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Abstract—Producing a 3D voxel from a single view by
deep learning-based methods has garnered increasing attention.
Several state-of-the-art works introduce the recurrent neural
network(RNN) to fuse features and generate full volumetric
occupancy. However, the inputs are unable to be fully exploited to
improve the reconstruction due to long-term memory loss. And
most of the works have considered using 3D supervision for the
whole optimization to recover the full volume, but lack detailed
silhouette supervision to refine the reconstruction process. To
address these issues, an end-to-end object reconstruction network
with scaling volume-view supervision is proposed. We introduce
an auto-encoder 3D volume predicting network that takes a
single arbitrary image as input and outputs a voxel occupancy
grid. And a scaling volume-view supervision module, which
uses up-sampling to zoom errors and increase penalties, is
leveraged to improve both the global and local optimization.
Extensive experimental analysis on ShapeNet dataset shows that
our network has superior performance when the scaling volume-
view supervision is involved and the deep residual module boosts
the reconstruction performance and speeds up the optimization
effectively.

I. INTRODUCTION

Object reconstruction is an essential task in many ap-

plications such as virtual reality, object manipulation and

augmented reality. Recovering the full 3D volume from a

single view is a very challenging task. Many attempts have

been made using shape-from-X methods, such as shape-from-

silhouette [1] [2], shape-from-shading [3] [4] and shape-from-

texture [5]. The deformation of the texture easily affects the

projection result and makes the reconstruction effect worse

in [5]. The limitation these methods suffer from is that they

require strong assumptions and expertise.

With the success of deep learning-based techniques, there

are a number of researchers concern deep learning-based

reconstruction methods [6] [7] [8]. First, many works use a

recurrent neural network to refine the features extracted by

the encoder from multiple views and achieve 3-dimensional

reconstruction. Kar et al. introduce recurrent grid fusion to

retain previous observations and refine the 3D output using

3D convolutional Gated Recurrent Unit (GRU) [9]. Based on

the same philosophy, 3D-R2N2 leverages Long Short-Term

Memory (LSTM) and GRU to fuse the features extracted from

a sequence of images [10]. Some researchers use 3D-R2N2

as a baseline and integrate valuable features based on RNN

methods [11] [12]. However, these methods need to solve the

time-consuming problem. In addition, because of long-term

memory loss, the inputs are unable to be full exploited to

improvement the reconstruction.

In addition, Approaches based on generative adversarial

networks (GANs) and variational autoencoders (VAEs) are

proposed by a number of authors. MP-GAN adopts multiple

discriminators that encode the distribution of 2D projections

of the 3D shapes seen from different views [13]. 3D-RecGAN

leverages the conditional adversarial network to recover the

occluded regions by taking multiple images as input [14].

Wu et al. combine the GAN with the VAE to sample objects

without a reference image or CAD models. However, they are

limited by class labels for prediction [15]. Gal et al. propose

a conditional adversarial loss and geometric adversarial loss

to make a prediction using point cloud representations [16].

But these methods are limited to time-consuming and the

instability of adversarial generation.

There are several representations of reconstruction used in

many works. O-CNN [17] and OGN [18] introduce deep

convolutional neural networks and use octree to present the

reconstruction. However, octree presentation is so complex

that will consume many computing resources. [19] introduces

an approximate gradient for rasterization that enables the

neural networks to produce 3D mesh from a single image.

Pixel2Mesh [20] and Image2Mesh [21] produces a 3D shape

in mesh from a single color image, but it is hard to transform

3D unstructured meshes into regular shapes. In addition,

DensePCR introduces a deep pyramidal network for point

cloud reconstruction [22]. 3D-LMNet proposes a latent em-

bedding matching approach for 3D reconstruction in the point

cloud presentation [23]. PSGN also generates point clouds

taking a single view as inputs [24]. But due to the limited

connections between points, the point cloud presentation is

inaccurate overall. DeepShapeSketch [25] and 3D-INN [26]

produce a freehand line drawing sketches from a 3D object

under a given viewpoint, but this is challenging and limited to

inaccuracy.

The works mentioned above suffer from the inaccuracy due

to the long-term memory loss or typical output representations,

and the instability of the adversarial framework. To avoid these

problems, in this paper, we implement a novel auto-encoder

network with scaling volume-view supervision, which outputs

volumetric representation for single-view reconstruction. The
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Fig. 1. The network structures for reconstruction from a single view. Top: a shallow network named VVSNet. Bottom: a network using deep residual module
called VVSNet-R. The residual module helps to assist the feature extraction and improve the optimization process.

network contains three modules: encoder, decoder, scaling

volume-view supervision. The scaling volume-view supervi-

sion module lets the network adopt both the volume and view

optimization in the training process. When at the test time,

the network can generate a full volumetric occupancy from

a single image without the scaling volume-view supervision

module. To achieve a good balance between accuracy and

model size, we propose two versions of the networks.
There are two main contributions in this research of recon-

struction framework,

• A 2d-to-3d framework for single-view reconstruction is

established, and the deep residual framework shows a

good performance in predicting 3D geometry.

• We present a scaling volume-view supervision that im-

proves the accuracy of results by zooming errors and

increasing penalties. At the same time, combining both

the view and volume supervision helps to optimize the

framework from both the global and local perspectives

and make improvements on accuracy.

The remainder of the paper is structured as follows: In

Section 2, the pipeline of our reconstruction framework is

introduced firstly. Then the optimization strategy is designed

in Section 3. The experimental evaluation and discussions are

proposed in Section 4, and the conclusion and future works

are given in Section 5.

II. NETWORK STRUCTURE

In this section, we implement a unified end-to-end frame-

work with the scaling volume-view supervision for single-view

reconstruction. The 3D output of an object is represented by

a voxel occupancy grid. Fig.1 shows the detailed network

architectures in two versions of VVSNet and VVSNet-R.

The former framework has fewer parameters, while the latter

involves more parameters due to residual module, which

can make more accurate 3D predictions and accelerate the

optimization process.

A. Encoder

The encoder is utilized to extract a lot of informative

features from a single image. As shown in Fig.1, we design

two different encoders: a shallow VVSNet and a residual

variation of it VVSNet-R. There are four 2D convolutional

layers and two fully connected layers in VVSNet. The kernel

size of the first two layers is 52, and the kernel size of the

other two is 32. These convolution layers have the stride is 2.

Each convolutional layer is followed by a batch normalization

(BN) and a LeakyReLU activation. LeakyReLU activation is

utilized to guarantee that neurons will not die when the input

is less than 0, and BN is adopted to accelerate the convergence

process. The number of output channels of these convolutional

layers starts with 64 and double for the subsequent layers and

ends up with 512. The output is passed to two fully connected

layers and compressed into a 512-dimensional feature vector.

In VVSNet-R, we implement a deep residual version. The

residual module plays an important role in assisting feature

extraction and improving the optimization process. As shown

in Fig. 1, we add 4 convolutional layers whose kernel size

is 32 on the basis of the standard network. There is a 1 × 1
convolution as a residual connection between two convolution

layers. The stride of these convolution layers is 1 and there

is a pooling layer between two residual modules. The output

channels of each residual module are 64, 128 and 512. After

two fully connected layers, the feature vector is also of sizes

512.

B. Decoder

The decode takes feature maps as inputs and generates full

3D volumetric occupancy. In the standard framework VVSNet,

there are five 3D transposed convolution layers. The kernel

sizes of the first four transposed convolution layers are 33,

33, 53 and 63 with a stride of 2, and the output channels of

these four layers are 512, 256,128 and 64, respectively. A BN
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Fig. 2. An overview of the scaling volume-view supervision module. The module is composed of an up-sampling layer, perspective transformation, projection
operation, and a down-sampling layer. It can zoom errors and increase the penalties using up-sampling layer for better performance.

layer and a ReLU activation are behind each of the first four

convolutional layers. The last transposed convolutional layer

is a kernel size of 13 in order to change the output channel

to 1. In VVSNet-R, residual connections with a kernel size

of 33 are also added between transposed convolutional layers.

The stride of these transposed convolution layers changes to 1

and there is an unpooling layer between two residual modules.

The decoder generates a 323 volumetric grid finally.

C. Scaling Volume-view Supervision

Considering predicting more accurate reconstruction mod-

els, we proposed a scaling volume-view supervision module

to build view guidance for the training. As shown in Fig.2, the

module consists of an up-sampling layer, perspective transfor-

mation, projection operation, and a down-sampling layer. The

size of the output volume after the up-sampling layer becomes

64. The purpose of this processing is that up-sampling can

zoom the original reconstruction error and increase the view

loss, and then improve the reconstruction accuracy. Given

input 3D voxel and parameterized camera viewpoint, we can

obtain 2D silhouettes via perspective transformation motivated

by [7]. The formula can be written as follows:

Ui =
H∑
n

W∑
m

D∑
l

Vnml max(1− |xs
i −m| , 0)

max(1− |ysi − n| , 0)max(1− |zsi − l| , 0)
∀i ∈ [1...H

′
W

′
D

′
]

where Vi represents the i-th voxel value. n,m, l is the n-th, m-

th, and l-th pixel in height, width and depth, (xs
i , y

s
i , z

s
i ) is the

coordinate of input volume V, (H,W,D) and (H
′
,W

′
, D

′
)

are the height, width, and depth of input volume V and

output volume U . Then max operation is utilized to projection

operation, because 3D voxel U is a binary unit, where 0

denotes an empty cell and 1 is a solid cell. The projection

function as follows:

Sn′m′ = max
l′

Un′m′l′

then we obtain 642 2D silhouettes, the output is passed to

a downsampling layer and compressed into 322 silhouettes,

which are utilized to build the scaling volume-view supervi-

sion.

III. OPTIMIZATION

The objective of the optimization is to enforce the 3D

volumetric prediction and corresponding 2D silhouettes to re-

semble the ground truth volumetric occupancy grid and ground

truth 2D masks, respectively. Therefore, the loss function of

this framework includes two main parts: a volume reconstruc-

tion loss and a silhouette-based loss. The loss function is

defined by mean squared error, so the loss in 3D space can be

written as:

Lvol = ‖V − Vgt‖2

In addition, we consider that 2D silhouettes projected from

the voxel occupancy grid should match the corresponding 2D

ground truth masks well, then the voxel occupancy grid can

be considered as a good match with the ground truth 3D

volume. Therefore, the silhouette-based loss can be formulated

as follows:

Lsil =
1

n

n∑

i=1

∥∥Si − Si
gt

∥∥2

where i refers the index of 2D silhouette. Then the combination

of both loss can be defined as:

Lcomb = λvolLvol + λsilLsil

where λvol and λsil are weights that make different trade-offs

between the volume reconstruction loss and silhouette-based

loss. We evaluate this trade-off in detail in the experimental

tests.

IV. EXPERIMENT

The dataset for training and testing the proposed framework

and implementation details are introduced in this section.

In addition, we conduct several experiments to analyze the

impact of two version framework VVSNet and VVSNet-

R. The influence of weighting factors λvol and λsil in the

scaling volume-view supervision is evaluated. Moreover, the

performance comparison of different methods is then verified.

Finally, the generation ability to reconstruct unseen categories

is evaluated in this section.



A. Dataset and Implementation Details

We evaluate the proposed VVSNet and VVSNet-R on both

synthetic images from [7], which is based on the ShapeNet

dataset [27]. More specifically, we use 13 major classes and

43,783 models.

To assess the quality of the 3D volume output, we use the

intersection over union(IoU) between predicted 3D volume

and corresponding ground truth as the similarity measure. The

IoU is formally defined as follows:

IoU =

N∑
i=1

[I(yi > t) ∗ I(ygt)]
N∑
i=1

[I(I(yi > t) + I(ygt))]

where yi is the predicted value for the i-th voxel and ygt is its

corresponding ground truth value. I(·) is an indicator function,

t refers a voxelization threshold, N denotes the total number

of voxels. Higher IoU values indicate better reconstruction

performance.

We implement the proposed network in Pytorch and train

VVSNet and VVSNet-R using a batch size of 16 to fit in an

NVIDIA Titan X GPU. We set Adam optimizer with β1 = 0.9,

β2 = 0.99 and the learning rate is 0.001.
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Fig. 3. Reconstruction performance is reported in mean (black dot) and
median (white line) IoU value. The box plot shows 25% and 75% and caps
show 15% and 85%.

B. Comparison of Different Methods

To validate the performance of the proposed framework

VVSNet and VVSNet-R, we compared our methods with sev-

eral state-of-the-art approaches including 3D-R2N2 [10], Oc-

tree Generating Network (OGN) [18] and Perspective Trans-

former Nets (PTN) [7] on the ShapeNet dataset. 3D-R2N2

utilizes 3D LSTM to fuse informative features and predict full

3D geometry from single or multiple views. OGN introduces

a deep convolutional decoder architecture that can generate

3D shapes from a single view using an octree representation.

PTN generates volumetric 3D outputs from a single view using

perspective transformations. To make a fair comparison, we

divided the dataset into a data set of 80% for the training set

and 20% for the test set, which is the same as 3D-R2N2 and

OGN. Moreover, we retrained the released PTN model using

these categories.

As shown in Table 1 and Fig. 3, it can be seen that VVSNet

and VVSNet-R significantly outperform other methods in all

classes. In addition, VVSNet-R increases IoU over VVSNet

by 14%. The visualization results are shown in Fig. 4, it can

be found that VVSNet and VVSNet-R provide more complete

volumetric 3D shapes, while other methods miss some part of

detail regions, such as the lamp bracket and the table legs. It

demonstrates that the scaling volume-view supervision makes

a lot of contributions to the reconstruction results.

TABLE I
SINGLE-VIEW RECONSTRUCTION COMPARISON USING IOU.

Category 3D-R2N2 OGN PTN VVSNet VVSNet-R

plane 0.513 0.587 0.553 0.599 0.611
bench 0.421 0.481 0.482 0.502 0.509
cabinet 0.716 0.729 0.711 0.755 0.767
chair 0.466 0.483 0.458 0.488 0.509
car 0.798 0.816 0.712 0.798 0.816

monitor 0.468 0.502 0.535 0.569 0.578
lamp 0.381 0.398 0.354 0.400 0.411

speaker 0.662 0.637 0.586 0.685 0.712
firearm 0.544 0.593 0.582 0.595 0.612
couch 0.628 0.646 0.643 0.687 0.698
table 0.513 0.536 0.471 0.623 0.630

cellphone 0.661 0.702 0.728 0.716 0.762
watercraft 0.513 0.632 0.536 0.583 0.652

TABLE II
IOU WHETHER USING UP-SAMPLING LAYER.

Model IoU

VSSNet (no up-sampling layer) 0.591
VSSNet (with up-sampling layer) 0.599
VSSNet-R (no up-sampling layer) 0.602

VSSNet-R (with up-sampling layer) 0.611

C. Scaling Volume-view Supervision Evaluation

To demonstrate that designing up-sampling layers in the

scaling volume-view supervision can increase errors and im-

prove reconstruction accuracy, we compare the reconstruction

performance whether the up-sampling layer is adopted. It

worth noting that in order to ensure the consistency of resolu-

tion, the down-sampling layer is also not adopted when the up-

sampling layer is dropped. For comparison, we trained these

frameworks on the plane category. Table 2 and Fig. 5 show

the quantitative results of IoU. We can see that with the help

of the up-sampling layer, the IoU of VVSNet and VVSNet-R

increase 1.3% and 1.4% respectively, which demonstrates that
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Fig. 4. Qualitative reconstruction results of the main 13 categories on the ShapeNet dataset compared with 3D-R2N2 [10], OGN [18] and PTN [7]. GT
presents the ground truth of the objects. It shows VVSNet and VVSNet-R are better to make complete reconstruction with more details.



the up-sampling layer helps models to zoom errors and boost

the reconstruction performance.

In addition, the performance of VVSNet-R is better than

VVSNet overall. It can be seen that VVSNet-R using the

deep residual module makes improvements in reconstruction

performance.
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Fig. 5. Performance of VVSNet and VVSNet-R models with different
supervision modules. VVSNet-no means VVSNet without the up-sampling
layer and VVSNet-up presents VVSNet with the up-sampling layer.

D. Trade-off between View and Volume Supervision

To evaluate the contribution of the view and volume su-

pervision in the optimization process, we trained the two

proposed frameworks with volume supervision only, view

supervision only, and volume-view supervision. For volume-

view supervision, we set λvol and λsil are 0.5. We tested

the performance on the couch category and Table 3 shows

the prediction IoU. The use of both the volume and view

supervision has achieved higher performance for both VVSNet

and VVSNet-R overall. Without view loss, the performance of

VVSNet and VVSNet-R decrease by 19% on average in IoU.

In addition, Without volume loss, the performance of VVSNet

and VVSNet-R decrease by 13% on average in IoU. We can

conclude that the effect of view supervision is greater than

that of volume supervision.

TABLE III
IOU USING DIFFERENT SUPERVISIONS.

Encoder Decoder IoU

volume supervision simple simple 0.674
view supervision simple simple 0.676

volume-view supervision simple simple 0.687
volume supervision residual residual 0.686

view supervision residual residual 0.690
volume-view supervision residual residual 0.698

E. Evaluation of Generation

To evaluate the generation ability of the proposed methods,

we leveraged our proposed methods to test several unseen

categories: bed, cabinet, motorbike, train, and bookshelf that

do not belong to 13 major classes. The visualization recon-

struction results are shown in Fig. 6. We can see that the

bed legs can not be reconstructed completely using the model

VVSNet trained with volume supervision or view supervision

only. However, the reconstruction performance gets better

when the volume-view supervision is adopted. With the help of

the deep residual module, VVSNet-R gets better performance

compared with VVSNet. The bookshelf class is predicted most

poorly because it is hard to find classes that are similar in

shape to the training set. For the train, motorbike and car

categories, the main parts are well reconstructed, but there

are some missing details.

The quantitative analysis is shown in Table 4, it can be

seen that the overall performance of the network is not good

when only single supervision is used. The scaling volume-

view supervision shows a powerful ability to handle the 3D

reconstruction. In addition, the quantitative results demonstrate

that the deep residual model improves performance.

V. CONCLUSION

In this paper, we propose the scaling volume-view super-

vision for an end-to-end 3D object reconstruction method.

The scaling view supervision uses the up-sampling layer for

zooming errors and increasing the penalties. The VVSNet

provides a basic and flexible framework that uses 2D and

3D CNNs for efficient reconstruction learning. The VVSNet-

R leverages the deep residual module to refine the general

framework and boosts the prediction performance. We test

our methods on the ShapeNet dataset and can see that the

proposed methods get higher performance compared with

state-of-the-art approaches. In addition, the scaling volume-

view supervision makes great contributions to regularization

and improves the reconstruction accuracy.

For future work, more experiments for real-world images

will be conducted by using our methods. Moreover, we will in-

troduce more flexible frameworks for both single and multiple-

view reconstruction.
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TABLE IV
PERFORMANCE OF DIFFERENT VARIANT VVSNET ON THE UNSEEN CATEGORIES.

bed motorbike bookshelf train bus

VVSNet-volume 0.113 0.166 0.077 0.179 0.112
VVSNet-view 0.147 0.197 0.163 0.201 0.156

VVSNet-view-volume 0.218 0.235 0.261 0.214 0.265
VVSNet-R-volume 0.187 0.226 0.279 0.281 0.306

VVSNet-R-view 0.256 0.385 0.301 0.309 0.318
VVSNet-R-view-volume 0.261 0.392 0.316 0.328 0.320

Motorbike BookshelfTrain Bus

VVSNet-volume

VVSNet-view

VVSNet-view-volume

VVSNet-R-volume

VVSNet-R-view

VVSNet-R-view-volume

GT

ookshelfBoT iT MB bik

GGT

T iTTrainTT MoBus otorbike

SNet

GGT

t l
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VSNet ie

SNett-volumet-volume

Net ii l

VSNet-viewet view

N t R l

Net-viiew-volumeiew volume

et-R-vview-volumei l

VSNett-R-viewt R view

Net-R-volumeR volume

Bed

Fig. 6. 3D visualization reconstruction results on unseen categories. GT presents the ground truth of the objects. The scaling volume-view supervision and
deep residual module boost the generation performance.
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