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Abstract—Electricity load forecasting is a prevalent research
topic in recent years. In this study, we predict the electricity
consumption using only previous power data (i.e., without using
weather information or other features). We survey existing
univariate methods such as MLP-based, CNN-based, XGBoost-
based, RF-based, and EN3-bestK. However, these existing meth-
ods do not perform well due to that the range of power values
varies a lot. Therefore, we present an electricity consump-
tion forecast system called Dynamic Weight Ensemble Model
(DWEM). There are three stages in the proposed DWEM. First
of all, we provide three types of data serialization in data
preprocessing. Second, we train four types of models (i.e., MLP-
based, CNN-based, XGBoost-based, and RF-based) for building
the ensemble model later. Finally, we combine the four types
of models into an ensemble model, using the proposed Two-
Phase Ensemble. In the two-phase ensemble, the first phase is
to ensemble the models trained using the same algorithm but
different serializations, and the second phase is to ensemble
the models from different algorithms. The two-phase ensemble
method is designed to dynamically adjust weights based on the
previous performance of the corresponding models. Moreover,
we notice that properly handling missing values is an important
factor in system performance. Therefore, we present a statistical
method to estimate the missing values. We compare DWEM with
various state-of-the-art methods. Comparison of DWEM and the
state-of-the-art ensemble method, the results show that DWEM
is on average about 46.95% and 44.47% better than EN3-bestK
on the MAPE and MAE indicators, respectively.

Index Terms—Electricity Load Forecasting, Data Mining, Time
Series Forecasting, Univariate

I. INTRODUCTION

Time series forecasting research is a prevalent research topic
in recent years, and one of them is electricity forecasting.
Electricity forecasting can also be divided into many tasks,
such as solar power output forecasting [1], and predicting
the output of photovoltaic power during the daylight period.
Another task is power consumption forecasting [2], which pre-
dicts the power consumption of human activities. In Taiwan,
because the electricity price is very cheap [3], people tend to
overuse electricity, and regional power is often tripped off in
summer. In order to solve this problem, power companies try
to predict the expected consumption of each household. The
raw data are churning out from the smart meter. One of the
motivations for our research is that electricity consumption

forecasting can help residents to know what time is the peak
power consumption period (and often with higher electricity
price), so they can wisely schedule their power usage to
lower electricity bills. Moreover, our research results can also
help the government to better formulate electricity prices for
different time periods based on the electricity forecasting.

Our study focuses on predictive tasks using only one vari-
able as input, which is previous power data, and without using
weather information or the other features. Univariate methods
for short-term electricity consumption forecasting could be
divided into two groups: the single forecasting model and the
ensemble forecasting model. Example of a single forecasting
model such as Sel-CNN [2], which uses a sequence of ordered
power load data as the model input to forecast the next day
outputs. On the other hand, ensemble forecasting model (e.g.,
EN3-bestK [1]) combines the predictions of the ensemble
members to generate the prediction for the next day. However,
the data preprocessing strategies used by EN3-bestK do not
perform well in the datasets with large ranges of power load
(such as Australian power load data).

For electricity load forecasting tasks, there are two problems
that need to be solved. The first problem is missing power
consumption values in the dataset. The existence of missing
values is a common problem for time-series predictions. To
solve this problem, we present a new way that uses statistical
methods to estimate the missing values more properly. Our
method considers three dimensions: hourly similarity, daily
similarity, and weekly similarity. When comparing our re-
sults with the results generated from previous studies, our
results are closer to the real electricity consumption. The
experimental results show that our method is also helpful for
model training and can reduce prediction errors. The second
problem is the unsatisfying accuracy of prediction results
on electricity consumption data. In this study, we present a
novel electricity consumption forecast system called Dynamic
Weight Ensemble Model (DWEM). We observe that if we
train the models using different serializations on the data, and
then ensemble these models to generate the forecast results,
a better accuracy can be achieved. The reason is that the
models trained using different serializations may have better
performance in certain electrical load ranges. In addition, we
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also observe that the models trained using different algorithms
may have better performance in certain electrical load ranges.
According to these observations, we leverage three types of
data serialization with four different algorithms in our forecast
system. In this study, we aim at the short-term electricity
consumption forecasting task, which is to forecast the hourly
power consumption for the next day given previous hourly
power consumption data. In our forecast system, we propose a
Two-Phase Ensemble approach. The first phase is to ensemble
the models trained using the same algorithm but different
serializations, and the second phase is to ensemble the models
from different algorithms. The historical error value for each
model is used to decide its weight while ensembling. The
experimental results show that DWEM is better than the state-
of-the-art single forecasting models and ensemble methods.

In this study, our contributions can be summarized in the
following points:

• We present a new method that considers three dimensions
to estimate the missing values.

• We provide three types of data serialization with four
different models to increase the diversity of the ensemble
model in our forecast system.

• We propose two-phase ensemble, and the experimental
results show that the prediction error of the two-phase
ensemble is lower than the error of the single-phase
ensemble.

The organization of the paper can be summarized as follows:
Related works are detailed in Section 2. In Section 3, we
describe our forecast system and missing values estimation.
Section 4 introduces the electricity consumption data, and
also provides experiment setup and results. Conclusions are
presented in Section 5.

II. RELATED WORK

There are two research directions in electricity consump-
tion forecasting: univariate and multivariate. The univariate
approach is to use only previous power consumption data,
while multivariate not only uses previous power consumption
data but also uses some information from different sources.
For example, weather data such as temperature and humidity
or the type label of days (working days, weekends, or public
holidays). In this study, we focus on the univariate approach.

Multilayer perceptron (MLP) [4] is a very classic neural
network model. In [5], the authors introduce one-layered MLP
with one hidden layer with 5, 5, 10 neurons to forecast three
different cases, including hourly loads, total loads, and peak
loads respectively.

The previous study [6] also uses one-layered ANN with 20
neurons in the hidden layer to forecast daily and hourly power
consumption for 93 households in Portugal. The input data
are 16 electric appliances electricity load. Their experimental
results in daily energy consumption show that the average
MAPE is 4.2% and the maximum MAPE is 18.1%.

CNN [7] models have outstanding performance in specific
tasks, such as image recognition, speech recognition [8], and
face recognition [9], but in time series forecasting tasks, few
studies are proposing CNN models. The previous study [2]
uses the CNN model to predict the next day of solar power
data and electricity load data. They develop three different
structures of CNN models to predict Australian solar data
and Australian, Portuguese, and Spanish electricity data. They
compared their CNN model performance with the MLP model
and LSTM model. CNN model has the best performance on
solar data, but on Spanish electricity data MLP model is the
best.

In [10], the authors use XGBoost [11] model based on sim-
ilar days to forecast power load data. Historical temperature
data are used as an input to calculate the correlation of similar
day and historical power data are used as the model input.
Their results show that XGBoost model based on similar days
can effectively predict electricity load.

Not only single models but also ensemble models are
popular on electricity forecasting tasks. In [1], the authors
present an ensemble method for solar power forecasting. The
data was collected from the University of Queensland in
Brisbane, Australia. The solar power data are sampled from
7 am to 5 pm. They aggregate the solar power data from 1-
min to 30-min. Therefore, there are 20 solar power values
for one day. Their approach emphasizes data diversity. They
present three data preprocessing strategies includes random
examples, feature sampling, and the strategy that combine
the two strategies for their ensemble model members. They
also present four strategies for building dynamic collections
based on their ensemble model member’s performance over
the past 7 days. According to their experimental results, the
data diversity generate by these data preprocessing strategies
can effectively improve the accuracy of solar power data
prediction.

For time series analysis, missing data is an inevitable
problem. Therefore, how to correctly complement missing
values is also a problem to be solved. The previous study
[12] uses weighted moving average filter to estimate missing
values. Their research is to predict the power consumption of
commercial buildings. If a missing value is encountered, they
use three decreasing values as the weights of the three values
of the same time in the previous three days and multiply the
three values by the sum after the weights as an estimate of
the missing values.

III. APPROACH

In this section, we present the details of the proposed elec-
tricity consumption forecast system, namely, Dynamic Weight
Ensemble Model (DWEM). The architecture of the DWEM
is shown in Figure 1. The main inspiration for designing
this electricity consumption forecast system is based on the
observations that different data serializations and different
machine learning models may have better performance in



Fig. 1. DWEM system architecture.

certain electrical load areas. Some serializations and models
have good performance in the peak loading area. On the other
hand, some serializations and models have good performance
in the normal or valley loading area. Therefore, we should
give different weights to different models based on their errors
with recent data in different power load intervals. As shown
in Figure 1, we partition our forecast system into three stages.
The first stage is data preprocessing. We convert historical
electricity data into three different types of serialized vectors
as input to the model. Subsequently, we use these different
serialized vectors as inputs in four different models in the
second stage. Finally, we use the two-phase ensemble in
the third stage. The first phase is to ensemble the models
trained using the same algorithm but different serializations,
and the second phase is to ensemble the models from different
algorithms.

A. Data Serialization

1) Serialization 1 (for day-to-hour prediction): The pro-
cedure of Serialization 1 is as follows: We use day d and day
d − 1 hourly electricity consumption for serialization. Figure
2 shows the flowchart of Serialization 1 to predict the hourly
outputs of next day. We create new sequences of vectors in
which the sequence length is 25. First, we use the sequences of
vectors [pd−1

real(t), . . . , p
d−1
real(t+23), pdreal(t)] as a model input

to predict the power consumption of the first hour next day.
Where pd−1

real(t) is day d−1 actual power consumption at time
t, pd−1

real(t+23) is day d−1 actual power consumption at time

t + 23, and pdreal(t) is day d actual power consumption at
time t. Second, we shift each value in the vector to the next
hour. That is, we use [pd−1

real(t+ 1), . . . , pdreal(t), p
d
real(t+ 1)]

to predict the power consumption of the second hour next day.
The procedure goes on to complete the predictions of the 24
hourly electricity consumption values in day d+ 1.

Fig. 2. Flowchart of Serialization 1

2) Serialization 2 (for hour-to-hour prediction): The pro-
cedure of Serialization 2 is as follows: We use the power con-
sumption of the same hour every day from day d to day d−1.
The flowchart of Serialization 2 for predicting hourly outputs
of next day is shown in Figure 3. We create new sequences of
vectors in which the sequence length is 24. First, we use the se-
quences of vectors [pd−23

real (t), . . . , p
d−1
real(t), p

d
real(t)] as model

inputs to predict the power consumption of the first hour next
day, where pd−23

real (t) is day d− 23 actual power consumption
at time t, pd−1

real(t) is day d − 1 actual power consumption at
time t, and pdreal(t) is day d actual power consumption at time



t. Second, We shift each value in the vector to the next hour.
That is, we use [pd−23

real (t + 1), . . . , pd−1
real(t + 1), pdreal(t + 1)]

to predict power consumption of the second hour next day
(i.e., pd+1

real(t+1)), and the procedure goes on to complete the
predictions of the 24 hourly electricity consumption values in
the day d+ 1.

Fig. 3. Flowchart of Serialization 2

3) Serialization 3 (for day-to-day prediction): Figure 4
shows the flowchart for Serialization 3. We use the 24 hourly
power consumption values in day d as the inputs to predict
the 24 hourly electricity consumption valued in day d+ 1.

Fig. 4. Flowchart of Serialization 3

B. Base Models

We have conducted preliminary experiments to evaluate the
performance of existing approaches (i.e., the ones introduced
in Section II) and some popular machine learning algorithms
(e.g., LSTM and linear regression). In the base model training
phase, we then choose the base models with top performance
as candidate base models, in order to achieve the best perfor-
mance of our forecast system. Details about these four best
performing base models are provided below.

1) MLP: In [5] [6], the authors present one-layered MLP
to forecast power consumption in different situations. In this
study, we also use MLP with one hidden layer. The input,
output, and hidden layer include 24 nodes. We implement the
MLP models by using Keras [13].

2) Sel-CNN (Selected CNN): In [2], the authors use Sel-
CNN to forecast the next day photoVoltaic power and electric-
ity load data. The Sel-CNN architecture is used as follows: two
convolutional layers with size 24, 10, and without max pooling
layers. The activation function is ReLU in the convolutional
and output layers. They are using stochastic gradient descent

backpropagation algorithm and the Adam optimizer in the
training process. The most crucial part is that they apply batch
normalization, which has a great improvement in accuracy. We
use Keras [13] to implement the Sel-CNN models.

3) XGBoost: eXtreme Gradient Boosting (XGBoost) [11]
is a well-known machine learning model after winning the
Higgs Machine Learning Challenge. In [10], the authors
use historical temperature data as an input to calculate the
correlation of a similar day and use historical power data as the
model input. In this study, We use Python XGBoost package
to build the model. Note that, since XGBoost does not support
multilabel, it can only use Serialization 1 and Serialization 2.

4) Random Forest: Random Forest (RF) [14] is a classical
machine learning method for regression tasks. Random Forest
creates a multitude of decision trees during training and uses
the average of the predicted values of each tree as the output.
In this study, we forecast the hourly power consumption of
next day using only previous power data as the inputs of
RF model to solve the univariate regression problem. We
use RandomForestRegressor from scikit-learn (a free software
machine learning library) to structure the Random Forest
model.

C. Two Phase Ensemble

Figure 5 shows the weight calculation component. We
calculate the error between prediction and actual power con-
sumption in day d for each model. The weight of each model
is the reciprocal of the error of each model divided by the sum
of the reciprocal of the error of each model.

Fig. 5. The Weight Calculation Component

In the forecasting phase of our system, we use the two-
phase ensemble. In the first phase, Ed

modeli
denotes the error

of modeli on day d (because Ed
modeli

might be zero, we add
a very small value µ to avoid any division by zero), wd+1

modeli

denotes the weight of modeli on day d+1, P d+1
modeli

denotes the
prediction of modeli on day d+1, and the P d+1

modeli EN denotes
the prediction of the first phase ensemble modeli EN . The
weight calculation and the ensembled result generation of the
first phase ensemble are as below:



wd+1
modeli

=
1/(Ed

modeli
+ µ)∑n

i=1(1/(E
d
modeli

+ µ))

P d+1
modeli EN =

n∑
i=1

(P d+1
modeli

× wd+1
modeli

)

For example, according to different serializations for the
MLP model, there are three outputs P d+1

MLP S1, P d+1
MLP S2,

and P d+1
MLP S3. Then, we combine these outputs with their

weights, and the MLP model first phase ensemble result
is P d+1

MLP EN = P d+1
MLP S1 × wd+1

MLP S1 + P d+1
MLP S2 ×

wd+1
MLP S2 + P d+1

MLP S3 × wd+1
MLP S3. Similarly, there

are three outputs for the Sel-CNN model, which are
P d+1
Sel−CNN S1, P d+1

Sel−CNN S2, and P d+1
Sel−CNN S3. Then, we

combine these outputs with their weights and the Sel-CNN
model first phase ensemble result is P d+1

Sel−CNN EN =

P d+1
Sel−CNN S1 × wd+1

Sel−CNN S1 + P d+1
Sel−CNN S2 ×

wd+1
Sel−CNN S2 + P d+1

Sel−CNN S3 × w
d+1
Sel−CNN S3.

In the second phase, the ensemble prediction of each
base model in the first phase will be ensembled for the
second time to generate the final prediction result. Here,
Ed

modeli EN denotes the error of modeli EN on day d
(because Ed

modeli EN might be zero, we add a very small
value µ to avoid any division by zero), wd+1

modeli EN denotes the
weight of modeli EN on day d+1, P d+1

modeli EN denotes the
prediction of modeli EN on day d+1, and P d+1

DWEM denotes
the final prediction of the DWEM. The weight calculation
of the second phase ensemble and the final prediction result
generation are as below:

wd+1
modeli EN =

1/(Ed
modeli EN + µ)∑n

i=1(1/(E
d
modeli EN + µ))

P d+1
DWEM =

n∑
i=1

(P d+1
modeli EN × w

d+1
model ENi

)

For example, there are four different outputs P d+1
MLP EN ,

P d+1
Sel−CNN EN , P d+1

RF EN , and P d+1
XGB EN from the first phase

ensemble. Then, we combine these outputs with their weights,
and the final prediction of DWEM is P d+1

DWEM = P d+1
MLP EN×

wd+1
MLP EN + P d+1

Sel−CNN EN × w
d+1
Sel−CNN EN + P d+1

RF EN ×
wd+1

RF EN + P d+1
XGB EN × w

d+1
XGB EN .

In conclusion, the first phase is to ensemble the models
trained using the same algorithms but different serializations,
and the second phase is to further ensemble the models from
different algorithms. The advantage of the two-phase ensemble
is that after the first phase, each model can predict a value that
is closer to the actual power consumption value than the single
model, so that the prediction results in the second phase can
be better than the model that uses only single-phase ensemble.
The experimental results in Table III also confirm that the
two-phase ensemble method achieves higher accuracy than the
model that uses the single-phase ensemble.

D. Missing Value Estimation

Fig. 6. Time extraction phase.

Fig. 7. Feature generation phase.

While collecting the real datasets, we notice that some
datasets may have the missing value problem. For example,
there are no missing values in all of the Australian datasets, but
in Taiwanese dataset, there are around 9.9% missing values in
each household. Additionally, the missing values in Taiwanese
dataset are not similar to the missing values that we survey
in other researches. The missing values in those datasets are
not contiguous. They have several non-continuous hours of
missing values on different days. In Taiwanese dataset, there
are missing values throughout four consecutive days. Our task
is to estimate the missing values. In [12], the authors use the
weighted moving average filter to estimate missing values. In
our case, the estimating missing value results of the weighted
moving average filter is not similar to the real situation, and
another problem is that different households at different times
may not have the same electricity consumption behaviors.
Therefore, we present a new method to estimate missing values
by some statistical methods. The first phase is shown in Figure
6. In the time extraction phase, if there is a missing value, we
extract the value of the same time in the previous six days. The
second phase is shown in Figure 7. In the feature generation
phase, we calculate three values for each value that we extract,
one is the absolute value of difference from the previous hour,
another is the absolute value of difference from the same time
instant of the previous day, and the other is the absolute value
of difference from the same time instant of the previous week.
After that, for each of the above three statistics, we add to
three empty lists, respectively. After daily calculations for the
past six days, we calculate the standard deviation for each list
Hstd, Dstd, and Wstd as below:



Hstd =Std([Hdiff
1 , · · · , Hdiff

6 ])

Dstd =Std([Ddiff
1 , · · · , Ddiff

6 ])

Wstd =Std([W diff
1 , · · · ,W diff

6 ])

Finally, we estimate the missing values. Here, pdesti(t)
denotes the estimated value at time instant t on the day d,
pdreal(t− 1) denotes the value at the hour before the missing
value, pd−1

real(t) denotes the value at the same time instant on
the previous day, and pd−7

real(t) denotes the value at the same
time instant on the same day previous week. The estimated
value pdesti(t) can be calculated as below:

pdesti(t) =(pdreal(t− 1)× (1/Hstd)+

pd−1
real(t)× (1/Dstd)+

pd−7
real(t)× (1/Wstd))

/(1/Hstd + 1/Dstd + 1/Wstd)

IV. EXPERIMENT

In this section, we introduce the electricity consumption data
that we use. After that, we introduce the methods used for
comparison, the experiment setup, and evaluation metrics. Fi-
nally, in the results and discussions, we compare our approach
with other methods using different datasets.

A. Data

Australian electricity load data we use comes from the Aus-
tralian Energy Market Operator (AEMO) [15]. There are five
states in the AEMO data dashboard: NSW, QLD, SA, TAS,
VIC. The power consumptions are correlated with industrial,
commercial, and human activities. Each state dataset we use
for two years (2017 and 2018), and NSW dataset we take
additional two years (2010 and 2011) which used in [2]. Each
dataset is sampled every hour, and the unit of measurement is
megawatt.

Taiwanese electricity load data are residential electricity
load data, which are collected from Taiwan Power Company.
There are 15 households electricity consumption that is sam-
pled from January 2018 to December 2018. Each household
power consumption data is sampled every minute, and the unit
of measurement is watt.

B. Methods Used for Comparison

The models that used for comparison are MLP [6], Sel-CNN
[2], XGBoost [10], and RF [14] and EN3-bestK [1].

The previous study [1] presents an ensemble method for
solar power forecasting. The best ensemble model is EN3-
bestK with linear transformation for calculating weights. EN3-
bestK is constituted of 30 ensemble members, where each
member is a one-layered MLP trained with different subset of
data. Specifically, there are two steps in data preprocessing of

EN3-bestK. They first use random sampling with replacement
to sample 75% data to be a training subset. Next, for each
training subset, they use random sampling with replacement,
and each of the 10 ensemble members uses three different fea-
ture sampling rates of 25%, 50%, and 75% to sample features
from each subset as the input of the ensemble members. For
each ensemble member, they calculate and sum up the MAE
over the previous seven days. They then select the K best
ensemble members (K=7) based on the summation of errors,
and use linear transformation for calculating the weights. The
higher weights are associated with lower errors. Finally, they
sum up the seven best members’ predictions to be the next
day solar power output. In this study, the best random example
sampling rate that we use is 75%, and the best random feature
sampling rate that we use is also 75%.

C. Experiment Setup

1) Australian datasets: In Australian electricity load data,
we follow the previous study to split the first year (2010 &
2017) of data into training and validation set, where 70% of
the data is used as training and 30% of the data is used as the
validation set. We use the second year (2011 & 2018) of data
for testing.

2) Taiwanese dataset: In Taiwanese electricity load data,
we take the time period from January 1st to December 31st
of 2018 for training. We combine 15 households’ power
consumption together for training and validating, in order to
increase data diversity. The testing data start from July 1st to
August 31st of 2019 (72 days). The reason for using July and
August as testing data is that these 15 households do not have
missing values in both months.

D. Evaluation Metrics

The mean absolute percentage error (MAPE) and mean
absolute error (MAE) are used to evaluate the performance
for comparisons, which are defined as

MAPE =
100%

n

n∑
d=1

|yd − ŷd
yd

|

MAE =
1

n

n∑
d=1

|yd − ŷd|

where yd and ŷd are the vectors of actual power consump-
tion and the predicted power consumption for the day d,
respectively, the number of days in the testing data is n.

E. Results and Discussion

1) Comparison of different methods for estimating missing
values in training data for DWEM: The experimental results
in Table II confirm that the values estimated by our method are
more accurate than the values obtained by the zero filter (i.e.,
replacing missing values as zeros) and the weighted moving



TABLE I
RESULTS OF NSW2011, NSW2018, QLD2018, SA2018, TAS2018, VIC2018, TW2019

NSW 2011 NSW 2018 QLD 2018 SA 2018 TAS 2018 VIC 2018 TW 2019
Methods MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE
MLP S3 3.44 307.01 4.80 386.03 3.39 212.29 11.15 132.75 4.38 49.77 6.58 325.12 40.30 191.63
Sel-CNN S3 3.74 331.38 4.66 382.87 3.51 220.21 11.40 136.68 4.38 49.89 6.80 330.75 38.34 211.30
XGB S2 3.35 306.19 3.97 330.37 2.97 192.18 10.17 130.20 4.73 53.79 5.81 296.47 41.29 187.48
RF S2 3.44 310.97 4.02 331.29 3.05 195.09 10.61 132.90 4.62 52.37 5.95 301.17 43.14 189.13
EN3-bestK 5.15 455.05 6.56 520.83 3.64 232.30 12.06 144.88 4.99 56.26 7.44 370.29 41.80 217.55
DWEM 2.83 255.01 3.53 290.75 2.55 163.13 9.41 117.43 4.12 46.76 5.27 264.54 32.75 170.41

TABLE II
COMPARISON OF DIFFERENT MISSING VALUE PROCESSING METHODS IN

TRAINING DATA FOR DWEM

TW 2019
Methods MAPE MAE
Zero filter 35.48 177.10
WAM filter 35.01 175.76
Our method 32.75 170.41

average filter. In Figure 8, we show the results of power
consumption after estimated the missing values.

2) Comparison of different types of data serialization:
Table IV shows the performance of the base model with
different types of data serialization. For example, MLP S1
represents MLP model with Serialization 1, MLP S2 repre-
sents MLP model with Serialization 2, MLP S3 represents
MLP model with Serialization 3, and MLP EN represents
the output of MLP model in first phase ensemble. We use
the results of NSW2011 as an example. From the table, we
have two interesting observations. First of all, we find that
the prediction results after the first phase, such as MLP EN,
have lower prediction errors than the prediction errors of
different serializations in their models (MLP S1, MLP S2,
and MLP S3), and the same is true of other base models.
That is to say, the results of the ensemble are better than
the single model. Second, we compare different types of
data serialization for each model. We can see that the best
performance for MLP and Sel-CNN is Serialization 3, and
the best performance for XGBoost and RF is Serialization 2.
The possible reason for our discussion is that Serialization 2
uses the electricity consumption values at the same time in
the previous 24 days to form a sequence as the input of the
model, and these electricity consumption values are relatively
similar to each other. Therefore, XGBoost and RF can make
better regression predictions based on these relatively similar
values. For Serialization 3, which is a sequence of 24 hours
of electricity consumption values from morning to night as
model input. Therefore, the neural network models MLP and
CNN have better performance. According to this observation,
the models used for comparison in Table I are MLP S3, Sel-
CNN S3, XGBoost S2, and RF S2.

3) Comparison of various ensembles with different types
of data serializations: In Table III, we compare different

(a) Missing values replaced values from zero filter

(b) Missing values replaced with estimated values from weighted
moving average filter

(c) Missing values replaced with estimated values from our
method

Fig. 8. Results of different methods for estimating missing values in
Taiwanese dataset



TABLE III
RESULTS OF DIFFERENT MODELS WITH DIFFERENT TYPES OF DATA SERIALIZATION ENSEMBLES

NSW 2011 NSW 2018 QLD 2018 SA 2018 TAS 2018 VIC 2018 TW 2019
Methods MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE
DWEM S1 4.05 357.69 4.75 385.00 3.54 223.95 11.17 136.64 4.77 54.37 6.78 337.06 40.18 191.59
DWEM S2 3.40 304.50 4.22 350.16 3.02 194.14 10.60 135.25 4.70 52.94 5.99 303.73 36.37 177.37
DWEM S3 3.13 280.03 4.02 326.05 3.12 195.36 10.37 124.67 4.26 46.40 6.04 297.31 36.11 177.21
DWEM ALL 3.02 271.05 3.72 305.42 2.70 172.20 9.71 120.34 4.21 47.88 5.53 277.26 35.66 174.84
DWEM PART 2.95 265.83 3.67 302.04 2.67 170.31 9.59 119.37 4.15 47.07 5.47 273.94 35.2 173.05
DWEM 2.83 255.01 3.53 290.75 2.55 163.13 9.41 117.43 4.12 46.76 5.27 264.54 32.75 170.41

ensemble combinations at the ensemble stage. First of all,
DWEM S1 represents the ensemble of each base model with
Serialization 1. Second, DWEM ALL represents that each
base model with different serializations and a total of 11
combinations of an ensemble model. DWEM PART represents
that each base model selects the two serializations that perform
best in the validation set, with a total of 8 combinations of
an ensemble model. Finally, DWEM is DWEM PART with
the two-phase ensemble. The first phase is to ensemble the
models trained using the same algorithm but different data
serializations, and then the second phase is to ensemble the
models from different algorithms. From the table, We find
that when the number of base models in the ensemble model
increases, the accuracy can be effectively improved, that is,
DWEM ALL is better than DWEM S1, DWEM S2, and
DWEM S3. However, when there are too many base models,
some models result in the performance of the ensemble model
worse. According to this point, we propose that each model
chooses the two serializations which perform best in the
validation set, that is, DWEM PART and DWEM. Comparing
DWEM with DWEM PART, the advantage of DWEM is that
after the first phase, each model can predict a value that is
closer to the actual power consumption value than the single
model, so that the prediction results in the second phase can
be better than the model that uses the single-phase ensemble.

4) Comparison results in Australian datasets: Table I com-
pares the performance of our ensemble methods with other
state-of-the-art methods in Australian five state datasets. From
the table, the results of all model predictions are proportional
to the range of the power consumption data. That is, the
smaller the power consumption range, the better the predicted
results. The previous study [1], EN3-bestK achieves great
forecasting performance due to the dataset used is solar data,
which is only sampled during the daytime and sampled every
half hour. The variation between the outputs produced by solar
power is small, so the errors of the prediction results are
not significant, which is not similar to Australian electricity
load data. EN3-bestK does not perform well on the Australian
dataset. The main reason is that the strategies used by EN3-
bestK have feature sampling and random feature selection,
which result in each member not being able to learn some
range of power consumption. The larger the range of the power
data, the worse the performance of EN3-bestK.

TABLE IV
RESULTS OF DIFFERENT TYPES OF DATA SERIALIZATION

NSW 2011
Methods MAPE MAE
MLP S1 4.61 408.54
MLP S2 3.51 313.97
MLP S3 3.44 307.01
Sel-CNN S1 5.03 440.57
Sel-CNN S2 4.87 419.09
Sel-CNN S3 3.74 331.38
XGB S1 4.04 361.96
XGB S2 3.35 306.19
RF S1 4.28 381.81
RF S2 3.44 310.97
RF S3 3.50 315.85
MLP EN 2.99 267.77
Sel-CNN EN 3.51 307.64
XGB EN 3.21 292.09
RF EN 3.00 272.02
DWEM 2.83 255.01

Our approach DWEM is the most accurate method in
Australian datasets. It is more effective in forecasting power
consumption than other methods. Compared DWEM with two
state-of-the-art models in the Australian datasets, the first
one is Sel-CNN S3. Our approach has average improved by
26.39% and 24.12% on the MAPE and MAE indicators. The
second is EN3-bestK, and our method is 50.17% and 47.27%
better than EN3-bestK.

5) Comparison results in Taiwanese dataset: Table I com-
pares the performance of our ensemble methods with other
state-of-the-art methods on an average of 15 household dataset
in Taiwan. From the table, EN3-bestK is the worst. The
possible reason for our discussion has as mentioned before, the
data preprocessing method of EN3 BestK make some of the
power load intervals and some periods of the day not selected,
which resulting in EN3-bestK has the worst performance. Our
method DWEM is able to combine the values predicted by
different models, which achieves the lowest MAPE and MAE
in Taiwanese dataset. Compared DWEM with Sel-CNN S3
and EN3-bestK, our model has improved by 17.07% and
27.63% on the MAPE indicators, and our model has improved
by 24.0% and 27.66% on the MAE indicators.



V. CONCLUSION

In this study, we propose Dynamic Weight Ensemble Model
(DWEM), which is a novel electricity consumption forecast
system. DWEM is divided into three stages. In the first and
second stages of DWEM, we design three types of data
serialization and use four different models. In the third stage of
our system, we use the two-phase ensemble. The first phase is
to ensemble the models trained using the same algorithm but
different data serializations, and then the second phase is to
ensemble the models from different algorithms. The strength
of DWEM is to forecast the values based on adaptive weights,
which are determined by the performance of the previous day
for each model. The experimental results show that DWEM is
on average about 46.95% and 44.47% better than EN3-bestK
on the MAPE and MAE indicators, respectively.

For missing value estimation, we take household electricity
consumption behavior into account. We present a new method
that considers three dimensions: hourly similarity, daily sim-
ilarity, and weekly similarity. The experimental results show
that the estimated results from our method are closer to the
actual power consumption than other methods, especially in
the interval of continuous missing values.
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