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Abstract—Multivariate time series analysis is an important
problem in data mining because of its widespread applications.
With the increase of time series data available for training,
implementing deep neural networks in the field of time series
analysis is becoming common. Res2Net, a recently proposed
backbone, can further improve the state-of-the-art networks
as it improves the multi-scale representation ability through
connecting different groups of filters. However, Res2Net ignores
the correlations of the feature maps and lacks the control on
the information interaction process. To address that problem, in
this paper, we propose a backbone convolutional neural network
based on the thought of gated mechanism and Res2Net, namely
Gated Res2Net (GRes2Net), for multivariate time series analysis.
The hierarchical residual-like connections are influenced by gates
whose values are calculated based on the original feature maps,
the previous output feature maps and the next input feature
maps thus considering the correlations between the feature maps
more effectively. Through the utilization of gated mechanism, the
network can control the process of information sending hence
can better capture and utilize the both the temporal information
and the correlations between the feature maps. We evaluate the
GRes2Net on four multivariate time series datasets including two
classification datasets and two forecasting datasets. The results
demonstrate that GRes2Net have better performances over the
state-of-the-art methods thus indicating the superiority.

Index Terms—multivariate time series analysis, gated mecha-
nism, Res2Net, deep learning

I. INTRODUCTION

Multivariate time series data are ubiquitous in many real-
world applications. Thus, the analysis of multivariate time
series data is meaningful and important [1]. Multivariate time
series data analysis includes classification and forecasting. The
applications of classification can be seen in human activity
recognition [2], equipment maintenance planning [3], heart
disease prediction [4], etc., while the applications of forecast-
ing can be seen in air quality forecasting [5], renewable energy
management [6], power consumption prediction [7], etc. The
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characteristics of multivariate time series data are the natural
temporal ordering and the correlations between the variables.
Therefore, how to effectively extract and utilize the temporal
features and the correlations between variables are essential
for multivariate time series analysis.
Traditional machine learning algorithms based on statistics
theory have been widely used in multivariate time series
analysis such as K- Nearest Neighbor (KNN), Dynamic Time
Warping (DTW), Support Vector Machine (SVM), etc. For
these algorithms, feature engineering is vital for achieving sat-
isfied performance. Because the quality of feature engineering
highly depends on the expertise hence resulting in challenges
and time expenses.
With the advent of big data era, more and more multivariate
time series data are accessible for training which leads to the
popularity of deep learning models. Deep learning models
allow automatic feature extraction and end-to-end learning
hence are less dependent on feature engineering which is
an advantage compared with traditional machine learning
algorithms. Recurrent Neural Network (RNN) is a typical
kind of deep learning model and has been widely used in
multivariate time series analysis tasks [8]–[10]. Compared with
RNN, Convolutional Neural Network (CNN) is often used
in computer vision tasks but less common for time series
analysis. CNN can be fully parallelized during training to
better exploit the GPU hardware. Thus, recent works have
tried to apply CNN in sequence modeling [11] and time series
classification [12].
The component of a model for feature extraction is called
the backbone network whose output is the feature map of the
input data. Famous backbone networks includes VGG [13], In-
ception [14], ResNet [15], etc. Recent studies have shown that
typical CNN backbone networks which are firstly designed for
image processing such as ResNet and FCN [16] are capable
for time series analysis [17]. The neurons in CNN respond to
stimuli in a restricted region, often called receptive filed, of

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



the visual field hence CNN is capable for feature extraction
in a particular region. Since CNN learns the representations
for fixed size contexts, for a better feature extraction ability,
it is necessary to design a network architecture to achieves
multi-scale feature representations.
Res2Net [18] is a recently developed backbone CNN. It
improves the multi-scale representation ability at granular level
by utilizing multiple available receptive fields. In a Res2Net
module, groups of filters are connected in a hierarchical
residual-like style for multi-scale receptive fields which is
conducive for global and local feature extraction and the infor-
mation interaction between the filters. Therefore, it achieves
the state-of-the-art performance in computer vision tasks such
as object detection [18] and person re-identification [19].
Thanks to the performance, it inspires implementing Res2Net
for multivariate time series analysis. However, in Res2Net,
the whole previous output feature maps are sent to the next
group of filters directly which ignores considering how much
information from the previous output should be sent. Or in
other words, the model lacks the control on the information
interaction between different groups of filters. For multivariate
time series analysis, as the feature maps contain information
from different variables, ignoring the correlations of the feature
maps may lead to lacking the considerations on the inter-
relationship of the variables. Thus, effective control on the
information interaction process is important and meaningful.
In this paper, we propose a backbone CNN based on the gated
mechanism and Res2Net called Gated Res2Net (GRes2Net).
Compared with Res2Net, we utilize gates in the connection
between the previous output feature maps and the next input
feature maps in order to consider the correlations between
different feature maps. Instead of simply executing addition
in the residual-like connections, the gates whose values are
calculated based on the original feature maps, the previous
output feature maps and the input feature maps decide how
much information will be sent through the connection. In
this way, GRes2Net can control the process of information
interaction and utilize the latent information more effectively
for a better performance.
The contributions of our paper are in two aspects:
First, we propose a novel backbone CNN called GRes2Net for
multivariate time series analysis. I.e., it can be used for both
classification and forecasting. The proposed backbone achieves
effectively considering correlations between the variables and
extracting multi-scale temporal features of multivariate time
series data. Moreover, the proposed backbone can be easily
implemented in the existing CNN models or RNN-CNN
cascade models.
Second, we conduct experiments on four multivariate time
series datasets including two multivariate time series classi-
fication datasets and two multivariate time series forecasting
datasets to assess the proposed backbone. We compare our
model with other alternatives. The results demonstrate that
our model outperforms the state-of-the-art methods hence
indicating the advantage of our model.
The rest of this paper is organized as follows. Section II

presents related studies and techniques. Section III introduces
the structure of GRes2Net. Section IV gives the details of the
four datasets and the corresponding state-of-the-art method,
the evaluation standards, the experiment settings and the
results of the experiments. Section V gives the conclusion and
future work.

II. RELATED WORKS

A. Traditional Machine Learning for Multivariate Time Series
Analysis

Traditional machine learning methods are popular for mul-
tivariate time series analysis. Prevailing approaches such as
DTW, KNN and SVM are applicable for both classification
and forecasting [20]–[23]. SVM is widely used in data mining
tasks [24] and has been improved in many aspects [25], [26].
Models based on the combination of KNN and DTW suggests
strong performances [27], [28]. Autoregressive Moving Aver-
age (ARMA) is a typical method for exploring the rational
spectrum of stationary random processes and has been widely
used for analyzing stationary time series [31]. Ensemble
learning methods such as Random Forest (RF) and Gradient
Boosting Machine (GBM) aggregate multiple classifiers into
one model and generally result in better performance than
single classifier. Related methods are commonly used in time
series analysis [29] and data science competition [30].

B. Gated Mechanism

Gated mechanism is commonly used in RNN. Because the
original RNN suffers for gradient vanishing or explosion.
Besides, it is likely to ignore long-term dependencies [32],
[33]. Thus, in order to address these problems, gated mecha-
nism is applied. Long Short-Term Memory (LSTM) [34] and
Gated Recurrent Unit (GRU) [35] are two well-known variants
of RNN based on the thought of gated mechanism. Taking
LSTM as an example, specifically, the computation of LSTM
is defined by the equations (1)-(6):

g(k) = tanh
(
W gxxk +W ghh(k−1) + bg

)
(1)

i(k) = σ
(
W ixxk +W ihh(k−1) + bi

)
(2)

f (k) = σ
(
W fxxk +W fhh(k−1) + bf

)
(3)

o(k) = σ
(
W oxxk +W ohh(k−1) + bo

)
(4)

s(k) = g(k) � i(k) + s(k−1) � f (k) (5)

h(k) = tanh
(
s(k)

)
� o(k) (6)

where Wgx, Wgh, Wix, Wih, Wfx, Wfh, Wox, Woh, bg , bi, bf

and bo are parameters to be learnt. i(k), o(k) and f(k) are three
gates which determine how much the previous information
will influence the current output and the current hidden state.
Concretely, f(k) determines how much information from the
previous hidden states is going to be abandoned. i(k) deter-
mines how much information will be sent into the current
hidden states and o(k) determines the output of a single LSTM



cell. Gated mechanism is helpful in two aspects: First, it is
able to avoid gradient vanishing. Second, it allows the model
choose whether the previous information is supposed to be
memorized or abandoned hence it allows the recurrent layer
to capture long-term dependencies more easily. The benefits
of the gated mechanism inspires implementing it in other
networks.

C. Res2Net

Res2Net is a recently proposed backbone CNN. To achieve
multi-scale available receptive fields, the filters with n channels
are replaced with s groups of filters and each group of filters
are with w channels. (To avoiding information loss, generally
n=s×w.) Groups of filters are connected in a hierarchical
residual-like style. The channels of input feature maps are
expanded by convolutional layers and then divided into several
groups. A group of filters firstly extracts features from a group
of input feature maps. The output feature maps are then sent
to the next group of filters along with another group of input
feature maps. This process repeats several times until all input
feature maps are processed.
Specifically, in a single Res2Net module, channel expansion
is firstly executed by implementing convolutional layer. Then,
the original feature maps are obtained, denoted by X. After
that, X is evenly divided into several groups which are denoted
by xi, where i ∈ {1,2,3. . . .s}. Each group is a feature map
subset which has the same spatial or temporal size and 1/s
of channels compared with X. The convolution is denoted by
Ki(), yi is the output of Ki(). Then, the yi can be written in
equation (7):

yi =

 xi i = 1
Ki (xi) i = 2
Ki (xi + yi−1) 2 < i 6 s.

(7)

All the outputs are concatenated and then fed into con-
volutional layers for channel compression and information
fusion. In this way, Res2Net achieves multi-scale receptive
fields thus allowing multi-scale feature representations. The
architectures based on Res2Net backbone have achieved the
state-of-the-art performance in several computer vision tasks
[18]. However, the original structure of Res2Net suffers for
controlling the information flow between groups. Hence, we
considering implementing gated mechanism in Res2Net to fix
that problem.

III. GATED RES2NET

The structure shown in Fig. 1(a) is the original Res2Net
module while the structure shown in Fig. 1(b) is the pro-
posed GRes2Net module. Fig. 1 shows the difference between
Res2Net and GRes2Net. Code is available at: https://github.
com/ChaoYang93/GraduatePaper/blob/master/GRes2Net.py.
In our GRes2Net, instead of sending the whole previous output
feature maps to the next group of filters along with the another
group of input feature maps, gates are utilized to determine
how much information should be sent. We use the same
denotations in the previous section. Moreover, gi denotes the

(a) Res2Net

(b) GRes2Net

Fig. 1: Comparison between the Res2Net module and the
proposed GRes2Net module (assuming s=4)

gate, then the yi of GRes2Net can be presented as equation
(8):

yi =

 xi i = 1
Ki (xi) i = 2
Ki (xi + gi · yi−1) 2 < i 6 s

(8)

where for the xi, gi is calculated as equation (9):

gi = tanh (a (concat (a(X), a(yi−1), a (xi)))) . (9)

Generally, a can be fully connected layers or convolutional
layers. The value of the gi is calculated considering the
original feature maps X, the next input feature maps xi and
the previous output feature maps yi−1. An illustration for
calculation can be seen in Fig. 2.
The following computations are the same as Res2Net. All



Fig. 2: The calculation process of gi

the outputs are concatenated and go through a convolutional
layer for channel compression and information fusion. Convo-
lutional layer whose kernel size equals to 1 is used for channel
expansion and compression which is beneficial for information
fusion without too many extra parameters.
For multivariate time series analysis, GRes2Net module uses
one-dimension convolutional layers. Each group of the feature
maps contains temporal information from different variables.
Through the connection between the groups of filters, multi-
scale receptive fields are achieved which is beneficial for both
global and local temporal features extraction. Besides, based
on the gated mechanism, the correlations of different feature
maps are also considered in a more effective way compared
with Res2Net. The model is able to control the information
interaction process which is helpful for better utilizing the
correlations between different feature maps. Thus, GRes2Net
is capable for multivariate time series analysis.

IV. EXPERIMENTS

A. Datasets Description and the Corresponding State-of-the-
art Method

1) EGG Dataset: EGG dataset is a multivariate time series
classification dataset which consists of 64 attributes. The max-
imum length of a sequence in the dataset is 256. The dataset
can be downloaded from [36]. It has predefined training and
validation sets. The training set contains 600 sequences while
the validation set contains the same number of sequences.
LSTM-FCN, MLSTM-FCN, ALSTM-FCN and MALSTM-
FCN [37] have been implemented on the dataset for evaluation.
Among them, MALSTM-FCN achieves the state-of-the-art
performance based on the accuracy.
In order to make sure the comparison is fair and reasonable,
we use the same data preprocessing method as [37] and use
accuracy to evaluate the performance of our model. We use
the same training set to train our model and use the same
validation set for evaluation as [37].

2) Occupancy Detection Dataset: Occupancy detection
dataset is a multivariate time series classification dataset.
This dataset is developed by [38] and can be obtained from
[36]. The dataset contains 5 attributes and the maximum
length of the sequence in the dataset is 3758. The aim is
to detect whether the office is occupied according to the
temperature, humidity, light, CO2 and humidity ratio. The

dataset has predefined training and validation sets. LSTM-
FCN, MLSTM-FCN, ALSTM-FCN and MALSTM-FCN [37]
have been implemented on the dataset and the state-of-the-art
performance based on accuracy is achieved by MLSTM-FCN.
We use the same data preprocessing method as [37] and use
accuracy as the criterion. Moreover, we use the same training
set to train our model and use the same validation set for
evaluation as [37].

3) Appliances Energy Prediction Dataset: Appliances en-
ergy prediction dataset contains experimental data used to
create forecasting models of appliances energy use in a low
energy building. The dataset contains 19735 measurements.
It is proposed by [39] and can be obtained from [36]. The
dataset contains 29 attributes including temperature, humidity,
weather, etc. In [39], GBM makes the most accurate predic-
tion. The recent state-of-the-art performance is achieved by
Multi-Layer Perceptron (MLP) proposed in [40]. Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and R Squared(R2) are
used for evaluation. The details of the criteria are shown in
equations (10)-(13):

RMSE = 2

√√√√ 1

M

M∑
1

(yi − ŷi)2 (10)

MAE =
1

M

M∑
1

|yi − ŷi| (11)

MAPE =
100

M

M∑
1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (12)

R2 = 1−
∑M

1 (yi − ŷi)2∑M
1 (yi − ȳi)2

(13)

where M denotes the total number of the samples, yi denotes
the true value, ȳi denotes the average of the true values and
ŷi denotes the output of the model.
We use the same data preprocessing method and evaluation
criteria as [40] for reasonable comparison.

4) Individual Household Electric Power Consumption
Dataset: Individual household electric power consumption
dataset contains measurements of electric power consumption
in one household over a period of almost 4 years. This dataset
can be obtained from [36]. It contains 2075259 measurements
gathered in a house located in Sceaux (7km of Paris, France)
between December 2006 and November 2010 (47 months).
The state-of-the-art performance is achieved by ARMA pro-
posed in [41] using RMSE for evaluation. We build our model
to predict daily series contains 42 measurements. The result
based on ARMA with the same data preprocessing method is
given in [41]. Moreover, we use RMSE, MAE, MAPE and
R2 for evaluation. It is worth mentioning that because the
specific MAE, MAPE and R2 are not given in [41], we use
N/A instead.



B. Experiment Setting

In our experiment, we use GRes2Net as the backbone
CNN for feature extraction. a is convolutional layer in the
experiment. The output feature maps go through a global
average pooling layer and fully connected layers to learn
the mapping between the feature maps and the output. For
classification tasks, we use cross-entropy as the lost function
while for forecasting tasks we use Mean Squared Error (MSE).
We train our model by an Adam optimizer with the initial
learning rate 0.001 for totally 500 training epochs. Adam
is a commonly used optimizer and generally has the best
performance, so we did not try others. After each 100 epochs,
the learning rate is adjusted to one tenth of the previous
value. The batch size is 32 in the two classification tasks and
the batch size is 64 in the two forecasting tasks. Dropout is
used to avoid overfitting. The random invalid possibility of
the neurons is 0.5. The early stopping is performed based on
the validation error. I.e., we store the model that has the best
performance on the validation set. Then, we repeat validating
on the validation set for 5 times and record the results. To
avoid drastic fluctuation of the performance, we calculate the
average performance as the final result.
Besides, we implement deep LSTM and Res2Net on the
four datasets for comparison. We use the same settings to
train LSTM and Res2Net. The model based on Res2Net
contains the same number of modules as the model based on
GRes2Net for fair comparison. We construct a bidirectional
LSTM contains 8 layers. Dropout is also used and the random
invalid possibility is the same. Early stopping and 5 times
validating are also executed.
We compare our model with the aforementioned state-of-the-
art models, deep LSTM, Res2Net and other related models that
have been implemented in the previous studies. We implement
LSTM, Res2Net and GRes2Net with PyTorch, a famous and
popular deep learning framework based on Python. All models
are trained with GPU GTX 1060.

C. Experiment Results

Table I shows the classification results. As we can see,
GRes2Net outperforms the alternatives on the two multivariate
time series classification datasets. It is worth noticing that
the previous state-of-the-art models are based on the vari-
ant of RNN-CNN cascade model. But original Res2Net and
GRes2Net both have a better performance than the previous
state-of-the-art models which indicates the advantages of the
hierarchical residual-like connections for multivariate time
series classification. Moreover, it is likely that replacing the
CNN that used in the cascade model with GRes2Net may
improve the performance.
Table II and Table III demonstrate that GRes2Net has the best
performance on the two multivariate time series forecasting
datasets according to the evaluation criteria. Several traditional
machine learning algorithms are implemented for forecasting.
It is obvious that GRes2Net has a significant improvement
compared with the previous state-of-the-art methods. Surpris-
ingly, LSTM is supposed to have a better performance than

TABLE I: Performance Comparison for Classification Tasks

Method EGG (Accuracy) Occupancy Detection (Accuracy)
LSTM 71.60 57.99

Res2Net 91.50 81.25
LSTM-FCN 90.67 71.05

MLSTM-FCN 91.00 76.31
ALSTM-FCN 90.67 71.05

MALSTM-FCN 91.33 72.37
GRes2Net 92.76 83.33

TABLE II: Performance Comparison Based on Appliances
Energy Prediction Dataset

Method RMSE MAE MAPE R2

GBM 66.65 35.22 38.29 0.57
RF 68.48 31.85 31.39 0.54

SVM 70.74 31.36 29.76 0.52
LSTM 74.41 39.21 41.08 0.24
MLP 59.84 27.28 27.09 0.64

Res2Net 13.98 7.64 10.47 0.97
GRes2Net 12.84 6.99 9.74 0.98

MLP on appliances energy prediction dataset while the result
is opposite. It is possible that some tricks have been used for
constructing MLP in the previous work.
According to the results of the experiments, Res2Net out-
performs the state-of-the-art models on all four datasets. As
mentioned in the previous section, in a Res2Net module, the
previous output features maps are sent to the next group of
filters without any restriction. However, for multivariate time
series analysis, the drawback of the Res2Net is that, if simply
sending all the previous output feature maps to the next group
of filters, it is incapable for the model to control how much
information is supposed to be sent. Hence, it is likely that
the some connections have no or even negative influence for
multivariate time series analysis.
To address that problem, gated mechanism is used. The gates
play an important role in GRes2Net as it allows the model
to control the process of information interactions between the
different groups of filters. Concretely, the connections between
the groups of filters are influenced by the correlations of the
feature maps. Thanks to that, the model is able to determine
how much information will be sent for achieving a better
performance. In this way, for multivariate time series analysis,
not only a multi-scale temporal features are extracted, but the
correlations between the feature maps are more effectively
considered. It is conducive for accurate multivariate time series
analysis. This can be easily seen according to the results
of the experiments as the performance of GRes2Net is the
best on all four datasets. Besides, as the sizes of the four
datasets are quite different and all the experimental results
are satisfying, it is convincing to say that GRes2Net is able to
perform well among different datasets. To conclude, GRes2Net
demonstrates the superiority over Res2Net and other state-of-
the-art models for multivariate time series analysis.



TABLE III: Performance Comparison Based on Individual
Household Electric Power Consumption Dataset

Method RMSE MAE MAPE R2

LSTM 0.61 0.39 41.49 0.72
Res2Net 0.20 0.13 13.13 0.97
ARMA 0.36 N/A N/A N/A

GRes2Net 0.19 0.12 12.88 0.98

V. CONCLUSION AND FUTURE WORK

In this paper, we propose GRes2Net, a backbone CNN for
multivariate time series analysis based on gated mechanism
and Res2Net. In our model, instead of sending the whole
previous output feature maps to the next input, gates are used
to control this process. The value of a single gate is calculated
based on the undivided feature maps, the previous output
feature maps and the next input feature maps. Then the gate
determines how much information to be sent. In this way, our
model is able to consider the correlations between the feature
maps more effectively compared with Res2Net. Moreover, it
is worth mentioning that GRes2Net can be implemented in the
existing CNN models or RNN-CNN cascade models for mul-
tivariate time series analysis without extra effort. Experiments
results indicate that our model achieves more accurate results
for both classification and forecasting than the state-of-the-art
models hence demonstrating the superiority.
In the future, we will further explore the design of the gates.
Concretely, we are going to consider calculating the value of
the gates based on different variables. Besides, the original
feature maps are divided evenly. This division method is likely
to be improved. Thus, we are going to explore a more effective
way such as splitting by learning.
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