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Abstract—Heterogeneous Information Networks (HINs) are
prevalent in our daily life, such as social networks and bibliogra-
phy networks, which contain multiple types of nodes and links.
Heterogeneous information network embedding is an effective
HIN analysis method, it aims at projecting network elements into
a lower-dimensional vector space for further machine learning re-
lated evaluations, such as node classification, node clustering, and
so on. However, existing HIN embedding methods mainly focus on
extracting the semantic-related information or close neighboring
relations, while the high-level proximity of the network is also im-
portant but not preserved. To address the problem, in this paper
we propose CGAT, a semi-supervised heterogeneous information
network embedding method. We optimize the graph attention
network by adding additional convolution layers, thereby we
can extract multiple types of semantics and preserve high-level
information in HIN embedding at the same time. Also, we utilize
label information in HINs for semi-supervised training to better
obtain the model parameters and HIN embeddings. Experimental
results on real-world datasets demonstrate the effectiveness and
efficiency of the proposed model.

Index Terms—Social Networks, Network Embedding, Graph
Neural Networks, Graph Analysis

I. INTRODUCTION

In our daily life, most information networks contain multiple
types of nodes and links, these networks are defined as
Heterogeneous Information Networks (HINs). For example,
the bibliography network can be modeled as a HIN containing
four types of nodes: paper, author, venue, term, and three
types of relations including write(author-paper), publish(paper-
venue), and contain(paper-term). Compared to homogeneous
networks with single-typed nodes and links, HINs contain
richer semantic information and can better describe real-world
systems. Therefore, it is of great significance to effectively
extract and represent the information in HINs.

Network embedding, also known as network representation
learning, is an emerging network analysis method which aims
at projecting network elements into a lower-dimensional vector
space while preserving the properties of the original network.
The embedded vectors can be further utilized for machine-
learning-related tasks, such as node classification [1], [2],
community detection [3], [4], link prediction [5], [6], and so
on. Existing network embedding methods including DeepWalk
[7], LINE [8], and node2vec [9], are mostly designed for
homogeneous networks, which will lose information if directly

applied on HINs. The problem of HIN embedding is chal-
lenging due to the following two reasons: 1) the embedding
of network elements should preserve not only the topological
information but also the heterogeneity of nodes and links; 2)
the various latent semantics and high-level proximity in HINs
should also be considered.

Recently some HIN embedding methods are proposed,
including metapath2vec [10] and HIN2VEC [11] which uti-
lize shallow neural networks, as well as deep learning-based
methods such as BL-MNE [12]. These methods either only
focus on preserving certain semantics in HINs or concentrate
on local network structures within limited hops of neighbors.
In other words, the goal of the above-mentioned methods is
to embed nodes with similar semantics or close neighboring
relations (i.e. first-order and second-order neighbors) into
nearby vectors. However, nodes in distant neighborhoods can
also have similar embeddings, which indicates that high-level
proximity should also be considered in the HIN embedding
learning process. Besides, these methods are unsupervised,
while nodes labels are usually available as support information
in HINs, hence it is beneficial to include label information
in the learning process. Therefore, efficient semi-supervised
methods for analyzing and extracting the latent knowledge in
HINs are highly desired.

Graph Neural Networks (GNNs) is a powerful tool for
representation learning on graphs, which employ deep neural
networks to aggregate feature information of neighboring
nodes, and are shown to be effective in various network
analysis tasks, such as network embedding [13], [13], graph
classification [14], [15], and so on. Current models include
GCN [16] and GAT [17], which utilized node attributes and
can well preserve local structures. However, there are two
limitations of existing GNN models. First, most GNN models
are designed for homogeneous graphs which include only one
type of node and edge, thus they cannot be directly applied
to HINs. Second, although some GNN models for HINs are
proposed lately, such as HAN [18] and HetGNN [19]. HAN
converts the HIN into meta-path-based homogeneous networks
with same-typed nodes, thus has limitations when embeddings
of different types of nodes in HINs are required. HetGNN
can learn embeddings of different types of nodes, however, it
adopted a sampling-based and fixed-length neighborhood se-
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lection mechanism, which may cause information loss among
neighbors.

In this paper, we propose a novel heterogeneous information
network embedding model named CGAT. To effectively pre-
serve the structural topology and semantic properties of HINs,
we adopt multiple meta-paths based information sampling and
pre-training process. Besides, to effectively assemble multiple
semantic information from different meta-paths, we employ
a 1d-convolution layer. After that, an optimized graph atten-
tion network is proposed which can preserve the high-level
proximity of HINs with the feature aggregation mechanism of
graph attention networks.

In conclusion, the main contributions of this paper can be
summarized as follows:
• We propose an effective HIN embedding method which

utilizes multiple meta-paths based sampling processes to
preserve different semantics.

• We propose an optimized graph attention network model
that adopts a 1d-convolution layer for multi-semantic as-
sembling and employs the feature aggregation mechanism
for high-level proximity learning.

• We conduct experiments on two real-world datasets and
test the model with three network mining tasks to evaluate
model performance.

The remainder of this paper is organized as follows. We
first provide the preliminary concepts in Sec. II. In Sec. III,
we introduce the proposed model in detail. Experimental
results and analysis are presented in Sec. IV. Then we review
the related works in Sec. V. Finally, we conclude the paper
and vision the future work in Sec. VI.

II. PROBLEM DEFINITION

A heterogeneous information network is defined as a graph
G = (V, E) with a node mapping function φ : V → A, and
a link mapping function ψ : E → R, where V and E denote
nodes and links in G, A and R denote the sets of node types
and link types, and |A|+ |R| > 2.

In a HIN, the semantic information shows the composite
relationships between given nodes, which is usually revealed
by meta-paths [20].A meta-path ρ is defined as a specific
sequence of node types a1, a2, . . . , an and/or edge types
r1, r2, . . . , rn−1:

ρ = a1
r1→ . . . ai

ri→ . . .
rn−1→ an

In Fig. 1(a) we present an example of a bibliography
network which consists of four node types as Author(A),
Paper(P), Venue(V), and Term(T), and three link types as
write (A-P), publish (P-V), and contain (P-T). Take the meta-
path Author-Paper-Author(APA) for example, it denotes two
authors collaborating on the same paper, and a1 − p1 − a2 is
a meta-path instance of the meta-path APA. Fig. 1(b) shows
a list of possible meta-paths.

The goal of HIN embedding in this paper is to learn a
mapping function f : V → Rd that projects each node v ∈ V
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Fig. 1. An illustrative example of a bibliography network and meta-paths.

to a vector in a d-dimensional space Rd, where d � |V|,
meanwhile preserving the structural property as well as seman-
tics and high-level proximity in the original HIN. The learned
representation can benefit downstream network data mining
tasks, such as node classification, network visualization, etc.
To solve the above-mentioned problem, a task-specific learning
framework is proposed, which we will introduce in detail in
the next section.

III. THE PROPOSED METHOD.

To address the problem of HIN embedding, we propose
a model named Convolutional Graph Attention Networks
(CGAT). The overall framework of the proposed model is
shown in Fig. 2. CGAT includes three components: (i) meta-
path-based sampling and pre-training, (ii) multi-semantic as-
sembling with 1d-convolution, and (iii) semi-supervised learn-
ing with graph attention network. We will dilate upon the
details of each component as follows.

A. Meta-path-based Sampling and Pre-training

To extract the semantic-related information in HINs, we
employ multiple meta-paths based random walks to capture
rich semantic information and structural correlations between
different types of nodes.

Specifically, given a HIN G = (V, E) and a meta-path
scheme set P , we can obtain a set of meta-path constrained
random walk sequences {vti}Pl

, where vi ∈ V , t ∈ A denotes
node type, and l ∈ [0, |P|). In practice, the meta-paths are
usually set to be symmetric so that the walk can be recursively
guided for sufficient sampling in long distances.

After the meta-path based walk sequences are obtained, for
each type of meta-path scheme Pl, a heterogeneous Skip-Gram
model is adopted to learn the node embeddings by maximizing
the overall conditional probabilities of the context appearance
with given central nodes, that is:

argmax
θ

∏
v∈V

∏
c∈N (v)

p (c|v; θ) (1)

where N (v) is the neighborhood of node v, p (c|v; θ) repre-
sents the conditional probability, and θ is the model parameter.
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Fig. 2. The overall framework of the proposed CGAT model.

Considering different node types, we can reformulate the
objective function in (1) as:

argmax
θ

∑
v∈V

∑
t∈A

∑
ct∈Nt(v)

log p (ct|v; θ) (2)

where Nt (v) represents the neighborhood of node v with type
t. According to literature [21], p (ct|v; θ) is usually defined as
a softmax function:

p (ct|v; θ) =
eXct ·Xv∑

ut∈Vt e
Xut ·Xv

(3)

where Xv is the embedding vector of node v, Vt is the node
set of type t .

In order to calculate (3) efficiently, negative sampling [21]
is introduced. Given negative sample size M , the objective
function in (2) is reformulated as:

O (X) = log σ (Xct ·Xv)+

M∑
m=1

Eum
t ∼Pt(ut)

[
log σ

(
−Xum

t
·Xv

)]
(4)

where σ (x) =
1

1 + e−x
, and Pt(ut) is the negative sample

distribution, from which a negative node umt of type t is
sampled for M times.The network embedding X(l) of meta-
path Pl is then optimized by using stochastic gradient descent
algorithm.

B. Multi-Semantic Assembling with 1d-Convolution

For meta-path set P = {P1,P2, ...,Pl, ...,PL}, we re-
peat the heterogeneous embedding training process to obtain
the pre-trained network embeddings with different meta-path
based semantics, i.e.

{
X(1), X(2), ..., X(l), ..., X(L)

}
, where

X(l) ∈ RN×d, N is the number of nodes, and d is the

embedding dimension. We then concatenate the embeddings
as follows:

X = concat(X(1), X(2), ..., X(l), ..., X(L)) ∈ RN×d×L (5)

In order to assemble the semantic information of each meta-
path, we designed a 1d-convolution kernel τ ∈ RL, each
dimension in τ can be seen as the weight of the corresponding
semantic embedding in X.

For each node vi ∈ V , the assembled embedding hi is
defined as:

hi = τ ∗ xi ∈ Rd (6)

where the ∗ operator denotes convolution operation, xi ∈ X
is the concatenated embedding of node vi, and the k-th
dimension in hi can be calculated as follows:

hi(k) =
L∑
j=1

τ(j)xi(k, j) (7)

The convolution process is illustrated in Fig. 3, where three
meta-path-related embeddings are concatenated and assembled
via the convolution kernel τ . In practice, the values in τ can
be seen as the shared model parameters in a CNN layer,
hence they can be learned by jointly training a CNN layer and
succeeding graph attention network, which will be elaborated
in the next subsection.

C. Semi-supervised Learning with Graph Attention Network

After obtaining the multi-semantic assembled embedding
hi for node vi, we employ graph attention network to per-
form feature transmission and aggregation among neighboring
nodes.
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Fig. 3. The illustration of multi-semantic assembling of node vi via 1d-
convolution and succeeding graph attention layer. Same colors in the convo-
lution layer indicate shared weights.

The graph attention network consists of two graph attention
layers, and each graph attention layer contains an input layer,
a hidden layer, and an output layer.

Firstly, the input layer performs a linear transformation on
the assembled embedding hi, i.e.:

zi =W (l)hi (8)

where W (l) is the weight matrix of the l-th input layer.
After the linear transformation, a pair-wise attention score

between vi and its neighbor vj is calculated:

eij = LeakyReLU
(
~aT (zi||zj)

)
(9)

where || denotes concatenation, and ~a is a learnable weight
vector.

To normalize (9), a softmax function is applied on each
node’s in-coming edges:

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

(10)

where Ni is the set of node vi’s one-hop neighbors, including
itself.

The above calculation process is shown in Fig. 3, where
the 1d-convolution is applied before the linear operation with
a learnable kernel τ , and the attention parameters are then
calculated among all neighbors of the central node and for
each node in the network.

Then, in the output layer, a non-linear function σ is per-
formed to generate the embedding of node vi:

h′i = σ

 ∑
j∈N (i)

αijzj

 (11)

For model stabilization, multi-head attention mechanism is
adopted by concatenating the embeddings from K independent
self-attention processes:

h′i = ||Kk=1σ

 ∑
j∈N (i)

αkijz
k
j

 (12)

In this way, the node features are transmitted and aggregated
on the central node. After several iterations, the node features
will be transmitted to farther neighborhoods.

Finally, with node labels as support information, the model
is trained in a semi-supervised way to obtain hyper-parameters.
For example, in node classification task, we try to minimize
the cross entropy loss between the predictions and the ground
truth, the loss function is:

L = −
N∑
i=1

yi log

(
eh′i∑
j e

h′j

)
(13)

where yi is the label of node i. The network embeddings
can then be extracted from the last output layer and used for
succeeding network analytical tasks.

The algorithm of CGAT is presented in Algorithm 1 below.

Algorithm 1 CGAT
Input: Heterogeneous information network G = (V, E),

number of nodes N , number of walks w, walk length l, meta-
path set P , number of negative samples m, window size q,
label set Y , number of attention heads a, number of training
epochs k, convolution kernel τ , train data proportion p
Output: Network embedding X
1: Initialize X, τ
2: for i← 1 to |P| do
3: for j ← 1 to N do
4: Mj ← MetaPathRandomWalk(G,Pi, vj , l, w)
5: end for
6: Mi ← concat(M1,M2, ...,MN )
7: Xi ←EmbeddingPreTraining(X,Mi,m, q)(Eq.(4))
8: end for
9: X← concat(X1, X2, ..., X|P|)

10: for epoch← 0 to k do
11: H← conv1d(X, τ) (Eq.(6))
12: X← GAT(G,H, Y, a, τ, p) (Eq.(8) ∼ (13))
13: end for
14: return X

IV. EXPERIMENTS.
A. Datasets

We conduct experiments on two publicly-available HIN
datasets: DBLP and ACM. The statistics of the two datasets
are summarized in Table I, and the details are listed as follows.
• DBLP1. A computer science bibliography network which

contains 14375 papers (P), 14475 authors (A), 20 venues
(V), and 8811 terms (T). The authors, papers, confer-
ences are divided into four areas: database, data mining,
machine learning, and information retrieval. Three meta-
paths, i.e. APA, APVPA, and APTPA are employed for
the experiments.

• ACM2. A bibliography network consists of 12239 papers
(P), 17423 authors (A), 13 venues (V), and 767 terms

1https://dblp.uni-trier.de/
2http://dl.acm.org/



TABLE I
STATISTICS OF THE DATASETS.

Dataset Relations(A-B) Number of A Number of B Number of A-B Ave.Degrees of A Ave.Degrees of B Meta-paths

DBLP
Paper-Author 14375 14475 41794 2.91 2.89 APA
Paper-Venue 14375 20 14375 1.00 718.75 APVPA
Paper-Term 14375 8811 88683 6.17 10.07 APTPA

ACM

Paper-Author 12239 17423 37038 3.03 2.13 APA
Paper-Conf 12239 13 12239 1.00 941.46 APCPA
Paper-Term 12239 767 182094 14.88 237.41 APTPA

(T) and the papers are matched to one of eleven labels
according to its research area. Three meta-paths, i.e. APA,
APVPA, and APTPA are employed for the experiments.

The network schema and meta-path selections for DBLP
and ACM are the same as the HIN example shown in Fig. 1
3.

B. Baseline Methods

We compare CGAT against the following network embed-
ding methods which can be divided into three groups:

a) Homogeneous Network Embedding Methods::
• DeepWalk [7]: A classic random walk based homoge-

neous network embedding method. Here we run Deep-
Walk on the whole network ignoring the different node
types.

• LINE [8]: An edge modeling based homogeneous net-
work embedding method which directly learn vertex
representations from vertex-vertex connections. We also
run LINE on the whole network ignoring the different
node types.
b) HIN Embedding Methods::

• metapath2vec [10]: A heterogeneous network embed-
ding method which adopts meta-paths and heterogeneous
Skip-Gram to learn network semantic features. It can
only learn one type of semantics at a time, and only
produce node embeddings of certain node types which
are included in the meta-paths.

• HIN2VEC [11]: A shallow neural network-based em-
bedding method for HINs. It consists of a single-layer
neural network to learn network embedding via binary
classification on link types.
c) Semi-supervised Learning Method::

• GCN [16]: Graph convolutional network, a semi-
supervised deep neural network model for graphs which
requires node features as input. Here we initialize node
features with attribute information of the network. For
node type ”P”, we use paper abstract as node feature, for
node type ”A”, we use the abstracts of papers linked to
the author as node feature, and for node type ”C”, we
use the conference descriptions from the website as node

3the term ”Venue” in DBLP and ”Conf” in ACM refer to the same concept
in which papers are published, hence we think the two networks share the
same network schema.

feature. We run GCN on the whole network ignoring the
different node types.

• GAT [17]: Graph attention network, a semi-supervised
deep neural network model for graphs which requires
node features as input. we initialize node features the
same way as described in GCN. We also run GAT on the
whole network ignoring the different node types.
The experiments of GCN and GAT are conducted based
on the Deep Graph Library (DGL)4.

C. Parameter Settings

For methods containing random walks and negative sam-
pling, including DeepWalk, metapath2vec, and HIN2VEC, the
walk length is set to 50, and the walks are repeated 50 times
per node, the window size and number of negative samples per
node are set to 7 and 5, respectively. The embedding size for
all baselines is set to 128. For LINE, first-order and second-
order proximity is used, and the starting value of learning rate
is 0.025; for metapath2vec, the meta-path schema is set as
”APVPA” for DBLP, and ”APCPA” for ACM. The parameters
in GAT are set the same as the proposed model below.

For the proposed model, the embedding size of the hetero-
geneity embedding training module is set to 128. For the graph
attention network module, the number of attention heads is set
to 16, and the number of hidden units is set to 8. For the output
layer, the network embedding is set as the concatenation of all
attention heads. Leaky ReLU is employed as the non-linear
activation function across all layers with a negative slope of
0.25. For each dataset, we split the set of nodes with ground-
truth labels into train set (60%), validation set (10%), and test
set (30%). The learning rate is 0.005 and we train both datasets
for 200 epochs. To test model generalization capability, the
nodes in test set are used for succeeding evaluations.

D. Node Classification

We first evaluate the effectiveness of our proposed method
on multi-class node classification task. For a fair comparison,
we adopt a logistic regression classifier with stochastic average
gradient descent for all methods. We train the classifier with
different ratios of labeled data ranging from 20% to 80%. For
each training ratio, we randomly split train and test set and
repeat the training process 10 times. The average F1-macro
and F1-micro scores on two datasets are displayed in Table II.

4https://github.com/dmlc/dgl



TABLE II
NODE CLASSIFICATION RESULT ON DBLP AND ACM DATASETS

Dataset Metric Train ratio DeepWalk LINE metapath2vec HIN2VEC GCN GAT CGAT

DBLP

F1-macro

20% 0.9123 0.8894 0.9317 0.9196 0.7930 0.8539 0.9352
40% 0.9215 0.8952 0.9333 0.9286 0.8649 0.8471 0.9378
60% 0.9243 0.8989 0.9345 0.9320 0.8300 0.8604 0.9384
80% 0.9273 0.9010 0.9322 0.9364 0.8618 0.7042 0.9405

F1-micro

20% 0.9179 0.8975 0.9358 0.9246 0.8125 0.8593 0.9389
40% 0.9266 0.9027 0.9370 0.9330 0.8737 0.8650 0.9415
60% 0.9294 0.9061 0.9382 0.9361 0.8918 0.9201 0.9415
80% 0.9322 0.9091 0.9363 0.9406 0.8710 0.9412 0.9438

ACM

F1-macro

20% 0.3160 0.3001 0.3342 0.3179 0.3266 0.3205 0.3422
40% 0.3303 0.3151 0.3397 0.3331 0.3254 0.3348 0.3468
60% 0.3345 0.3174 0.3424 0.3422 0.3311 0.3463 0.3480
80% 0.3285 0.3284 0.3400 0.3516 0.3181 0.3136 0.3525

F1-micro

20% 0.7095 0.7045 0.7408 0.7127 0.7243 0.7279 0.7517
40% 0.7221 0.7148 0.7492 0.7285 0.7287 0.7367 0.7567
60% 0.7284 0.7203 0.7497 0.7335 0.7392 0.7503 0.7583
80% 0.7236 0.7322 0.7504 0.7393 0.7163 0.7123 0.7642

From the results, we can observe that the proposed CGAT
model exhibits the best performance among the baselines.
For DBLP, heterogeneous network embedding methods, i.e.,
metapath2vec and HIN2VEC, are superior to homogeneous
network embedding methods, i.e., DeepWalk, LINE, GCN and
GAT. CGAT performs better than all the other baselines. For
ACM, CGAT still achieves the best results. HIN2VEC and
metapath2vec are more effective compared to other baselines
but still outperformed by CGAT. For both datasets, the per-
formance of GCN and GAT are the worst among all methods,
which shows that the two models can not perform well on
HINs even with appropriate initial node features. It is notable
that for ACM, the F1-macro values are much lower than F1-
micro values, which is possible because ACM dataset has a
larger label space than DBLP, and some labels didn’t appear
in prediction during testing, which results in zeroes when
calculating F1-macro with the same averaging number, hence
the F1-macro values become lower for all methods.

E. Node Clustering

We then perform node clustering task on the network
embeddings, where KMeans is employed as the clustering
algorithm. The quality of clustering is evaluated with Adjusted
Rand Index (ARI) and Normalized Mutual Information (NMI),
and the clustering quality is better when both metrics are
higher. The results are displayed in Table III.

The results indicate that the proposed CGAT model yields
the best clustering results on both datasets. Also, We can
observe that DeepWalk and metapath2vec perform relatively
better than other baselines. While HIN2VEC, GCN, and GAT
produce the worst clustering performance.

F. Network Visualization

To evaluate the ability of CGAT in generating comprehen-
sible results, we conduct network visualization experiments
using the t-SNE [22] model to map high-dimensional node

TABLE III
NODE CLUSTERING RESULTS ON TWO DATASETS

Dataset Method ARI NMI

DBLP

DeepWalk 0.7335 0.6998
LINE 0.1631 0.2131
metapath2vec 0.7497 0.7049
HIN2VEC 0.0054 0.0083
GCN 0.0164 0.1263
GAT -0.0002 0.0336
CGAT 0.7618 0.7208

ACM

DeepWalk 0.1724 0.2618
LINE 0.1335 0.2247
metapath2vec 0.1804 0.2791
HIN2VEC 0.1166 0.2063
GCN 0.0162 0.0202
GAT -0.0455 0.0391
CGAT 0.1882 0.2841

representations into a 2D space. The 2D representation results
on DBLP are shown in Fig. 4, where colors indicate different
classes.

From the results, we can observe that GAT performs the
worst which cannot separate nodes with different labels well.
GCN also has similar visualization performance as GAT, hence
we do not include it here. DeepWalk, LINE, and HIN2VEC
perform better than GAT, yet they still have unclear bounds
for the four classes. Metapath2vec can differentiate the classes
well, but still, some nodes are mixing in the center. It is shown
that our proposed CGAT model can distinguish different
nodes with minimum overlay in boundaries, hence our model
can be applied to visualization-related tasks with satisfying
performance.

G. Parameter Sensitivity

We further analyze the parameter sensitivity of CGAT on the
following parameters: (1) the embedding dimension; (2) the
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Fig. 4. The t-SNE 2D representations on DBLP.

number of graph attention heads; (3) the number of training
epochs; (4) the labeled data proportion for semi-supervised
training. The results are depicted in Fig. 5.
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Fig. 5. Parameter sensitivity analysis of CGAT model.

It can be observed that, with the embedding dimension
changes from 64 to 192, the performance fluctuates for both
datasets, and the embedding dimension of 128 yields the high-
est F1-micro values. Besides, when the number of attention
heads increases from 4 to 64, the F1-micro values in both
datasets first increase then decrease, indicating that the model
with 16 attention heads produces the best performance. For
the number of training epochs, it shows that for DBLP, when
the training epoch increases, the F1-micro values also increase
a little, but without too much improvement. For ACM, at first,
when the number of training epochs increases from 50 to 100,
the performance drastically improves, and when the number

of training epochs increases from 100 to 250, the performance
stays nearly unchanged. This implies that for different datasets,
the number of epochs for the model to convergence is different.
Lastly, we evaluate the influence of the amount of labeled data
from 30% to 70%. It can be observed that with more data
used for training, the model performance improves for both
datasets.

V. RELATED WORKS.

A. Homogeneous network embedding

Over the past few years, a significant amount of progress
has been made towards homogeneous network embedding
[23]. For instance, DeepWalk [7] considers nodes as words
and uses truncated random walk sequences to learn network
embeddings. Similarly, node2vec [9] extends DeepWalk by
adopting biased random walk. LINE [8] proposes an edge
modeling based method and directly learns node represen-
tations from linking relations. To learn highly non-linear
network properties, SDNE [24] and DNGR [25] utilize deep
auto-encoders to learn latent node representations.

B. Heterogeneous information network embedding

Recently, some embedding models on heterogeneous in-
formation networks are also proposed. Metapath2vec [10]
extends the random walk process to meta-path based sampling
and heterogeneous skip-gram model. HIN2VEC [11] utilizes
shallow neural networks to capture semantic information in
HINs. BL-MNE [12] adopts deep auto-encoders to learn dif-
ferent semantic features under different meta-paths. To sum up,
these methods either only focus on specific meta-path-related
semantics or neglecting the high-level proximity information
in HINs. Besides, they all work in an unsupervised way
without utilizing the label information in HINs.

C. Graph neural networks

Graph Neural Networks (GNN) are semi-supervised learn-
ing models that exhibit outstanding performance in graph-
related tasks, such as graph embedding, graph classification,
and so on [26], [27]. State-of-the-art GNN models include
Graph Convolutional Networks (GCN) [16] which employs
neighborhood aggregation and utilizes multiple depths of the
model to capture high-order information. GraphSAGE [28]
samples a node’s local k-hop neighborhood with fixed size
and derives the central node’s final state by aggregating its
neighbors’ features. FastGCN [29] further improves the per-
formance of GraphSAGE with importance sampling to make
the model more efficient. To conclude, although the GNN
models mentioned above have achieved remarkable results
in network analytical tasks, they are designed for attributed
homogeneous networks and cannot be directly applied to
HINs. Recently some GNN models for HIN embedding are
also proposed. For example, HAN [18] incorporate semantic-
level attention and node-level attention mechanism to learn
node embeddings in HINs. M-HIN [30] utilizes nodes and
metagraphs between them to construct HIN triplets, and apply
the Hadamard function to describe the relationship between



nodes and metagraphs. HetGNN [19] proposes an unsuper-
vised model that samples a fixed length of heterogeneous
neighbors and performs type-based neighbors aggregation, and
heterogeneous types combination to learns node embeddings.

VI. CONCLUSION AND FUTURE WORK.
In this paper, we propose CGAT, a HIN embedding model

which aims at preserving rich semantics and high-level prox-
imity in HINs. By utilizing 1d-convolution for multi-semantic
assembling and optimized graph attention network for infor-
mation aggregation and semi-supervised learning, the model
is capable of preserving rich semantic information as well
as high-level proximity in HINs, which has not been jointly
considered before. Our model achieves satisfying results in
two real-world HIN datasets on three network analysis tasks,
which demonstrates its effectiveness. In the future, we hope to
tackle the problem of embedding learning on HINs with richer
side information, such as HINs with both node attributes and
link attributes, and develop effective learning methods to better
analyze and discover latent knowledge in HINs.
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