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Abstract—Image-Text Matching is one major task in cross-
modal information processing. The main challenge is to learn the
unified vision and language representations. Previous methods
that perform well on this task primarily focus on the region
features in images corresponding to the words in sentences.
However, this will cause the regional features to lose contact
with the global context, leading to the mismatch with those
non-object words in some sentences. In this work, in order
to alleviate this problem, a novel Dual Semantic Relationship
Attention Network is proposed which mainly consists of two
modules, separate semantic relationship module and the joint
semantic relationship module. With these two modules, different
hierarchies of semantic relationships are learned simultaneously,
thus promoting the image-text matching process. Quantitative
experiments have been performed on MS-COCO and Flickr-30K
and our method outperforms previous approaches by a large
margin due to the effectiveness of the dual semantic relationship
attention scheme.

Index Terms—cross-modal, retrieval, attention, semantic rela-
tionship

I. INTRODUCTION

Different from traditional single-modal retrieval, image-text
matching [31] requires the retrieval from image to text and
vice versa, which is to find the most relevant text given the
query image named image-based text retrieval or to find the
semantically most similar with the query text.

Recently with the development of deep neural networks, la-
tent space learning methods [1] [2] [3] stand as a fundamental
solution to this task. Traditionally image and text inputs are
separated encoded by convolution-based networks [4] [5] [6]
and RNN-based networks like LSTM [7] or GRU [8], after
which a similarity function is used to measure the distance
between two-modal representations. More recently, text repre-
sentations can as well obtained with pre-trained transformer-
based models like BERT [9], which are comparable to the
pre-trained CNNs in the image channel. At last, a triplet-based
ranking loss function [2] supervises the training and the best
unified latent space is learned.

A more refined way is to extract the local regional features
using faster R-CNN [12], which is called bottom-up attention
[13] for cross-modal tasks. With a pre-trained faster-RCNN,
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A with packed cars and birds in
the air and on the ground

A street with packed cars and birds in the
air and on the ground

Fig. 1. The proposed DSRAN learns semantic relationship between regional
objects as well as objects and global context. With only regional features, the
visual representations fail to match the corresponding words and relationship
like ”birds in the air”, ”birds on the road” or “street with cars”.

objects in an original image can be detected. Regional features
are extracted from these objects by the backbone CNNs like
ResNet101 [6]. SCAN [14] firstly introduced this scheme into
image-text matching task. VSRN [15] took a step further
to learn the relationship between objects in the raw image
using graph convolutional network. GSLS [36] boosts the
combination of image and text information by extracting both
local and global features of images and captions and learning
their similarities simultaneously. Although quite successful,
these methods lack the emphasis on relationship between
objects and non-object elements like the background, the
surroundings or the environment which have a strong relation
to the understanding of an image when trying to match the
corresponding text, as illustrated in Fig. 1.

Thus, based on previous work, this paper proposes a Dual
Semantic Relationship Attention Network(DSRAN) to address
this problem. Intuitively there are two main modules in the
DSRAN, the separate semantic relationship module and the
joint semantic relationship module. The separate semantic
relationship module is designed for capturing both objects
and their semantic relationship. Specifically, because of the
efficiency and effectiveness of GATs [35] when learning
the nodes relationship, the module uses two separate graph
attention networks to learn pixel-wise semantic relationship
and regional relationship at the same time. The second module,



joint semantic relationship module, aims to find the semantic
relationship between local objects and global pixel-wise con-
cepts. A unified graph attention network is used to achieve
this. After these two principal relationship-oriented modules,
the similarity scores of the obtained image features and text
features can be calculated and further update the network
parameters with the loss function as previous works did.
Details will be discussed later.

To verify the validity of our proposed model, we test our
model on both MSCOCO [16] and Flickr30K [17] datasets.
Experimental results show that our model outperforms the
currently state-of-the-art method on both datasets which prove
the effectiveness of our design.

Our contributions are summarized as below.

(a) We propose a novel Dual Semantic Relationship Atten-
tion Network(DSRAN) in order to strengthen the relationship
between regional objects and global concepts in the learned vi-
sual representations while considering the relationship among
objects themselves.

(b) The proposed DSRAN outperforms previous works on
the image-text matching task. Specifically, on MSCOCO our
model outnumbers the current best model VSRN [15] by 2.5%
for image retrieval and 3.8% for text retrieval (Recall@1 using
5K test set). And on Flickr30K, the increase is more significant
which is 9.7% for image retrieval and 7.0% for text retrieval
(Recall@1).

II. RELATED WORK
A. Image-Text Matching

The Image-Text Matching task can be regarded as one
of the most fundamental tasks in cross-modal retrieval. In
this task, previous works mainly focus on the latent space
learning proposed by CCA [33] which mainly relies on linear
projection. Further, with the development of deep learning,
Visual Semantic Embedding [1] uses deep neural networks to
project visual and text features into the latent space separately.
[2] proposed to use a hard-negative based triplet ranking loss
instead of the traditional cross-entropy loss to supervise the
training which is followed by most recent works. The visual
features are basically extracted by convolution-based models
like [4] [6] pre-trained on ImageNet [24] until SCAN [14] in-
troduces the bottom-up attention scheme [13] and used Faster-
RCNN [12] pre-trained on Visual Genome [18] to extract
more semantic object-level visual features. Further, VSRN [15]
applies graph convolutional network [19] to conduct visual-
reasoning corresponding to the word-level semantic meanings
in texts. For text modality, traditionally original words are
embedded into word vectors and fed into an RNN-based
encoder like LSTM [7] or GRU [8]. With the success of
pretraining in NLP field like BERT [9], GPT [10], and XLNet
[11], more specific words representations can be learned which
are comparable with their visual counterparts.

B. Attention Mechanism

Our work applies different kinds of attention mechanisms
to handle various relationship problems. Self-attention mech-

anism [25] has brought the NLP field into a brand-new era.
Learning from its success in text modality, in CV field [20]
applies self-attention to image generation. Word embeddings
or visual feature maps play as three roles as query, key, value,
after which semantically more important words or regions are
paid more attention. In addition to this, SCAN [14] proposed
stacked cross attention between image and text modalities
to learn the correspondence between words and objects. To
handle topology data, in GAT [35], self attention and relational
modules are combined on the graph structures for nodes
classification.

C. Visual Relationship Learning

In the cross-modal field, to better match visual and text
modalities, researchers pay more attention to the visual re-
lationship learning because they believe it’s of significance
for machines to learn not only the objects but also their
relationship just as the importance of learning relationship
between words in natural language processing. In [34], a
multi-label CNN extracts regional semantic concepts and learn
their order relationship. The propose of scene graph, which
produces a knowledge graph based on the objects and their
relationship in the raw image enhances connections with the
text modality [21] [22] [23]. VSRN [15] tries to capture the re-
lationship between separated objects in the image using graph
convolutional networks [19]. These works successfully learn
the object-level relationship while ignoring the relationship
between objects and global elements such as the atmosphere,
the environment, the surroundings, and the background, which
is emphasized and resolved by our method.

III. PROPOSED METHOD

In this section, we detail our proposed Dual Semantic
Relationship Attention Network(DSRAN). As shown is Fig. 2,
given an image-text pair, two separate encoding paths are
designed for two modalities to get the final representations.
For the image part, the raw image is firstly extracted in
two levels, the global level and the object level (III-A).
Two modules are followed, the first of which is the separate
semantic relationship module aiming to learn the object-
level semantic relationship (III-B). The second is the joint
semantic relationship module which is designed for capturing
relationship across objects and global concepts (III-C). For the
text part, a pre-trained BERT-base model [9] extracts the words
representations corresponding to the image features (III-D). In
the end, with the cross-modal representations, we can calculate
the similarity scores and update the network parameters with
the loss function(ITI-E).

A. Two Levels of Image Features

Given a raw image I, global-level features F' and region-
level features R are extracted respectively. Generally, a
ResNet152 [6] pretrained on ImageNet [24] whose last fully-
connect layer is removed extracts the global features of the
image. We use the feature map of last layer and reshape
it to a set of features F' = {fi,...., fu}, fi € RP* where
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Fig. 2. An overview of the proposed Dual Semantic Relationship Attention Network. Two semantic relationship learning modules are applied to enhance
both object-level relations and unified global-region relations. A self-attention mechanism and a graph convolution separately the former while two different
attention mechanisms are used for the latter. The caption is fed to a pre-trained BERT-base encoder and we take the last layer of the output features. And a

residual structure is designed for text representation learning.

n is the reshaped feature map size and D, refers to the
dimension of each pixel. For the region-level part, inspired
by bottom-up attention [13], the objects are firstly detected by
a Faster-RCNN [12] pretrained on Visual-Genome [18] and
then fed into a backbone Resnet101 and the final features
can be represented as R = {r;,...,7x},m; € RP° where k
is the detected objects number. In order to embed them into
the shared latent space, a fully-connect layer is carried out.

(D
2

W and W, are the weight matrixes together with the bias by
and b,. Then we get the two-levels extracted features Vp €
RPe and Vi € RP¢ representing visual global features and
regional features where D, is the embedding dimension.

Ve = WfF+bf

Ve =W,R+b,

B. Separate Semantic Relationship Module

Targeting at dual-levels of features, we design two sepa-
rate semantic relationship enhancement models to learn the
enhanced pixel-wise relationship and object-wise relationship.
Specifically, we detail them in three parts, the first of which
is the construction of the graph attention module.

o Graph Attention Module

Given a fully-connected graph G = (V, E), where V =
{vi, ..., un },v; € RP is the node features and F is the edge
set. Following [35], we compute attention coefficients and
normalize them with softmax function.

eij = a(Wyvi, Wiv;) 3)

a;j = Softmax(e;;) 4)

W, and W, are learnable parameters. In case of memory ex-
plosion, different from using the feed-forward neural network,
we simply compute the attention coefficients with multi-head
dot production [25].

a(Wyv;, Wiv;)

= Wovi(Wiw))T /Vd 5)

In this paper, the multihead num is set to 8 thus d equals
to D/8. Thus, with a nonlinear activation function, the final
output feature can be computed.

v; = ReLU (Y aijWyv;) (6)
JEN;
Same as [35], we employ multi-head attention.
v; = [[f<, ReLU( Z af;Wyv;) (7

JEN;

In eq.(7) || means concatenation and K is the multi-head
num. A batch normalization is followed. Here we finish the
construction of a graph attention module.

« Attention for pixel-wise relationship enhancement

Obtaining the global features Vp, firstly we construct the
global visual graph Gr = (Vp, Ep). With a graph attention



module illustrated above, this process outputs global semantic-
relationship-enhanced features.

Vi = GAT(Gr) ®)

GAT means the graph attention module illustrated before.
K is set to 1. This attention proceeding can be repeated for x
times for deeper attention.

This progress determines how much every pixel is effected
by other pixels, where semantically more related pixels may
have higher attention values in the image, thus promoting the
pixel-wise relationship learning.

« Attention for object-wise relationship enhancement
VSRN [15] and ML-GCN [32] illustrate the strong potential
of GCNs [19] for capturing regional relationship. Different
from them, this process tried to capture the regional relations
with a graph attention network. As seen in Fig. 2, a fully-
connected graph is constructed as G = (Vg, ER), where Vi
is the regional features. Graph Attention networks deal with
the objects graph which contain both the object features and
their relationship and output semantic-relationship-enhanced
regional representations, as shown below.

Vi = GAT(Gr) ©)

Samely K is set to 1 and the GAT can be repeated for x
times for better representation learning.

C. Joint Semantic Relationship Module

In this part, we describe the kind of semantic relationship
that previous works lack, the object-global wise relationship.
As seen in Fig. 2, a multi-head graph attention module is
adopted with a certain purpose to bridge the relations between
regional objects and global concepts. Finally, a fusion process
helps to fuses the multi-head outputs.

Firstly, the enhanced global and region features Vi and V3
are concatenated in the object-pixel dimension into Vi;. And
a unified features graph Gy = (Vy, Ey) is obtained. Then, a
unified graph attention is conducted just like in III-B. Different
from that in III-B, here the input is the concatenated features,
therefore, helping an object or a pixel learn the attention value
based on all objects and pixels. With such a scheme, named
joint attention, models can easily learn semantic relationship
between all separate elements no matter it’s a regional object
or a global concept.

Vo = GAT(Gy)

Here K is set to 2. The concatenated multi-head outputs
should be fused.

o Fusion Process

(10)

With the multi-head output features V- obtained by joint
graph attention module, we fuse them with simply a fully-
connected layer to get the final image representation. Firstly
by mean pooling, matrixes Vo = {vi,...,v"}, vl € R2De
transform into vectors, after which they are concatenated and
fed into a fully-connected layer.

V= Mean(Ve) a1

I= W1‘7+b1 (12)

Here Mean is mean-pooling, W; and b; are the fully-
connected layer parameters.

D. Getting Text Representation With Bert

Given the original sentence 1" corresponding to its matching
image, the deep neural network embeds it into words represen-
tations. Traditionally, an RNN based network like LSTM [7] or
GRU [8] is used to process the embedded word vectors and the
output hidden states are regarded as the words representations.
Recently with the development of the pre-training scheme
in NLP filed, another more sophisticated substitute is to
use BERT [9] as the text encoder. The self-attention based
transformer structures boost the words representations learning
and match the attention mechanisms used on the image side.
Assume the maximum word num is m, so the words can be
illustrated as W = {w;, ..., w,},w; € RPv. Then we feed
them into the BERT-base encoder which has 12 layers and we
extract the outputs of the last layer as the word representations
C which is a matrix whose first dimension is the maximum
words num and the second dimension is noted as D,,. A fully-
connect layer is applied to embed the features into the shared
latent space where the dimension is D..

C*=W,C+b (13)

To match the dimension of final image representation I,
we conduct the same graph attention process and the fusion
process exactly the same way in III-B and III-C. The final text
representation T can be obtained as below.

T = F(Concat(Mean(C*), Mean(GAT(C*))))  (14)

F refers to the fusion process in III-C, SA refers to graph
attention module in III-B and Mean refers to mean pooling
on the word level. K of GAT is set to 1.

E. Matching Process and Loss Function

After obtaining the two-modality representations I and T,
a hinge-based triplet ranking loss [2] is adopted to supervise
the latent space learning procedure. The loss function tries
to find the hardest negatives in a mini-batch which form the
triplets with the positive ones and groundtruth query. The loss
function is defined as below.

L=la+8(I',T) - S(I, 1)+

. - (15)
la+S(,T) - S(L.T)4

Here S(-) refers to similarity function which is cosine
similarity in our model. [z]y = maxz(z,0) and « is the
margin.

IV. EXPERIMENTS

To evaluate our DSRAN on the image-text matching task,
we perform several experiments on both image retrieval and
text retrieval. Table I and Table II are the compare results with
state-of-the-art methods.



TABLE I
RESULTS ON MS-COCO DATASET. METHODS ARE DIVIDED INTO THREE CATEGORIES, GLOBAL-WISE, REGION-WISE AND OUR GLOBAL-REGION
UNIFIED KIND. WE GIVE OUT BOTH PERFORMANCES ON A SINGLE MODEL OR TWO-MODELS ENSEMBLE. THE BEST RESULTS ARE IN BOLD.

Image-to-Text

Text-to-Image

Image-to-Text Text-to-Image

Methods 1K Test Set 5K Test Set

R@1 R@5 R@10 R@1 R@5 R@10 Rsum|R@1 R@5 R@10 R@1 R@5 R@10 Rsum
Global-Wise Visual Representations
VSE++ 64.6 90.0 957 520 843 920 4786|413 71.1 812 303 594 724 3557
MTEN 743 949 979 60.1 89.1 950 511.3|483 776 873 359 66.1 76.1 3913
TOD-Net(BERT-large) 75.8 953 984 61.8 89.6 950 5159| - - - - - - -
Region-Wise Visual Representations
SCAN 709 945 978 564 87.0 939 5005|464 774 872 344 637 757 384.0
PFAN 75.8 959 99.0 61.0 89.1 951 5159| - - - - - - -
Global-Region Unified Visual Representations(Ours)
DSRAN 765 96.0 984 627 89.7 952 5184|527 815 903 399 709 811 4164
Two-Models Ensemble
SCAN 72,7 948 984 58.8 884 948 5079|504 822 90.0 386 693 804 4109
PFAN 765 963 990 61.6 89.6 952 5182 | - - - - - - -
VSRN 762 948 982 628 89.7 951 5168|530 8.1 894 405 706 8l.1 4157
TOD-Net(BERT-large) 78.1 96.0 98.6 63.6 90.6 958 522.7| - - - - - - -
DSRAN 782 963 98.6 642 90.6 958 523.7|55.0 83.0 90.6 415 722 824 424.7

TABLE II over 5 folds of 1k test images (referred to as 1K test set) or

RESULTS ON FLICKR30K. THE CONFIGURATIONS ARE THE SAME WITH
THOSE OF MSCOCO. TOD-NET IS NO LONGER SHOWN HERE BECAUSE
NO EXPERIMENTS ON THIS DATASET CAN BE FOUND IN THEIR PAPER.

Image-To-Text Text-To-Image

Methods

R@]! R@5 R@10 R@] R@5 R@I10 Rsum
Global-Wise Visual Representations
VSE++ 529 805 872 396 70.1 795 4098
MTEN 653 883 933 520 80.1 86.1 465.1
Region-Wise Visual Representations
SCAN 679 89.0 944 439 742 828 4522
PFAN 67.6 90.0 938 457 747 83.6 4554
Global-Region Unified Visual Representations(Ours)
DSRAN 746 938 972 57.8 848 90.6 498.7
Two-Models Ensemble
SCAN 674 903 958 486 777 852 465.0
PFAN 700 91.8 950 504 787 86.1 4720
VSRN 713 90.6 960 547 81.8 882 482.6
DSRAN 763 944 975 600 858 919 5059

A. Datasets and Evaluation Metrics

We apply the two publicly available Microsoft COCO
dataset [16] and Flickr30K dataset [17]. In Flickr30K, there are
31,783 images with 5 captions each. Following [2], the images
are split into 29,000, 1000 and 1000 for training, validation
and testing. As for MSCOCO dataset, there are a total of
123,287 images and every image has 5 description captions.
As did in [2] [14] [15], the splits contain 113,287 images for
training, 5000 for validation and 5000 for testing. Especially
for MSCOCO, the final results are obtained either by averaging

by directly testing the whole 5k images (referred to as 5K
test set). For both image retrieval and text retrieval tasks, we
record the results by calculating the recall at K (R@K) metrics
defined as the proportion of the queries whose correct retrieved
results are among the top-K ranking results. Specifically, we
use R@1, R@5, and R@10 together with Rsum defined as
below.

Rsum = RQ1 + RQ5 + RQ10 +

image retrieval

RQ1 + RQ5 + RQ10

text retrieval

(16)

B. Implementation Details

We give more detailed parameter settings and model settings
for our DSRAN. For global-wise feature maps extraction, the
raw image is randomly cropped and resized to 224 x 224. And
the output feature map size n is set to 7 x 7 = 49. For region-
wise object features extraction we simply use the features
given by [26] and the num of regions % is 100. Both these two
kinds of features share the same dimension D, which is 2048.
As for texts, we use a pre-trained BERT-base [9] model and the
embedding dimension D,, is 768. The text encoder is finetuned
while parameters of visual encoders ResNet152 and Faster-
RCNN are frozen. The embedded latent space dimension D,
is set to 1024. Repeating times z is 2 and 1 for MSCOCO
and Flickr30K respectively.

Experiments are performed on at least two NVIDIA 1080Ti
GPUs with the batch size setting to 320 for MSCOCO and 128
for Flickr30K. We train the model with an Adam optimizer
[27] with a warmup rate of 0.1 for 20 epochs. The learning
rate is set to 2e-5 at first and decline by 10 times every 10
epochs.



C. Comparative experiments with state-of-the-art methods

We compare our DSRAN model with current state-of-the-
art methods. They are divided into two kinds, ¢)global-wise
visual representations methods VSE++ [2], MTFN [30] and
TOD-Net [28], ii)region-wise visual representations methods
SCAN [14], PFAN [29] and VSRN [15]. Further, our method
is denoted as global-region unified visual representations. It
should be noticed that TOD-Net uses the 24-layer BERT-large
model rather than our 12-layer BERT-base model. Results
from a single model or two-model ensemble are both recorded
here. When conducting the ensemble scheme, the similarity
scores from two already trained models are averaged.

e Results on MSCOCO

As shown in Table I, the highest performance of each metric
is made bold. Our DSRAN outperforms other methods whether
using an ensemble or not. For the 1K test set, our model
exceeds the current best TOD-Net [28] with a BERT-large
text encoder against our BERT-base encoder by 0.9% and
1.5% on text retrieval and image retrieval respectively at RQ1
(single model). From the table, performance gains of RQ5
and R@10 are not as significant as that of R@1. This may
be due to the existence of more interference sources for a
given query in such a large target set. For the 5K test set,
similarly, we outnumber the state-of-the-art VSRN [15] by
9.0 considering the Rsum metric. The above outperforming
proves the effectiveness of our dual semantic relationship
attention scheme focusing on the unified global-region visual
representations learning.

¢ Results on Flickr30K

Performances on Flickr30K are shown in Table II. Our
proposed DSRAN outperforms other state-of-the-art methods
by a large margin. Compared to the previous best model VSRN
[15], we increase 7.0% on text retrieval and 9.7% on image
retrieval (RQ1), with a great improvement on Rsum metric
(23.3). It is noticed that region-wise methods like SCAN
[14] or VSRN perform better than global-wise counterparts
VSE++ [2] or MTFEN [30] which means the success of learning
object-level semantic relationship for image-text matching.
However, introducing unified global-region visual relationship
learning further boosts the performances, which is our main
contribution.

TABLE III
PERFORMANCE GAIN FROM SRR AND JRR. WE RUN THIS ABLATION
STUDY ON FLICKR30K DATASET.

Modules Image-to-Text Text-to-Image
SRR JRR R@]1 R@5 R@10 R@]l R@5 R@10 Rsum
70.0 919 964 527 81.6 89.5 4821
v 72.1 924 968 558 835 893 4899
v 7277 926 96.6 56.1 837 899 491.6
v v 74.6 938 972 57.8 848 90.6 498.7

V. ABLATION STUDY AND ANALYSIS

In this section, firstly we do several ablation studies con-
sidering the dual semantic relationship enhancement schemes
used in our model, 7)separate semantic relationship module,
i4)joint semantic relationship module.

A. Effectiveness of Both Semantic Relationship Modules

There are two main semantic relationship modules in our
DSRAN, the separate semantic relationship module (referred
to as SSR) and the joint semantic relationship module (re-
ferred to as JSR). We perform four ablation experiments on
Flickr30K [17] test set with or without the modules. The
baseline configuration is to remove both two modules and
merely fuse global and regional features with the fusion
precoess. As shown in Table III, models with only SRR or
JRR outperform the baseline. The best performance is found
on the last line indicating that these two modules interact well
with each other. More specifically, the performance gain comes
from nowhere but the dual semantic relationship attention
schemes, the first of which is the SRR contributing to the
object-level relationship learning. JRR plays an important role
in dealing with the unification of global and regional features
thus learning the global-regional semantic relationship.

B. Analysis on Graph Attention Module

In both the two semantic relationship modules, we apply
GATs [35] to enhance whether the object-wise relationship
or the object-global wise relationship. By constructing two
separate fully-connected graphs for global features and re-
gional features respectively, the model successfully learns
the relationship-enhanced features. Here the graph attention
module can repeat for x times for deeper attention. We perform
experiments to find out the best repeating times for the two
datasets. As seen in Fig. 3, we adopt x = 1&2 for Flickr30K
and MSCOCO respectively.

Then the use of unified graph attention in the joint semantic
relationship module helps to construct a graph which con-
tains both regional features and global features. The attention
progress of both features boost the relationship between ob-
jects and global concepts thus making visual representations
better interact with words representations.

520
515
510

= 505

Coco
Flickr30K

& 500
495
490
485

1 2 3
repeat times x

Fig. 3. How Rsum goes as x grows for two datasets.



VI. CONCLUSION

In this paper, we focus on the visual semantic relationship
learning for enhanced image-text matching. Further a dual se-
mantic relationship attention network (DSRAN) with different
kinds of attention mechanisms applied to capture both the
object-level semantic relationship and global-regional seman-
tic relationship. The learned dual-relationships-enhanced vi-
sual representations can better match their textual counterparts
whose words are inherently related in both object level and
global-region level thus promoting the matching procedure.
Quantitative experiments show the successful target-oriented
designs of our model and such a model outperforms previous
methods on the image-text matching task on the two widely
used datasets MSCOCO and Flickr30K. Further we analyze
the two main modules targeting at dual semantic relationships
learning. In the future, we are looking forward to introducing
scene graphs to semantic relationship learning and applying
this kind of dual semantic relationship learning to more cross-
modal tasks.
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