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Abstract—This work presents a Long Short-Term Memory
(LSTM) network for forecasting a monthly electricity demand
time series with a one-year horizon. The novelty of this work is
the use of pattern representation of the seasonal time series as
an alternative to decomposition. Pattern representation simplifies
the complex nonlinear and nonstationary time series, filtering
out the trend and equalizing variance. Two types of patterns are
defined: x-pattern and y-pattern. The former requires additional
forecasting for the coding variables. The latter determines the
coding variables from the process history. A hybrid approach
based on x-patterns turned out to be more accurate than
the standard LSTM approach based on a raw time series.
In this combined approach an x-pattern is forecasted using a
sequence-to-sequence LSTM network and the coding variables
are forecasted using exponential smoothing. A simulation study
performed on the monthly electricity demand time series for
35 European countries confirmed the high performance of the
proposed model and its competitiveness to classical models such
as ARIMA and exponential smoothing as well as the MLP neural
network model.

Index Terms—pattern-based forecasting, mid-term load fore-
casting, Long Short-Term Memory

I. INTRODUCTION

The power system load is characterized as a nonlinear and
nonstationary process that can undergo rapid changes due to
several factors such as weather, variability of seasons, macroe-
conomic variations, electricity prices, geographical conditions,
and consumer types and their habits. Due to the lack of
large-scale energy storage technologies available, the power
system should ensure a supply of electricity at any time to
cover current demand. Therefore, load or electricity demand
forecasting is an essential tool for power system operation
and planning. Mid-term electrical load forecasting (MTLF)
involves forecasting the daily peak load for following months
as well as monthly electricity demand. The latter problem is
the subject of this work.

MTLF is necessary for maintenance scheduling, hydro-
thermal coordination, planing of fuel reserve and energy im-
port/export, and also security assessment. Deregulated power
systems need MTLF to be able to negotiate forward con-
tracts. Therefore, the forecast accuracy translates directly into
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financial performance for energy market participants. All these
important reasons explain why new forecasting tools for MLTF
are still being developed. They can be roughly divided into a
conditional modeling approach and an autonomous modeling
approach [1]. The former approach focuses on economic
analysis and long-term planning and forecasting of energy
policy. Many input variables are taken into account describing
socio-economic conditions, population migrations and power
system and network infrastructure. Examples of the condi-
tional modeling approach can be found in [2], [3] and [4].
In the autonomous modeling approach, the input variables
include only historical loads or, additionally, weather factors
[5], [6], [7], [8].

MTLF forecasting models are built using classical statis-
tical/econometrics tools or machine learning tools [9]. The
former include ARIMA, exponential smoothing (EST) and
linear regression. ARIMA and ETS can deal with seasonal
time series but linear regression requires additional operations
such as decomposition or extension of the model with periodic
components [10]. Problems with adaptability and nonlinear
modeling of the statistical methods has increased researchers’
interest in machine learning and AI tools [11]. Of these,
neural networks (NNs) are the most popular because of their
attractive features including learning capabilities, universal
approximation property, nonlinear modeling and massive par-
allelism. Some examples of using NNs for MLTF are: [12]
where NN uses historical loads and weather variables to
predict monthly loads and is trained by heuristic algorithms
to improve performance, [13] where Kohonen NN is used, [5]
where NNs are supported by fuzzy logic, [7] where generalized
regression NN is used, and [6] where weighted evolving fuzzy
NN is used.

A separate category of NNs are recurrent NNs with connec-
tions between nodes forming a directed graph along a temporal
sequence. They can exhibit temporal dynamic behavior using
their internal state (memory) to process sequences of inputs.
Recent works reported that recurrent NNs such as the Long
Short-Term Memory (LSTM) NN provide high accuracy on
forecasting and outperforms most of the traditional statistical
and machine learning methods such as ARIMA, support vector
machine and shallow NNs [14]. This is thought to be due to the
extra neighboring time frame states dependencies introduced
by memory gates. There are many examples of the application
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of LSTMs to load forecasting: [15], [16], [17].
To improve forecasting performance, LSTM is also mixed

with other models such as ETS. Such a model, which utilized
100,000 real-life time series, and incorporates all major fore-
casting methods, including those based on AI and machine
learning, as well as traditional statistical ones, won the M4
forecasting competition in 2019 [18]. The winning model
developed by Smyl [19] mixes ETS with advanced LSTM.
ETS enables the model to capture the main components of
the individual time series, such as seasonality and level, while
LSTM networks allow nonlinear trends and cross-learning (i.e.
using many series to train a single model).

Taking into the account attractive features of LSTM, we
propose in this work pattern-based LSTM forecastig models.
The novelty of these models is time series preprocessing by
defining yearly patterns. Using a time series composed of
patterns of successive years instead of the original time series
we simplify the forecasting problem by removing the trend
and stabilizing time series variance. So, the forecasting model
solves a simplified problem with what we expect will be higher
accuracy. After forecasts of the pattern for the next year are
generated by the model, we introduce the current trend and
variance of the time series to obtain the electricity demand
forecasts. We define two types of patterns using current or
lagged variables describing the process behavior. The first
variant needs these variables to be forecasted for the next year.
We use ETS for this.

The rest of the work is organized as follows. Section 2
describes the electricity demand time series and their repre-
sentation using yearly patterns. Section 3 gives implementation
details of the LSTM forecasting model. Section 4 describes the
experimental framework used to evaluate the performance of
the proposed models. Finally, Section 5 concludes the work.

II. TIME SERIES AND THEIR REPRESENTATIONS

Monthly electricity demand time series usually express a
trend, yearly cycles and random component. The upper panel
of Fig. 1 depicts an example of such a time series for Poland
in the period 1998-2014. Note the nonlinear trend and strong
yearly cycles with changing pattern over the years. Addi-
tionally, the standard deviation of the yearly cycles changes
significantly over time: from 1483 MWh in 1998 to 696 MWh
in 2014.

The time series representation is a key component in the
construction of forecasting models. The goal is to simplify
the forecasting problem and relationships between forecasted
variables and predictors. The simplified problem can be solved
using simpler models which produce more accurate forecasts.
A typical approach for time series preprocessing is to de-
compose it into trend, seasonal and irregular components.
After decomposition, the components showing less complexity
than the original time series can be predicted using simpler
models. A versatile and robust method for decomposing time
series often used in practice is STL (seasonal and trend
decomposition using Loess) [20]. Another popular method
for seasonal time series decomposition is a wavelet transform

[21]. This approach produces the local representation of the
time series in both time and frequency domains. Yet another
approach to deal with the complex nonlinear and nonstationary
time series is Empirical Mode Decomposition [16] which
decomposes a series into so-called intrinsic mode functions
without leaving the time domain.

To deal with multiple seasonal cycles and trend in our
earlier work, we used similarity-based models operating on
patterns of the time series seasonal cycles [22], [23]. The
patterns filter out the trend and those seasonal cycles longer
that the basic one and even out variance. They also ensure
the unification of input and output variables. Consequently,
pattern representation simplifies the forecasting problem and
allows us to use models based on pattern similarity. We also
built forecasting models operating on patterns using NNs [7],
[8], neuro-fuzzy systems, regression trees and other tools. In
all cases, pattern representation simplified the problem and led
to more accurate forecasts compared to classical models such
as ARIMA and ETS. Encouraged by these results, we propose
pattern representation for LSTM.

Let us consider the monthly electricity demand time series
starting from January and ending in December: E = {Et :
t = 1, 2, ..., N}. We divide this time series into yearly
subsequences Ei = {Et : t = 12(i − 1) + 1, 12(i − 1) +
2, ..., 12(i − 1) + 12)}, i = 1, 2, ..., N/12. Each subsequence
can be expressed by a vector Ei = [Ei,1Ei,2. . .Ei,12]

T .
Let us define an x-pattern xi = [xi,1xi,2. . . xi,12]

T as a
vector representing a yearly subsequence Ei. The function
transforming time series elements into patterns depends on the
time series character e.g its seasonalities, variance and trend.
Some definitions of this function can be found in [22]. In this
study we define x-patterns as follows:

xi,j =
Ei,j − Ei

σi
(1)

where j = 1, 2, ..., 12, Ei is a mean of sequence Ei, and
σi =

√∑n
j=1(Ei,j − Ei)2 is a measure of its dispersion.

X-pattern xi is a normalized version of vector Ei. Note that
yearly subsequences expressed by Ei have different means and
dispersion (see upper panel of Fig. 1). After normalization
they are unified: all x-patterns have zero mean, the same
variance and also a unity of length. They carry information
about the shapes of the yearly sequences. Now we create
a new time series composed of x-patterns representing suc-
cessive yearly periods: x = {xi : i = 1, 2, ..., N/12} =
{x1,1, x1,2, ..., xN/12,12}. This time series is shown in the mid-
dle panel of Fig. 1. Note its regular character and stationarity.

The forecasting procedure based on x-time series requires
the demand forecast based on the x-pattern forecast to be
determined. After the x-pattern is generated by the forecasting
model, the monthly electricity demands in the forecasted
yearly period are calculated from the forecasted x-pattern
using transformed equation (1) (this is called decoding). But in
this equation the coding variables, Ei and σi, are not known,
because they are the mean and dispersion of the future yearly
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Fig. 1. Monthly electricity demand time series for Poland and its x and y
representations.

subsequence, which has just been forecasted. So, the coding
variables should be forecasted from their historical values. We
use ETS models for this.

To avoid forecasting the coding variables, we propose
another approach. Instead of using the mean and dispersion
of the forecasted subsequence as coding variables, we use the
mean and dispersion of the preceding subsequence Ei−1 which
is known at the moment of forecasting. In this approach, the
yearly subsequence of the time series Ei are represented by a
y-pattern yi = [xi,1xi,2. . . xi,12]

T defined as follows:

yi,j =
Ei,j − Ei−1

σi−1
(2)

Although this approach does not guarantee that all y-
patterns have the same mean value and variance as in the case
of x-patterns, it unifies subsequences of the original time series
taking into account the current process variability, expressed
by mean Ei−1 and dispersion σi−1. The y-patterns represent-
ing successive years are composed to create y-time series:
y = {yi : i = 2, 3, ..., N/12} = {y2,1, y2,2, ..., yN/12,12}.
This time series is shown in the bottom panel of Fig. 1. On
the basis of the y-time series, the forecasting model learns
to predict the y-pattern for the next year. Then, the monthly
demands are calculated from transformed equation (2) using
known coding variables for the historical sequence Ei−1.

III. LSTM FORECASTING MODEL

The proposed approach can be summarized in the following
steps:

1) Time series preprocessing.
Depending on a model variant, a raw time series can be
used, y-time series or x-time series. In the last case, also
the E-time series and σ-time series should be defined
on the basis of the original time series.

2) Time series forecasting.
A sequence-to-sequence regression LSTM model is used
in three variants. In the first variant, denoted as LSTM,
the model uses raw data to forecast the monthly elec-
tricity demand for the next year. In the second variant,
LSTMy, the model uses y-time series and forecasts the
y-pattern for the next year. In the third variant, LSTMx,
the model uses x-time series and forecasts the x-pattern
for the next year. In the LSTMx case, also the E-time
series and σ-time series should be forecatsed for the next
year. ETS is used for this.

3) Decoding of the forecasted pattern.
The y-pattern predicted by LSTMy is transformed into
monthly electricity demand using coding variables de-
termined from the time series history. The x-pattern pre-
dicted by LSTMx is transformed using coding variables
predicted by ETS.

The first step was described in detail in Section II. The
forecasting LSTM model (step 2) and data post-processing
(step 3) are described below.

LSTM is a recurrent NN for learning problems related to
sequential data [24]. The main idea behind LSTM is a memory
cell which retains its state over time, and non-linear gating
units which regulate the information flow in the cell. LSTM
is a general model which is very effective at capturing long
term temporal relationships and unlike the simple recurrent
NNs does not suffer from optimization hurdles, i.e vanishing
gradients. In addition to forecasting, the application area
of LSTM includes [25]: handwriting recognition, language
modeling and translation, acoustic modeling of speech, protein
secondary structure prediction, and analysis of audio and video
data.

A diagram of the LSTM block used in this study is shown
in Fig. 2. In the diagram, ht and ct denote the hidden (or
output) state and the cell state at time step t, respectively. The
cell state contains information learned from the previous time
steps. At each time step, information is added to or removed
from the cell state. These updates are controlled using three
gates: input gate (i), forget gate (f ) and output gate (o). At
time step t, the block uses the current state of the network
(ct−1, ht−1) and the next time step of the sequence (zt) to
compute output ht and updated cell state ct. Output state ht

is further processed by the linear unit (LU) to get the next
time series element, zt+1, as an output. The hidden and cell
states are recurrently connected back to the block input. All
of the gates receive the hidden state of the past cycle and the
time series element as inputs.

The learnable weights of LSTM are the input weights W,
the recurrent weights R, and the biases b. The matrices W, R
and b are connected with all gates and the cell candidate g.
Linear unit LU includes the input weights and biases.



Fig. 2. LSTM block.

The cell state at time step t is given by:

ct = ft ⊗ ct−1 + it ⊗ gt (3)

where operator ⊗ denotes the Hadamard product (element-
wise product).

The hidden state at time step t is given by:

ht = ot ⊗ σc(ct) (4)

where the state activation function σc is a hyperbolic tangent
function.

The following formulas describe the components of LSTM
block at time step t:

it = σg(Wizt + Riht−1 + bi) (5)

ft = σg(Wfzt + Rfht−1 + bf ) (6)

gt = σc(Wgzt + Rght−1 + bg) (7)

ot = σg(Wozt + Roht−1 + bo) (8)

where gate activation function σg is a sigmoid function (1 +
e−x)−1.

The output forecasted value of the sequence, zt+1, is
calculated as follows:

zt+1 = Wzht + bz (9)

All weights and biases, including: Wi,Wf ,Wg,Wo,Wz ∈
Rh, Ri,Rf ,Rg,Ro ∈ Rh×h, and bi,bf ,bg,bo,bz ∈ Rh, are
updated based on the difference between the output value zt+1

and the actual value following backpropagation through time
algorithm [26]. The number of updated parameters is 4h2 +
10h, where h is a number of hidden units also known as the
hidden size. The number of hidden units corresponds to the
amount of information remembered between time steps (in the
hidden state). The hidden state can contain information from
all previous time steps, regardless of the sequence length. If
the number of hidden units is too large, then the model might
overfit to the training data. This value is adjusted to the time

Fig. 3. LSTMx model.

series characteristics and can vary from a few dozen to a few
thousand.

The LSTM forecasting model described above is a
sequence-to-sequence regression LSTM network which learns
to predict the value of the next time step (the responses are the
training sequences with values shifted by one time step). To
forecast the values of multiple time steps we predict time steps
one at a time and update the network state at each prediction.
For each prediction, the previous prediction is used as input to
the network. For a better fit and to prevent the training from
diverging, we standardize the training data to have zero mean
and unit variance. At prediction time, we standardize the test
data using the same parameters as the training data.

Depending on the time series representation we use one of
the three LSTM models listed below:

• LSTM for forecasting the original time series of the
monthly electricity demand E,

• LSTMx for forecasting x-time series,
• LSTMy for forecasting y-time series.
LSTMy and LSTMx generate y-pattern (ŷ) or x-pattern (x̂),

respectivelly, for the next year. To get the forecasted monthly
electricity demands from ŷ we apply transformed equations
(2):

Êi,j = ŷi,jσi−1 + Ei−1, j = 1, 2, ..., 12 (10)

using known coding variables Ei−1 and σi−1 for the historical
subsequence Ei−1.

In the case of LSTMx to obtain the forecasted demand
values we use transformed equation (1):

Êi,j = x̂i,j σ̂i + Êi, j = 1, 2, ..., 12 (11)

The codding variables in this equation, Êi and σ̂i, are
not known, because they are the mean and dispersion of the
future sequence Ei, which has just been forecasted. They
are predicted individually from their historical values using
ETS. To do so, we prepare two time series: E = {Ei : i =
1, 2, ..., N/12} and σ = {σi : i = 1, 2, ..., N/12}. Then, we
learn two ETS models to generate one step ahead forecasts:
Êi and σ̂i. In the next step, we combine the forecasts of x̂i,j ,
Êi and σ̂i according to (11).The forecasting model LSTMx
architecture is depicted in Fig. 3.
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Fig. 4. Monthly electricity demand time series for 35 European countries.

IV. SIMULATION STUDY

The proposed forecasting models based on LSTMs are
applied for mid-term load forecasting using real-world data:
the monthly electricity demand time series for 35 European
countries. The data are taken from the publicly available
ENTSO-E repository (www.entsoe.eu). The time series cover
different periods: 24 years for 11 countries, 17 years for 6
countries, 12 years for 4 countries, 8 years for 2 countries
and 5 years for 12 countries. The models forecast for the
twelve months of 2014 (last year of data) using data from the
previous period for training. The monthly load time series for
35 countries are shown in Fig. 4. Note that the time series have
different lengths, levels, trends, variations and yearly shapes.

The experiments were carried out using Matlab R2018a
implementation of LSTM (function trainNetwork from
Neural Network Toolbox). LSTM models were optimized
using Adam (adaptive moment estimation) optimizer. The
number of hidden nodes was the only hyperparameter which
was tuned for each time series. Other hyperparameters remain
at their default values: number of epochs - 250, initial learning
rate - 0.005. The initial learning rate was dropped after 125
epochs by multiplying by a factor of 0.2. To prevent the
gradients from exploding, the gradient threshold was set to
1.

The proposed models were compared with classical statis-
tical models such as ARIMA and ETS, as well as the neural
model (multilayer perceptron, MLP):

• ARIMA(p, d, q)(P,D,Q)12 model implemented in
function auto.arima in R environment (package
forecast). This function implements automatic
ARIMA modeling which combines unit root tests,
minimization of the Akaike information criterion (AICc)
and maximum likelihood estimation to obtain the optimal
ARIMA model [27].

• ETS – exponential smoothing state space model [28] im-
plemented in function ets (R package forecast). This
implementation includes many types of ETS models de-
pending on how the seasonal, trend and error components
are taken into account. They can be expressed additively
or multiplicatively, and the trend can be damped or not.
As in the case of auto.arima, ets returns the optimal
model estimating the model parameters using AICc [27].

• MLP – multilayer perceptron described in [8]. This model
was designed for MTLF. It learns from patterns defined
by (1) and (2). It predicts one component of y-pattern
on the basis of x-patterns. For all 12 components, 12
MLPs are trained and then the forecasts of demands
are calculated using (10). The network has one hidden
layer with sigmoidal neurons and learns using Levenberg-
Marquardt method with Bayesian regularization to pre-
vent overfitting. The MLP hyperparameters which were
adjusted are the number of hidden nodes and length
of the input patterns (instead of a fixed value of 12,
we select the x-pattern length). We use Matlab R2018a
implementation of MLP (function feedforwardnet
from Neural Network Toolbox).

We use a single-hidden layer MLP architecture as it has
universal approximation capability. Note that when using pat-
tern representation, the relationship between input and output
variables is simplified and there is no need to use deeper
architectures.

The ETS blocks in LSTMx model (see Fig. 3) were learned
using R implementation described above. The LSTM models
were trained 100 times and the final errors were calculated
as the averages of errors over 100 independent runs. To asses
the dispersion of the forecasts generated by the models in 100
runs we define a dispersion measure as a ratio of standard
deviation of forecasts in 100 runs to their median:

D =
std(Ê)

median(Ê)
· 100 (12)

where Ê is a forecasted energy value.
Dispersions D for each month of the forecast period are

shown in Fig. 5. As can be seen from this figure, LSTMx
generated the least dispersed forecasts at around 1-2%. The
basic variant of LSTM gave more scattered forecasts, from
about 2 to 3%. LSTMy generated most scattered forecasts
(3-6%) and their dispersion for longer horizons was higher



than for shorter ones. This phenomenon was not observed for
LSTM and LSTMx.
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Fig. 5. Dispersion of forecasts for LSTM models.

Fig. 6 shows the errors for the successive months of the
forecasted period (mean absolute percentage errors, MAPEs)
averaged over all countries. Note that LSTMx is the most
accurate model, while LSTMy is the least accurate one.
LSTMy gives the highest errors for each month.

Table I summarizes the accuracy of the models showing
median of APE, MAPE, interquartile ranges of APE averaged
over all countries and root mean square error (RMSE). LSTMx
gives the best results among the LSTM models. This variant
may compete with comparative models. It is difficult to select
the most accurate model because each error measure indicates
a different model as the most accurate: MLP, ETS or LSTMx.
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Fig. 6. MAPE for LSTM models.

TABLE I
RESULTS COMPARISON AMONG PROPOSED AND COMPARATIVE MODELS.

Median APE MAPE IQR RMSE
LSTM 3.73 6.11 4.46 431.83
LSTMy 3.86 8.00 5.67 500.90
LSTMx 3.08 5.19 4.36 363.22
ARIMA 3.32 5.65 5.27 463.07

ETS 3.50 5.05 4.17 374.52
MLP 2.97 5.27 3.89 378.81

Our experiments involving 100 independent trials for each
of 35 countries provide the basis for deeper analysis of the
models performances. For each country, we perform a ranking

of models taking into account MAPE for each of 100 runs.
For our tree models, we have 300 MAPE values which we sort
from the smallest to the largest. Then we record the models
positions in this ranking, i.e. at each of 300 positions we record
the model which took this position. This is repeated for each
country. Then we determine how many times a model took
i-th position. The results expressed as percentages are shown
in the Fig. 7. As you can see from this figure, LSTMx most
often reaches the highest positions in the ranking, and LSTMy
most often reaches the lowest positions.

Fig. 8 depicts empirical probability density functions of
the percentage errors (PEs) estimated on the basis of 100
runs and table II shows the basic PE descriptive statistics.
The PE distributions are similar to the normal one but the
tests for the assessment of normality (Jarque–Bera test and
Lilliefors test) do not confirm this. In all cases, the forecasts
are overestimated, having a positive PE mean. The LSTM
model is the most biased and LSTMx the least. Positive values
of skewness indicate the right-skewed PE distributions and
high kurtosis values indicate leptokurtic distributions where
the probability mass is concentrated around the mean.

0 50 100 150 200 250 300

Rank

0

10

20

30

40

50

60

70
%

LSTM

LSTMy

LSTMx

Fig. 7. Ranking of the LSTM models.
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We can improve accuracy and stability of the learning mod-
els by building their ensembles. It was shown that ensembling
of the forecasts enhances the robustness of the method further,
mitigating the model and parameter uncertainty [29]. To built



TABLE II
DESCRIPTIVE STATISTICS OF PERCENTAGE ERRORS.

Mean Median Std Skewness Kurtosis
LSTM 3.12 1.82 11.79 5.67 65.02

LSTMy 2.05 1.26 19.33 6.81 106.82
LSTMx 1.41 0.45 10.61 5.59 55.53

the ensembles we simply combine the forecasts generated in
100 independent trials by averaging (as shown in [30] a simple
average of forecasts often outperforms forecasts from single
models and a more complicated weighting scheme does not
always perform better than a simple average). The results are
shown in Table III. Comparing these to results presented in
Table I, we can notice a decrease in error for all LSTM
models. More detailed results for ensembles are shown in
Fig. 9. Comparing to Fig. 6, it can be seen that the greatest
improvement in accuracy was for the months of the second
half of the year.
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Fig. 9. MAPE for LSTM ensemble models.

TABLE III
RESULTS FOR LSTM ENSEMBLES.

Median APE MAPE IQR RMSE
LSTM 3.42 5.69 4.81 318.81
LSTMy 3.43 6.98 5.20 406.37
LSTMx 3.01 4.99 4.38 283.54

Fig. 10 depicts examples of forecasts generated by the
models for four countries. For PL the best forecasts are
generated by ensembles of LSTMx (MAPE = 1.79) and
LSTM (MAPE = 1.83). The individual LSTMx model
occupies third place (MAPE = 2.09). Errors at a similar
levels are observed for DE. In this case, the most accu-
rate is LSTMx (MAPE = 1.98) and its ensemble version
(MAPE = 1.60). For GB the forecasts are underestimated.
This results from the fact that demand went up unexpectedly
in 2014 despite the downward trend observed in the previous
period from 2010 to 2013. The opposite situation for FR
caused a slight overestimation of forecasts. For GB errors are
around 6% for LSTM and LSTMx based models and around
11% for LSTMy based models. LSTMx gives the lowest

errors for FR: MAPE = 5.61 for the individual version and
MAPE = 5.71 for the ensemble version.
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Fig. 10. Examples of the forecasts.

In conclusion of the simulation study, it should be noted that
the accuracy of a forecasting model, especially neural model,
depends heavily on the appropriate time series preprocessing
such as deseasonalization, detrending or decomposition. The
LSTM model deals with raw data, without preprocessing,
due to recurrent nature and non-linear data processing using
gates. However, the proposed x-pattern representation im-
proves LSTM performance. This is because the preprocessed
time series is more regular than the original one as it is
composed of normalized seasonal subsequences. So, the re-
lationship between input and output variables when using x-



pattern approach is simplified and easier to learn. The higher
errors for LSTMy are caused by the coding variables, which
are determined not from the current seasonal subsequence
(represented by the y-pattern), but from the previous one. This
disturbs the y-time series (see. Fig. 1) and makes it harder to
forecast.

In relation to the comparative models, LSTM is much more
complex. The number of parameters in LSTM is about 40,000
(assuming the average value of the number of hidden units h ≈
100), and many times exceeds the number of parameters in the
comparative models. Due to the huge number of parameters
and complicated learning procedure using backpropagation
through time, the training and optimization time in LSTM is
much longer than in comparative models.

V. CONCLUSION

This work proposes pattern-based LSTM forecasting models
for mid-term electricity demand forecasting. The key com-
ponent of the models is the pattern representation which
simplifies the complex nonlinear and nonstationary time series,
filtering out the trend and equalizing the variance. Two types
of patterns are considered: x-pattern and y-pattern. The former
requires additional forecasting for the coding variables. The
latter determines the coding variables from the process history.
Although less complex, the approach based on y-patterns did
not achieve the expected improvement in accuracy. Whereas,
a combined approach based on x-patterns, LSTMx, turned out
to be better than the standard LSTM approach based on a
raw time series. In the LSTMx hybrid model, an x-pattern
is forecasted using a sequence-to-sequence LSTM network
and the coding variables are forecasted using exponential
smoothing.

An experimental study carried out on the electricity demand
time series for 35 European countries has shown that LSTMx
generates the most accurate forecasts in a twelve-month hori-
zon among LSTM models. The LSTMx results are comparable
with those generated by classical statistical models such as
exponential smoothing, and the pattern-based neural networks
(MLP). Ensembling LSTM models by simple averaging over
100 runs decreases further the forecast errors.
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