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Abstract—Large scale Bayesian nonparametrics (BNP) learner
such as Stochastic Variational Inference (SVI) can handle
datasets with large class number and large training size at
fractional cost. Like its predecessor, SVI rely on the assumption of
conjugate variational posterior to approximate the true posterior.
A more challenging problem is to consider large scale learning on
non-conjugate posterior. Recent works in this direction are mostly
associated with using Monte Carlo methods for approximating
the learner. However, these works are usually demonstrated on
non-BNP related task and less complex models such as logistic
regression, due to higher computational complexity. In order to
overcome the issue faced by SVI, we develop a novel approach
based on the recently proposed constant stepsize stochastic
gradient ascent to allow large scale learning on non-conjugate
posterior. Unlike SVI, our new learner does not require closed-
form expression for the variational posterior expectatations. Our
only requirement is that the variational posterior is differentiable.
In order to ensure convergence in stochastic settings, SVI rely
on decaying step-sizes to slow its learning. Inspired by SVI
and Adam, we propose the novel use of adaptive stepsizes in
our method to significantly improve its learning. We show that
our proposed methods is compatible with ResNet features when
applied to large class number datasets such as MIT67 and
SUN397. Finally, we compare our proposed learner with several
recent works such as deep clustering algorithms and showed we
were able to produce on-par or outperform the state-of-the-art
methods in terms of clustering measures.

Index Terms—Variational Inference, Stochastic Gradient As-
cent, Non-Conjugate Posterior

I. INTRODUCTION

Bayesian nonparametrics (BNP) is widely used in image
processing, video processing and natural language processing.
A common task in BNP also known as model selection is to
automatically estimate the number of classes to represent an
unlabelled dataset while clustering samples (or label) accord-
ingly. A widely used BNP is the Variational Bayes Dirichlet
process mixture [1], [2].

In the past, approximate learning for BNPs is mainly based
on Variational Inference (VI) where it iteratively repeats its
computational task (or algorithm) on the entire dataset, also
known as batch learning [3], [4]. Today, most large scale BNP
learners such as Stochastic Variational Inference (SVI) [2],
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[5], [6]. The latter repeats its computational task on a smaller
set of randomly drawn samples (or minibatch) each iteration.
This allows the algorithm to “see” the entire dataset especially
large datasets when sufficient iterations has passed. However,
both SVI and VI rely on closed-form solution to work. Thus,
they are limited to to conjugate posteriors. To remove this
constraint, several recent works turn to Monte Carlo gradient
estimator (MC) to approximate the expectation (or gradient) of
non-conjugate posterior. However, MC algorithms come at an
expensive cost since it require generating samples from the
approximated posteriors. Moreover, such works are usually
confined to binary classifier such as logistic regression [7]–
[10] or Gaussian assumptions [11], [12] and mainly demon-
strated on datasets with smaller class numbers such as MNIST
or UCI repository. Thus, the MC approach described above
are more suitable to relatively simpler parameter inference
problems.

Due to the recent paradigm shift towards deep ConvNet
(CNN) [13], [14] and generative networks [12], [15]–[19], it
is very rare to find newer works following the pipeline of SVI
or MC since CNN and generative networks do not specifically
deal with model selection or unsupervised class prediction.

The main problems faced by SVI and MC are:

1) SVI - The approximate posterior must come from
the conjugate exponential family e.g. Gaussian-
Gamma.

2) MC - Not scalable since method requires gener-
ating samples from the approximated posteriors
which is expensive.

The contributions in this work are:

1) VI without closed form - We use stochastic
gradient ascent instead of closed form coordinate
ascent for VI as similarly in [8].

2) Adaptive stepsize - Inspired by Adam, we use
decaying stepsize on both 1st and 2nd order
moment of gradient for optimizating stochastic
gradient ascent.

3) Non-conjugate posterior - We introduce the gen-
eralized Gaussian density as our mixture model.
There is no closed form solution for the VI of
this model.
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We test the performance of our proposed learner on large class
number datasets such as MIT67 and SUN397. Due to using
deep ConvNet features (ResNet18), we also reported better
results than most recent literature baselines.

This paper is organized as follows: Firstly, we recall VMM
[20] for conjugate posteriors and discuss why it cannot work
on nonconjugate posterior. Next, we propose using SGA for
learning non-conjugate posterior. We further improve this
learning with an Adam like stochastic optimization. We then
present an algorithm that iteratively learns all the hidden
variables of PYPM in a typical VI fashion. Lastly, we perform
a study on several datasets including the more challenging
MIT67 and SUN397 to evaluate the performance of our
proposed method and enhancements. Finally, we include com-
parison with latest published works citing the datasets we use.

A. Related Works

SVI do not involve actual computation of SGA. Instead,
SVI parameters are initially computed by closed-form solution
[21] and then corrected via a weights biasing step. The weights
follow a decay that gradually bias towards earlier computed
values. SVI is recently demonstrated on BNP models with
conjugate posterior such as the hierarchical Dirichlet Process
topic model [2] and on large datasets as large as 3.8M samples
and 300 classes.

On the other hand, MC methods use SGA to perform
learning. Thus MC methods works on non-conjugate pos-
terior. SGA was also recently discussed in [8] for learning
approximate posterior. However, the authors mainly use SGA
with constant stepsize for learning. Some notable works in
this area include the black box VI [10], VI with stochastic
search [9], the stochastic gradient variational Bayes [12] and
the stochastic gradient Langevin dynamics [7].

II. PROBLEM STATEMENT

We present the problem of learning a non-conjugate pos-
terior for model selection in Bayesian nonparametrics. We
introduce a variant of Gaussian mixture model (GMM) that
exist outside the exponential family distribution. Our model
of choice is the Pitman-Yor process mixture (PYPM) with
a generalized Gaussian mixture model (GGD). The GGD
is a versatile 3 parameters model with mean, shape and
scale parameters {B, s, ρ}. It can model the non-Gaussianity
assumption for datasets. For simplicity, we only focus on the
following assumption for PYPM, which has the simplest form
for non-conjugate posterior i.e. by treating {s, ρ} as constant
variables for GGD

x | B, z ∼ GGD (Bk)
znk

B ∼ N (m0, λ0)
znk | vk ∼Mult (πk)
νk ∼ Beta(ak, bk)

(1)

Only conjugate posterior can be learnt the traditional way
e.g. MAP estimate followed by re-arranging a closed form
solution. However, this strategy is not available for non-
conjugate case:

We consider a case of non-conjugate posterior, ln q(Bk)
where the likelihood is generalized Gaussian distributed and
prior Gaussian distributed. When dealing with conjugate pos-
terior, traditional VI technique such as the VMM [20] take the
MAP estimate to obtain a closed form solution.

1) Taking the MAP estimate of ln q(Bk)

E [Bk] = argmax
Bk

ln q(Bk)

= argmax
Bk

E
znk

[ln p(xn | Bk, znk) + ln p(Bk)]
(2)

2) Because the likelihood is not from the exponential family,
re-arranging the gradient in terms of Bk for ∇Bk

ln q(Bk) = 0
is difficult

∇Bk
ln p(xn | Bk, E [znk])

= ρ
s

∣∣xn−Bk

s

∣∣ρ−1 sgn(xn−Bk

s )E [znk]

(3)

The above requires i) a numerical approach and ii) a con-
verging learner for large sample size and large class number.
Both problems are the main highlights of this work and shall
be discussed in detail in the next section.

III. PROPOSED LEARNING: ADAPTIVE STEPSIZE FOR
VARIATIONAL INFERENCE

Previously, the goal in (2) and (3) is to learn ln q(θj) by
deriving a closed-form expression for E [θj ]. Unfortunately,
this is impossible unless ln q(θj) is a conjugate posterior. In
this section, we propose to estimate non-conjugate posterior
using the stochastic gradient ascent (SGA) approach. We
also seek stochastic learning, faster convergence and returning
better local maxima. For the sake of brevity, we refer to θ as
θj in this section.

A. Constant Stepsize SGA for Variational Inference

To overcome the lack of a closed-form solution for E [θ] in
(2), some recent works [7], [9]–[12], [22], propose the learn-
ing of non-conjugate posterior using Monte Carlo gradient
estimate, ∇θE [f(θ)] ≈ 1

S

∑S
s=1 f(θ)∇θ ln q(θs) for approxi-

mation. However, this approximation is associated with large
gradient variance and requiring generating posterior samples,
θs. A more recent work [8] proposed using constant stepsize
SGA for VI. Similarly, we can re-express the expectation of
ln q(θ) using constant stepsize SGA below (since approaching
the local maximum has the same goal as maximizing the VLP
globally)

E [θ]t =
∫
θj q(θj) dθj

= E [θ]t−1 + η∇θ ln q(θ)
(4)

For SGA, we refer to the gradient of ln q(θ) at iteration t
using a minibatch with sample size M as

gt =
1

M

M∑
m=1

∇θ ln q(θm) (5)



B. Adaptive Stepsize SGA for Variational Inference
In stochastic learning, we draw a small subset of samples

(e.g. ¿1K samples) per iteration to update each posterior. This
is more effective than taking the entire dataset (eg. ¿100K
samples) for learning. In stochastic optimization [23], there is a
requirement for a decaying step-size pt to ensure convergence
in SGA as given by

∑
pt = ∞ and

∑
p2t < ∞. This is

to avoid SGA bouncing around the optimum of the objective
function.

In SVI [2], the main goal is to obtain the “global parameter”
update of conjugate posterior from its “immediate global pa-
rameter” as (φglobal)t = (1−pt) (φglobal)t−1+pt·φimmed. The
“immediate global parameter” is defined as a noisy estimate
and is cheaper to run since it is computed from a data point
sampled each iteration, rather than from the whole data set.
The decaying step-size is defined as pt = (τ + t)

−κ and both
τ and κ are treated as constants. Our view of the SVI update
equation above is much simpler and has little to do with SVI.
Instead, we simply treat it as a weighted average between
current and previous computed gradient of the posterior to
ensure convergence in learning. In fact, in Table I we observe
that SVI has a similar moment form to the common technique
called “SGA with momentum”. The main difference being pt
is a decaying term rather than fixed constant e.g. β1. Thus, we
define the first moment of the gradient (of the posterior) for
a given minibatch of size M samples at t iteration as

Wt = (1− pt)Wt−1 + pt · gt (6)

The non-conjugate learner in (4) is based on the SGA
approach. Since we are dealing with an approximate posterior
or posterior which is assumed convex, a more superior gradient
learning is the natural gradient learning. Natural gradient
learning is superior to plain vanilla gradient learning because
the shortest path between two point is not a straight-line but
instead falls along the curvature of the posterior objective
[24]. Natural stochastic gradient ascent of posterior [2], [25]
is defined as E [θ]t = E [θ]t−1 + ηG−1∇θ ln q(θ) , where
Fisher information matrix G = E

[
∇θ ln q(θ) (∇θ ln q(θ) ) T

]
.

The motivation for the steepest ascent direction search of
posterior optimum is best explained by Riemannian geometry
in [2], [24], [25]. When we assumed each dimension is inde-
pendent (spherical or diagonal), we end up with the squared
gradient of posterior, G = E

[
(∇θ ln q(θ) )2

]
. For a minibatch

of size M samples, we introduce the second moment of
the gradient for the squared gradient of posterior, using the
identity E

[
X2
]
≥ {E [X]}2 as follows

Ft = (1− pt)Ft−1 + pt · g2t (7)

We can take the product of the first moment of the
gradient in (6) and the second moment of the gradient in
(7) together to obtain an adaptive stepsize update

E [θ]t = E [θ]t−1 + η
Wt√
Ft + ε

(8)

We defined ε = 10−8. In the next section, we will make
comparison on (8) with other SGAs.

C. Motivation and Comparison with SGAs

Our adaptive stepsize learner is motivated by recent SGA
methods and SVI as summarized in Table I. We briefly discuss
their similarity below using the case of ln q(θ).

SVI: In Table I, we compare (6) to the 1st moment in SVI.
We can view the closed-form estimate θ̂ as gt while E [θ]t is
seen as Wt in (6).

Momentum SGA: Similarly, when we fix pt with a constant
value (e.g. at iteration 45 in Fig 1.) over the decaying value in
(6), both Wt in (6) and St will have very similar 1st moment
in Table I.

Adam: At a glance, Adam appears to be similar to Momen-
tum SGA for both their 1st moment. The only difference is
that Adam normalize it with a decaying curve e.g. βt1. Thus,
when we take an instaneous value in Fig 1, the value of Mt

is proportional to St and vice versa for Wt. Our definition
of Wt and Ft look very similar to Mt and Vt in Adam. The
main difference lies in the way we define the stepsizes pt. We
adopt the decreasing stepsize defined by SVI. We also use an
identical expression to Adam for the adaptive stepsize update
in (8).

D. Brief analysis on convergence

We plot the curves for (1− pt) and pt to exhibit the
behavior of using these stepsizes for Wt or Ft. We set the
values τ = 1 and κ = 0.5 for t = 50 iterations in Fig 1.
As the number of iterations increases, for Wt and Ft, we see
that the curves gradually shift responsibilities from the gradual
diminishing value of pt to the increasing value of (1− pt).

Recall that in the SVI update E [θ]t = (1− pt)E [θ]t−1 +

ptθ̂, the term θ̂ is defined as the closed form coordinate
ascent estimate in [2]. Alternatively, θ̂ is computed identical
to the conjugate posterior using VMM. Thus, when we let
θ̂ = ∇θ ln q(θ) at ∇θ ln q(θ) = 0 we have the following for
SVI

E [θ]t = (1− pt)E [θ]t−1 + pt∇θ ln q(θ) (9)

For the proposed adaptive stepsize in (8), we only discuss
the case of E [θ]t = E [θ]t−1 + ηWt. Expanding the terms
inside, we have the following

E [θ]t = E [θ]t−1 + η (1− pt)Wt−1 + ηpt∇θ ln q(θ) (10)

Given that limt→∞ (1− pt) = 1 and limt→∞ pt = 0 in Fig
1, we can see that SVI becomes

lim
t→∞

E [θ]t = E [θ]t−1 (11)

while (8) becomes

lim
t→∞

E [θ]t = E [θ]t−1 + ηWt−1 (12)

(11) shows that SVI will reach convergence if E [θ]t−1 is
a convex function. (12) consists of an additional term apart
from E [θ]t−1. Specifically, Wt−1 consists of a weighted sum
between ∇θ ln q(θ) and the previous Wt−1. Thus, as long as
∇θ ln q(θ) is a convex function we can sufficiently ensure that
the proposed stepsize in (8) will also converge.



TABLE I
COMPARISON OF LEARNERS FOR VARIATIONAL INFERENCE (SVI) AND NEURAL NETWORK (SGA)

Methods 1st moment of Gradient 2nd moment of Gradient Stepsize

VI
SVI E [θ]t = (1− pt) · E [θ]t−1 + pt · θ̂ - -

Proposed Wt = (1− pt) ·Wt−1 + pt · gt Ft = (1− pt) · Ft−1 + pt · g2t E [θ]t = E [θ]t−1 + η Wt√
Ft+ε

Non-VI

SGA - - E [θ]t = E [θ]t−1 + η gt
1

Momentum SGA St = β1 · St−1 + (1− β1) · gt - E [θ]t = E [θ]t−1 + η St
1

Adam Mt =
β1·Mt−1+(1−β1)·gt

1−βt
1

Vt =
β2·Vt−1+(1−β2)·g2t

1−βt
2

E [θ]t = E [θ]t−1 + η Mt√
Vt+ε

Fig. 1. Behavior of stepsizes using pt = (1 + t)−0.5

IV. PROPOSED INFERENCE OF PYPM

We are ready to perform PYPM inference on a dataset given
the expectation of all three posterior types (non-conjugate,
discrete, conjugate) can be solved. Essentially, we repeat the
estimation of all expectations using minibatch each iteration
till convergence or sufficient iterations has passed. First, we
turn to some formalities on PYPM and GGD. Second, we
discuss our proposed inference of PYPM.

A. Pitman-Yor Process

For the last decade, Dirichlet process Gaussian mixture
(DPM) has mainly found application in model selection of
classification datasets such as UCI, MNIST, text classification,
object recognition, scene recognition and etc. The model
selection aspect of DPM actually comes from Dirichlet process
while the distribution of each component of the mixture
comes from a Gaussian. Both Dirichlet process and Gaussian
mixture in DPM are assumed disjointed in VI. Another view

of Dirichlet process is to consider it as a specific case of the
Pitman-Yor process [26]. The latter can model additional tail
behavior of dataset over Dirichlet process. The Pitman-Yor
process is controlled by a two parameter Beta distribution
where the parameters are ak = 1− d and bk = α0 + kd for
0 ≤ d < 1

Beta(vk; ak, bk) ∝ v(ak−1)k (1− vk)(bk−1) (13)

If we set d = 0 in the above expression then Pitman-Yor
process reduces back to the Dirichlet process.

B. Generalized Gaussian Density

In GGD, cluster mean is denoted B = {Bk}Kk=1 ∈ RD
and we have two new hidden variables, shape and scale. They
are s = {sk}Kk=1 ∈ RD and ρ = {ρk}Kk=1 ∈ RD respectively.
Specific cases of GGD are the Gaussian PDF

(
s =
√
2, ρ = 2

)
and Laplacian PDF

(
s =
√
2, ρ = 1

)
. Although, the GGD can

be solved by the method of moments for s and ρ, there is
no closed-form parameter estimation for GGD when B is
non zero centered. In this work, we are only interested in
exploring a new non-conjugate form to replace GMM. Hence
for functionality, we limit our learning to B, while fixing the
parameters s, ρ. The GGD pdf is defined as follows

GGD(x|B, s, ρ) ∝ exp

(
−
∣∣∣∣x−Bs

∣∣∣∣ρ) (14)

C. PYPM

The joint probability of PYPM can be depicted as
p(x,B, z, v) = p(x | B, z)p(B)p(z | v)p(v). The observation
is denoted x = {xn}Nn=1 ∈ RD. The cluster assignment is
denoted z = {zn}Nn=1 where zn is a 1−of−K binary vector,
subjected to

∑K
k=1 znk = 1 and znk ∈ {0, 1}. We have earlier

summarized the distribution of each term in PYPM in (1).
Non-Conjugate Posterior: The stochastic learning of

PYPM is obtained by the proposed sVMM procedure for up-
dating the generalized Gaussian-Gaussian posterior, E [Bk]t =

E [Bk]t−1 + η Wt√
Ft

, whereby gt = 1
M

∑M
m=1∇Bk

ln q(Bk).



Algorithm 1 Proposed Inference of PYPM
a) Input: x← {minibatch}
b) Output: E [znk]
c) Initialization: E [znk] ,m0, α0, λ0, ak, bk,K
d) Repeat update until convergence,

1) non-conjugate posterior:

E [Bk]t = E [Bk]t−1 + η
Wt√
Ft

2) discrete posterior:

E [zn] = argmax
znk

ln q(zn)

3) conjugate posterior:

E [vk] ≈ v̂k

Due to requiring an initial or previous estimate, the non-
conjugate posterior’s gradient is computed as follows

∇Bk
ln q(Bk) =

ρ
s

∣∣∣xn−E[Bk]t−1

s

∣∣∣ρ−1 sgn(xn−E[Bk]t−1

s )E [znk]

−λ0(E [Bk]t−1 −B0)
(15)

Discrete Posterior: In VMM, we update the two condi-
tional density by running through all possible K states of zn
that maximizes the posterior as below

E [znk] = argmax
znk

E
Bk,vk

[ln p(xn | Bk, znk) + ln p(znk | vk)]

= argmax
znk

−
{∣∣∣xn−E[Bk]

s

∣∣∣ρ
+ lnE [vk] +

∑k−1
l=1 ln(1− E [vl])

}
znk

(16)
Conjugate Posterior: Using VMM, we apply the MAP

estiamte and re-arrange it to obtain a closed form for updating
the Multinomial-Beta posterior below

E [vk] =

∑N
n=1E [znk] + (ak − 1)∑N

n=1

∑K
j=k+1E [znj ] + (ak − 1) + (bk − 1)

(17)
We summarized our inference of PYPM in Algo. 1.

V. EXPERIMENTS

Proposed Variants: We consider three variants of proposed
method in Table IV-VIII as shown below.

1) (Gau: SGA) SGA using (4) for solving E [Bk]t,
with Gaussian case where s =

√
2, ρ = 2 in

GGD(B, s, ρ)
2) (Gau: AdaSGA) Using our adaptive stepsize in (8)

i.e. E [Bk]t = E [Bk]t−1 + η Wt√
Ft

with Gaussian
case as in variant 1.

3) (Lapl: AdaSGA) similar to variant 2 but now re-
peated with Laplacian case where s =

√
2, ρ = 1

in GGD(B, s, ρ)
Strong Baseline: We implemented a strong baseline “SVI:
DPM” to compare with our best proposed method. This

baseline is the Dirichlet process Gaussian mixture and is
also classified under BNP. It is implemented using the SVI
update in Table I, after obtaining the closed-form expectation
of posterior as found in [20]. The remainder of the DPM
algorithm is identical to the proposed DPM algorithm in [20],
but without the precision posterior. We ran at least 10 reruns
and took their average (the values inside the bracket is their
standard deviation).

Feature: DDPM-L and OnHGD are using the 128 di-
mensional SIFT features. For LDPO, the authors use 4096
dimensional AlexNet pretrained on ImageNet. DAEC, DC-
Kmeans, DC-GMM and DEC are end-to-end models that
rely on the pre-trained and fine-tuned encoder to perform
feature extraction. In comparison, we use the 512 dimensional
ResNet18 pretrained on ImageNet.

Truncation: For LDPO, DAEC, DC-Kmeans, DC-GMM,
DEC, DBC, it is fixed to the ground truth. For SVI: DPM
the truncation setting are identical to this work. Ground truth
refers to the number of classes per dataset. It ranges from
15 to 397 classes (or clusters in our case). For unsupervised
learning we do not require class labels for learning our models.
However, we require setting a truncation level (upper limit)
for each dataset as our model cannot start with an infinite
number of clusters in practice. We typically use a very large
truncation value (e.g. K = 1000 for SUN397) away from the
ground truth to demonstrate that our model is not dependent
on ground truth information.

Datasets: The datasets used in our experiments are detailed
in Table II. There are 3 scene and 2 digit classification datasets
in total. The largest dataset has about over 100K images,
smallest dataset is at over 4K. We split the datasets into train
and test partition.

Minibatch: For calculating our minibatch size, we approx-
imate it by M = sampleperclass ∗ (gnd.truth), where
sampleperclass is typically 20 or 30 (for the datasets in this
work) for sufficient statistics. In order to make the training
dataset unbiased, we further assume each set of minibatch
has sufficient sample draw from each class. This is necessary
as some dataset have classes with 8000 samples while other
classes have only 100 samples.

Evaluation Metric: We compare three criteria: i) Nor-
malized Mutual Information, iii) Accuracy and iv) Model
Selection. We use Normalized Mutual Information (NMI) and
Accuracy (ACC) to evaluate the learning performance of our
model. Model refers to the model selection estimated by each
approach. The definition for ACC and NMI are ACC =∑N

n=1 δ(gtn, map(mon))

N and NMI =
MUinfo(gt,mo)

max(H(gt),H(mo)) where
gt,mo,map, δ (· ) ,MUinfo, H refers to ground truth label,
model’s predicted label, permutation mapping function, delta
function, mutual information and entropy respectively. Delta
function is defined as δ(gt,mo) = 1 if gt = mo and equal 0
otherwise.

A. Comparison with Bayesian Nonparametrics

Bayesian nonparametrics (BNP): BNPs can perform clus-
tering and estimate the cluster number jointly. The work here



# Dataset Classes Train Test Trunc. Minibatch
Level Size

1 Scene15 15 750 3735 50 300
2 MIT67 37 3350 12,270 100 1340
3 SUN397 397 39,700 69,054 1000 11,910
4 MNIST 10 60,000 10,000 50 200
5 USPS 10 7,291 2,007 50 200

TABLE II
DATASETS (SCENE) FOR BAYESIAN NONPARAMETRICS

# Methods Year Feature Minibatch
1 Kmeans [27] 2017 AlexNet no
2 LDPO-A-FC [27] 2017 AlexNet no
3 OnHGD [28] 2016 SIFT yes
4 SVI: DPM [2] 2013 ResNet yes
5 DAEC [18] 2013 End-to-end yes
6 DC-Kmeans [15] 2017 End-to-end yes
7 DC-GMM [15] 2017 End-to-end yes
8 DEC [16] 2016 End-to-end yes
9 DBC [17] 2018 End-to-end yes

10 ClusterGAN [29] 2019 End-to-end yes
11 DASC [30] 2018 End-to-end yes

TABLE III
RECENTLY PUBLISHED METHODS USED IN THIS COMPARISON

solely consider the pursuit of advancing statistical model for
large scale datasets. The method are OnHGD (based on SVI)
[28] and our baseline method SVI: DPM. Our work is also
categorized under this area.

We compare our work with recent works citing the datasets
we use. First, we group the published methods using the
dataset in Table III. Next, we compare some of these published
methods (non end-to-end) with our proposed variants in Table
IV-VI. Also, we use 10 reruns for our proposed method
and took their average. We can achieve convergence on our
proposed variants with around 100 iterations.

1) Scene15: In Table IV, Gau: SGA is able to outperform
LDPO-A-FC and SVI: DPM. and Kmeans. When adaptive
stepsize is applied in Gau: AdaSGA, it further improves the
clustering and model selection result. Lapl: AdaSGA is unable
to significantly outperform Gau: AdaSGA for this dataset as
the sample size is quite small.

2) MIT67: To the best of our knowledge, it is very rare to
find recent deep clustering works (e.g. [15], [31]) addressing
datasets beyond 10 classes for image datasets. The main reason
we suspect is that most recent related works rely on end-to-
end learning (i.e. the encoder of the autoencoder) rather than
use an ImageNet pretrained CNN for feature extraction. It is
likely more difficult to train or finetune the encoder to be as
discriminative as ResNet especially when there is only about
200 samples per class for MIT67 in Table III.

In Table V, LDPO-A-FC is almost on par with its baseline
comparison using Kmeans on the larger MIT67 dataset at
ACC of 37.9% vs 35.6% respectively. Our baseline method
“SVI: DPM” using ResNet18 feature also perform better than
LDPO-A-FC at ACC of 61.21%. We outperformed the best
published method by almost double in performance using
“Lapl: AdaSGA” at ACC of 64.47%. We also notice that SVI:

DPM outperforms Gau: SGA and Gau: AdaSGA. We believe
SVI: DPM works better on larger dataset and the benefit of
using a closed form solution is definitely more robust than
a numerical approach such as SGA with all things being
equal. Fortunately, Lapl: AdaSGA turns the verdict around by
offering a more discriminative model that surpasses Gaussian
for this dataset. The stronger model and the adaptive stepsize
both attribute to the best performance of Lapl: AdaSGA on
MIT67.

3) SUN397: In Table VI, OnHGD applies SVI [2] (“On”
for online) to their BNP model HGD. They use OnHGD to
learn a Bag-of-Words representation for SUN397. It appears
they then use a supervised learner such as Bayes’s decision
rule for classification. No model selection was mentioned for
SUN397 either. For SUN397, the ACC reported in OnHGD
was 26.52% on SUN397. Although this is not a direct com-
parison, the same authors also reported an ACC of 67.34% for
SUN16. In comparison, we obtained 83.37% on Scene15.

Our baseline “SVI: DPM” was able to get 39.07% on ACC
compared to OnHGD of 26.52%. Both Gau: SGA and Gau:
AdaSGA are performing worse that SVI: DPM. This is another
evidence that SGA is inferior to SVI. Adaptive stepsize can
help reduce the gap. Our best result is “Lapl: AdaSGA” which
was able to slightly improve the results to 40.39% on the same
dataset. The saving grace most likely being the discriminative
power of the Laplacian mixture model.

Although not shown, the convergence of “Lapl: AdaSGA” is
much slower for this particular dataset. Due to computational
budget, we did not further check if better ACC can be obtained
beyond 200 iterations using Algo 1. Also, our implementation
for “SVI: DPM” faced some cluster singularity issue (cluster
disappearing) when given too many iterations for SUN397.
We had to stop iterations after around 15 or 20 as the cluster
count may fall below 397.

B. Comparison with Deep Clustering

Deep clustering: A hybrid between neural network and
statistical clustering, these works perform clustering in the
feature space of the neural network, most of the works using
autoencoder or GAN. These methods are DAEC [18], DC-
Kmeans [15], DC-GMM [15], DEC [16], DBC [17] LDPO
[27], DASC [30] and ClusterGAN [29]. Furthermore in these
works, the clustering information further optimize the weights
update in the hidden layers. However, the statistical clustering
employed here are typically the fundamentals ones such as
Kmeans or GMM.

1) MNIST: Most recent end-to-end clustering algorithms
focus on digit recognition (i.e. MNIST and USPS) for exper-
iments. Compared to MIT67 and SUN397, MNIST is a much
easier dataset since the number of classes is mediocre (10
classes) and there is a large number of training images at 60k.

In Table VII, all the end-to-end methods (DAEC, DC-
Kmeans/GMM, DEC, DBC) train a deep encoder (e.g. x-
500-500-2000-10) as feature extractor. In comparison, we
use ResNet feature directly as input to “SVI: DPM” and
“Lapl: AdaSGA”. Table VII shows the comparison between



NMI ACC Model
Kmeans [27] 0.659 0.65 -

LDPO-A-FC [27] 0.705 0.731 -
SVI: DPM (baseline) 0.7877 0.7659 -

Gau: SGA (ours) 0.80333 0.81901 22
Gau: AdaSGA (ours) 0.81201 0.83614 21
Lapl: AdaSGA (ours) 0.8165 0.8337 21

TABLE IV
PERFORMANCE ON SCENE15

NMI ACC Model
Kmeans [27] 0.386 0.356 -

LDPO-A-FC [27] 0.389 0.379 -
SVI: DPM (baseline) 0.6858 0.6121 -

Gau: SGA (ours) 0.66106 0.56496 78
Gau: AdaSGA (ours) 0.68546 0.60244 78
Lapl: AdaSGA (ours) 0.7081 0.6447 78

TABLE V
PERFORMANCE ON MIT67

NMI ACC Model
OnHGD [28] - 0.2652 -

SVI: DPM (baseline) 0.596 0.3907 -
Gau: SGA (ours) 0.5281 0.2612 489

Gau: AdaSGA (ours) 0.58226 0.34798 513
Lapl: AdaSGA (ours) 0.6022 0.4039 487

TABLE VI
PERFORMANCE ON SUN397

the published methods and ours on MNIST. For our best
approach, “Lapl: AdaSGA”, we are able to outperform our
strong baseline “SVI: DPM” as well as obtain comparable
ACC and NMI to the best published result by DBC or
ClusterGAN.

2) USPS: In Table VIII, all the end-to-end methods
(DAEC, DC-Kmeans, DEC, DBC) similarly trains a deep
encoder as feature extractor. In comparison, K-means [15]
using raw image pixel obtains 45.85% on ACC. For this
particular dataset, we only use raw image pixel as direct input
to both to “SVI: DPM” and “Gau: AdaSGA”. Our best result
using “Gau: AdaSGA” consistently outperformed all published
result and strong baseline again on USPS at 80.10% on ACC.
Our baseline is close behind at 77.63% on ACC. The best
published method DBC obtained 74.3% but it outperforms our
NMI measure. We believe the reason why most end-to-end
methods cannot perform better than our methods on USPS
even though they are using deep encoder features while we
use pixel intensity is partly due to the comparatively small
training size at 7K compared to say 60K on MNIST.

VI. CONCLUSION

The stochastic optimization of VI can be broadly cate-
gorized under two types. The first approach formulates the
learning of the posterior using SGA while the second approach
rely on traditional closed-form learning. In literature, the first
approach require generating Monte Carlo sample from the
variational posteriors, which is not practical for large datasets
such as SUN397. The second approach suffers from the

Methods NMI ACC
DAEC [18] 0.6615 0.734

DC-Kmeans [15] 0.7448 0.7448
DC-GMM [15] 0.8318 0.8555

DEC [16] 0.8273 0.8496
DBC [17] 0.917 0.964

ClusterGAN [29] 0.890 0.950
DASC [30] 0.780 0.804

SVI: DPM (baseline) 0.9233 0.9348
Lapl: AdaSGA (ours) 0.9517 0.9580

TABLE VII
COMPARISON ON MNIST

Methods NMI ACC
K-means [15] 0.4503 0.4585
DAEC [18] 0.5449 0.6111

DC-Kmeans [15] 0.5737 0.6442
DEC [16] 0.651 0.6246
DBC [17] 0.724 0.743

SVI: DPM (baseline) 0.6223 0.7763
Gau: AdaSGA (ours) 0.6507 0.8010

TABLE VIII
COMPARISON ON USPS

constraint of requiring analytical solution for the variational
posterior expectation but has reported the capability to scale
up to 3.8M samples and 200 classes. In this paper, we target
up to about 100K samples and 400 classes using ResNet
feature pretrained on ImageNet. We try to improve on the
problems faced in both approaches. We first began with the
constant stepsize SGA approach and in order to make it
computationally efficient, we further stochastic optimization
for VI. Stochastic optimization rely on decreasing step-size for
guaranteed convergence. Inspired by Adam, we explored using
first and second order moments of the gradient so as to achieve
a faster convergence. We test our new stochastic learner on the
Pitman-Yor process generalized Gaussian mixture which does
not have closed-form learning for the posterior for specific
case of Laplacian and Gaussian. We showed the significant
performance gained in terms of NMI, ACC, model selection
on large class number datasets such as the MIT67 and SUN397
and on MNIST and USPS with recent end-to-end deep learning
related works.
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