataset. FearNet shows better performance by
taking advantage of a warm-up phase with 50 classes. We
can see that OvA-INN is able to clearly outperform all the
other approaches, reaching 72% accuracy after training on
100 classes. For comparison, we were only able to reach 76%
accuracy on a Resnet trained on all the CIFAR-100 data at
once. We can see that the performances of methods retrain-
ing ResNet from scratch (iCaRL, End-to-End IL and RPS-
Net) quickly deteriorate compared to those using pretrained
parameters. Even with larger batches of classes, the gap is
still present.

It can be surprising that at the end of its warm-up phase,
FearNet still has an accuracy bellow OvA-INN, even though
it has been trained on all the data available at this point. It
should be noted that FearNet is training an autoencoder and
uses its encoding part as a features extractor (stacked on the
ResNet) before classifying a sample. This can diminish the
discriminative power of the network since it is also constrained
to reproduce its input (only a single autoencoder is used for
all classes).

D. Experiments in multi-head Continual Learning

We provide additional experimental results in the multi-
head learning of CIFAR100 with 10 tasks of 10 classes each
in Table II. The training procedure of OvA-INN does not
change from the usual single-head learning but, at test time,
the evaluation is processed by batches of 10 classes (instead of
the whole dataset). The accuracy score is the average accuracy
over all 10 tasks. We report the results from various methods
of multi-head learning. Although our approach is able to match
state-of-the-art results in accuracy, it should be noticed that it
is drastically more memory and time consuming than some
baselines. OvA-INN requires to train entire new layers whilst
DEN is optimized to use as little additional parameters as
possible to learn a new task. That being said, none of the
compared methods can be applied in the single-head setting.

V. DISCUSSION

A. Visualization

To further understand the effect of an Invertible Network
on the feature space of a sample, we propose to project the
different feature spaces in 2D. To perform this projection,
we rely on the t-SNE algorithm, which is an non-linear
dimensionality reduction technique commonly used for high
dimensional data visualization [31]. In Figure 3, we project
the features of the first five classes of CIFAR-100 test set,
each class is represented with a different color. The projection
of features extracted by the Resnet is displayed on a single
plot since those features are computed from a single network.
Cluster centers are represented by black crosses. A sample
closer to a cluster center indicates a higher confidence of
the network to predict the class corresponding to the cluster.
For the Resnet projection, we can see that some samples
appears in a cluster of a different class. Those samples are
likely to be misclassified by a distance-based method since the
dimensionality reduction did not manage to distinguish them
from samples of other classes. For the Invertible Networks,
we display the projection of features computed by each of
the five networks on separate plots. In this case, we observe
that classes that are already well represented in a cluster with
ResNet features (like violet class) are clearly separated from
the clusters of Invertible Networks; an classes represented with
ambiguity with ResNet features (like light green and red) are
better clustered in the Invertible Network space.

B. Limitations

A limiting factor in our approach is the necessity to add a
new network each time one wants to learn a new class. This
makes the memory and computational cost of OvA-INN linear
with the number of classes. Recent works in networks merging
could alleviate the memory issue by sharing weights [32] or
relying on weights superposition [33]. This being said, we
showed that Ova-INN was able to achieve superior accuracy on
CIFAR-100 class-by-class training than approaches reported in
the literature, while using less parameters.

Another constraint of using Invertible Networks is to keep
the size of the output equal to the size of the input. When one
wants to apply a feature extractor with a high number of output
channels, it can have a very negative impact on the memory
consumption of the invertible layers. Feature Selection or
Feature Aggregation techniques may help to alleviate this issue
[34].

Finally, we can notice that our approach is highly de-
pendent on the quality of the pretrained feature extractor.
In our CIFAR-100, we had to rescale the input to make it
compatible with ResNet. Nonetheless, recent research works
show promising results in training feature extractors in very
efficient ways [35]. Because it does not require to retrain its
feature extractor, we can foresee better performance in class-
by-class learning with OvA-INN as new and more efficient
feature extractors are discovered.

(a) (b) (c)

(d) (e) (f)

Fig. 3: t-SNE projections of feature spaces for five classes from CIFAR-100 test set (colors are given by the ground truth).
(a): feature space before applying Invertible Networks (black crosses are the clusters centers). (b),(c),(d),(e),(f): each feature
space after the Invertible Network of each class. The samples of a class represented by a network are clustered around the
zero vector (black cross) whilst the samples from other classes appear further away from the cluster.

C. Future research directions

One could try to incorporate our method in a Reinforcement
Learning scenario where various situations can be learned sep-
arately in a first phase (each situation with its own Invertible
Network). Then during a second phase where any situation
can appear without the agent explicitly told in which situation
it is in, the agent could rely on previously trained Invertible
Networks to improve its policy. This setting is closely related
to Options in Reinforcement Learning.

Also, in a regression setting, one can add a fully connected
layer after an intermediate layer of an Invertible Network and
use it to predict the output for the trained class. At test time,
one only need to read the output from the regression layer of
the Invertible Network that had the highest confidence.

Other invertible architectures, such as Neural Ordinary
Differential Equations [36], could be studied to alleviate the
limitations of the NICE architecture used in this work.

VI. CONCLUSION

In this paper, we proposed a new approach for the challeng-
ing problem of single-head Continual Learning without storing
any of the previous data. On top of a fixed pretrained neural
network, we trained for each class an Invertible Network to
refine the extracted features and maximize the log-likelihood
on samples from its class. This way, we show that we can

predict the class of a sample by running each Invertible Net-
work and identifying the one with the highest log-likelihood.
This setting allows us to take full benefit of pretrained models,
which results in very good performances on the class-by-class
training of CIFAR-100 compared to prior works.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Con-
tinual lifelong learning with neural networks: A review,” arXiv preprint
arXiv:1802.07569, 2018.

[3] S. Farquhar and Y. Gal, “Towards robust evaluations of continual
learning,” arXiv preprint arXiv:1805.09733, 2018.

[4] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual
learning,” CoRR, vol. abs/1904.07734, 2019. [Online]. Available:
http://arxiv.org/abs/1904.07734

[5] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” arXiv preprint arXiv:1801.10112, 2018.

[6] M. McCloskey and N. J. Cohen, “Catastrophic interference in con-
nectionist networks: The sequential learning problem,” Psychology of
Learning and Motivation - Advances in Research and Theory, vol. 24,
pp. 109–165, 1989.

[7] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incre-
mental classifier and representation learning,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
5533–5542.

[8] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, 2018.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, p. 201611835, 2017.

[10] R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremen-
tal learning,” in 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, 2018.

[11] L. Dinh, D. Krueger, and Y. Bengio, “NICE: non-linear independent
components estimation,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings, 2015.

[12] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with
deep generative replay,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 2990–2999.

[13] W. Hu, Z. Lin, B. Liu, C. Tao, Z. Tao, J. Ma, D. Zhao, and R. Yan,
“Overcoming catastrophic forgetting for continual learning via model
adaptation,” in 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[14] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 233–248.

[15] Y. Li, Z. Li, L. Ding, Y. Hu, W. Chen, and X. Gao, “SupportNet: a novel
incremental learning framework through deep learning and support data,”
bioRxiv, 2018.

[16] D. Lopez-Paz et al., “Gradient episodic memory for continual learning,”
in Advances in Neural Information Processing Systems, 2017, pp. 6467–
6476.

[17] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
ser. NIPS’16. Red Hook, NY, USA: Curran Associates Inc., 2016,
p. 3637–3645.

[18] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-
shot learning,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, 2017, pp. 4077–4087.

[19] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p.
3987–3995.

[20] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
139–154.

[21] A. R. Triki, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, “Encoder
based lifelong learning,” CoRR, vol. abs/1704.01920, 2017.

[22] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” CoRR, vol. abs/1606.04671, 2016. [Online]. Available:
http://arxiv.org/abs/1606.04671

[23] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” in 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018. [Online].
Available: https://openreview.net/forum?id=Sk7KsfW0-

[24] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” arXiv preprint
arXiv:1711.09325, 2017.

[25] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” arXiv preprint
arXiv:1706.02690, 2017.

[26] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, “Self-supervised
gans via auxiliary rotation loss,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 12 154–12 163.

[27] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[28] J. Rajasegaran, M. Hayat, S. Khan, F. S. Khan, and L. Shao, “Random
path selection for incremental learning,” Advances in Neural Information
Processing Systems, 2019.

[29] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[30] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” arXiv preprint arXiv:1708.01547,
2017.

[31] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[32] Y.-M. Chou, Y.-M. Chan, J.-H. Lee, C.-Y. Chiu, and C.-S. Chen,
“Unifying and merging well-trained deep neural networks for inference
stage,” in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. International Joint
Conferences on Artificial Intelligence Organization, 7 2018, pp.
2049–2056. [Online]. Available: https://doi.org/10.24963/ijcai.2018/283

[33] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. A. Olshausen,
“Superposition of many models into one,” CoRR, vol. abs/1902.05522,
2019. [Online]. Available: http://arxiv.org/abs/1902.05522

[34] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” Data classification: Algorithms and applications, p. 37, 2014.

[35] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “Surprising effective-
ness of few-image unsupervised feature learning,” arXiv preprint
arXiv:1904.13132, 2019.

[36] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 6572–6583.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS 2017 Workshop on Autodiff, 2017.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

APPENDIX

Our implementation is done with Pytorch [37], using the
Adam optimizer [38] and a scheduler that reduces the learning
rate by a factor of 0.5 when the loss stops improving. We
use the resize transformation from torchvision with the default
bilinear interpolation.

TABLE III: MNIST Hyperparameters

Hyperparameter Value

Learning Rate 0.002
Number of epochs 200
Weight decay 0.0
Patience 20

TABLE IV: CIFAR-100 Hyperparameters

Hyperparameter Value

Learning Rate 0.002
Number of epochs 1000
Weight decay 0.0002
Patience 30

TABLE V: t-SNE Hyperparameters

Hyperparameter Value

Perplexity 15.0
Principal Components 50
Steps 400

