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Abstract—Random forest is an ensemble method used to
improve the performance of single tree classifiers. In evolving
data streams, the classifier needs to be adaptive and work under
constraints of space and time. One benefit of random forest is its
ability to be executed in parallel. In our research we introduce a
random forest model utilizing a hybrid of both GPU and CPU,
called GPU-based State-Adaptive Random Forest (GSARF). We
address the pre-existing challenges of adapting random forest
for data streams, specifically in the area of continual learning.
Our novel approach reuses previously seen trees in the random
forest when previous concepts reappear. This allows us to retain
prior knowledge and provide a more stable predictive accuracy
when changes occur in the data stream. Our random forest for
data streams stores three types of trees, foreground trees which
are trees that are currently used in prediction, background trees
which are trees that are built when we are aware of possible
changes in the data streams, and candidate trees which are trees
that had been highly used in the previous concepts, but are now
discarded due to changes in the data stream. We store candidate
trees as they may be potentially useful at a later period in a
repository and can be accessed when needed. We empirically
show our technique performs up to 138 times the speed compared
to current CPU-based random forest benchmarks. Our approach
has shown to outperform a baseline GPU-based approach in
terms of cumulative accuracy performance.

Index Terms—Adaptive Random Forest, GPU, Data Streams

I. INTRODUCTION

Adaptive real-time mining of continuous data streams is
necessary with the increasing volume, velocity and volatility
of data collected. The need for the data stream to be processed
on-the-fly with fast reaction and adaptation to changes is ever
increasing. In a streaming environment, decision based on
data require real-time analysis which has to be processed in
parallel with low-latency. Most research focus on designing an
algorithm to more efficiently adapt to changes without fully
utilizing the underlying computational architecture. The focus
of our research concentrates on utilizing the available GPU
processors. We explore the usage of both GPU and CPU for
applications of data stream mining. In terms of dealing with
evolving data we explore the random forest technique for data
streams. The benefit of random forest is its high accuracy and
ability to adapt to new concepts within the stream. Random
forest is parallelizable, thus, little effort is needed to separate
the random forest algorithm into a number of parallel tasks [1].

One of our focus is on being able to store and utilize knowl-
edge built from the past, to improve for the future. For example
in the human activity recognition task such as remote patient
monitoring, rehabilitation and assisting disabilities. Humans
behaviours are repetitive, thus having no long term memory
of our model is wasteful. For data with temporal dependence,
there is the focus on using deep learning. However in this
particular research we are focused on being able to explicitly
detect changes within the model as well as store some pre-
exiting knowledge. The general intuition of approaches of
handling recurring concepts is to not lose knowledge gathered
over time [2], [3]. There is a need to maintain a pool of
trees and use single or ensemble of them when we detect
a change in the data stream. This is known as concept drift
adaptation [4], whereby the technique tries to adapt to the
new concept in the data stream as soon as possible. Most
recurring concept detection techniques [5], [6] are explicit
whereby there is a specific drift detector used alongside a
recurring model matching phases from a repository. Instead
our approach adapts to implicit drifts where we capture smaller
shifts that will eventually lead to a real concept drift.

We proposed a variation of the random forest approach,
called GPU-based State Adaptive Random Forest (GSARF).
Current random forest techniques for data streams concen-
trates on adapting to concept drift by preemptively building
additional trees when there are early warning of when the
trees are becoming less accurate. These additional trees are
called background trees. A background tree is swapped into
the random forest replacing a foreground tree when a drift is
signaled. This indicates that the foreground tree it is replacing
is no longer accurate. Each foreground tree is used to repre-
sents a current state of the stream. From a continual learning
process perspective, the foreground trees that we are replacing
may be valuable in the future. Thus, a simple discard and
replace approach can be wasteful in terms of computational
processing. Instead we store the foreground trees in a candidate
tree set. This can be seen as a buffer to store trees that may
still be useful in the future. By using pre-existing candidate
trees we now can reduce the training effort in the future.

Random forest processing on GPU provides a massively
parallel architecture with many cores and is throughput ori-
ented, GPUs have better performance-per-watt than CPUs [1].
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Unlike the current GPU machine learning algorithm [7], [8],
our implementation also exploits the CPU memory to improve
the GPU-based random forest implementation. We stores trees
that may be reused in the future, which we call the CPU tree
pool in the CPU memory. Since GPUs are memory bound, by
utilizing the available CPUs we can manage our storage load
balancing of our trees efficiently.

The contributions of our work are two-fold. Firstly, we
propose an adaptation strategy that stores foreground trees that
are no longer accurate whenever a concept drift is detected in
a repository called CPU tree pool. When a drift warning is
detected, we choose candidate trees from the pool to best
match the new data stream and also start training a new
background tree. When a drift is signalled, we replace the
tree in our random forest with either a candidate tree or its
background tree, whichever is more accurate. Candidate trees
allow us to retain previous knowledge and capture concept
recurrence within the data stream. Secondly, we present an
implementation which uses both GPU and CPU efficiently.

The remainder of this work is organized as follows. In
Section II we briefly discuss related works in the area. Sec-
tion III describes our architecture for our GPU based random
forest algorithm. In Section IV we present our State Adaptive
Random Forest technique. In Section V the experimental
results of the experiments are presented. Finally, Section VI
concludes this work and poses directions for future work.

II. RELATED WORK

Random Forest on CPU. Abdulsalam et al. [9] designed
streaming random forests to tackle concept drifts, an algorithm
using an entropy-based drift-detection technique was devel-
oped for evolving data streams. Gomes et al. [10] proposed
a parallel implementation of Adaptive Random Forest (ARF)
which has no degradation in terms of classification perfor-
mance in comparison to a serial implementation, since trees
and adaptive operators are independent from one another.

Random Forest on GPU. Grahn et al. [8] proposed to use
a GPU thread to train one decision tree for the random forest.
Thus, many decision trees can be trained in parallel. Marron
et al. [1] used classification algorithms such as random forest
for mining large amount of stream data using GPU.

Recurrent drift detection. Some research [5] concentrates
on the re-use of previously learned classifiers for better accu-
racy when concept recur.

Current random forest are designed to adapt to concept drift
without retaining historical knowledge in the data streams.
Crucially we may be discarding useful knowledge. In our
approach, we store a pool of candidate trees that retain partial
historical knowledge that may be useful in the future.

III. RANDOM FOREST ON GPUS

We present the random forest model designed for GPU,
which is our base model. Fig. 1 depicts how trees are encoded
to single arrays using breadth-first traversal. Each node in the
tree array is encoded as a 32-bit unsigned integer, with its most
significant bit indicating if the node is a leaf. It represents an

Fig. 1: Forest layout on GPU.

attribute ID for an internal node when the bit is turned off,
otherwise it is an offset to other related data structures that
store extra information about the leaf, such as the class and
number of instance seen at the leaf, for computing information
gain. The rest of the bits have different meaning for its leaf and
internal nodes. In comparison to previous GPU based random
forest techniques, such as GVFDT [1], which allocate memory
for the full tree, our memory requirement grows exponentially
to the number of the attributes.

Our GPU based random forest implementation achieves
massive parallelism by launching multiple threads per tree,
each traversing down the tree with a different data instance.
Computation for information gain and leaf splitting is per-
formed on all the reached leaves from the previous tree
traversal, across all trees at the same time. As a result, the
number of instances used for each tree traversal has a key
impact on the speed. On the other hand, the more instances
that are training the model in parallel, the slower the GPU
based random forest is able to detect drifts.

IV. GPU-BASED STATE ADAPTIVE RANDOM FOREST

The main novelty of our GPU-based State Adaptive Random
Forest (GSARF) is the additional pool trees to allow for faster
updating of the random forest when concept drift occurs.
Previous research randomly train new trees in the background
when a drift warning is detected and replacing the drifted trees
in the foreground when a drift is detected in the forest [10].
GSARF has additional candidate trees to cope with evolving
data streams. A candidate tree pool stores the trees that were
previously used in an old concept that has expired but may
recur in the future. This candidate tree pool is stored on the
CPU instead of the GPU memory. We will explain the decision
to store the trees on the CPU in the following subsections. Our
state adaptive strategy is based on using a drift monitor per
tree to track warnings and drifts, and match candidate trees to
the state of the stream when a warning is detected.

An overview of our GSARF technique is depicted in Fig. 2.
We have two main components: the first is the state matching
component (Box 1), and the second is the candidate tree
replacement component (Box 2). State matching process:
when drift warnings are detected, the algorithm tries to find
the closest match from candidate or background trees to the
current stream. Tree replacement process: when actual drifts
are detected, the drifted trees are either replaced by their



Fig. 2: Flowchart for GSARF.

Fig. 3: Data structures

corresponding background trees, or the best candidate trees
in the forest depending on their accuracy.

Data Structures. We maintain a pool of trees that have
been initially built on the GPU in the CPU, shown by the
CPU tree pool in Fig.3. Each of the trees is associated with
a tree ID, which is used for referencing trees in the forest to
trees in the CPU tree pool. The tree IDs are also used to build
states for state matching. A subset of the expired trees that
were previously used is stored.

On the GPU side, we have a forest which consists of the
following three groups of trees. (1) Foreground trees are trees
that are trained and participate in voting. (2) Background
trees are trees that are trained only when their corresponding
foreground trees detect warnings. (3) Candidate trees are
foreground trees that were used frequently but have expired.
These trees may potentially be useful in the future.

We keep the state patterns in an linked list, called the Least
Recently Used (LRU) State List, as shown in Fig. 3. Each
list node contains the state pattern represented as a bitset, as
well as the number of times this pattern has been matched.
The state list has a fixed capacity. Once the number of states
exceeds the list capacity, the states are evicted by the least
recently used policy. The linked list ensures that the eviction
time complexity is constant.

Initialization. In the initialization phase, the state adaptive
random forest is initialized with three types of trees. The top
of Fig. 4 represents the initial state of the trees. In the first
step (Fig. 4 (A)), we built our random forest with n foreground
trees, and each foreground tree has a tree ID, as well as an
allocation in the CPU tree pool identified by the tree ID. Each
of the foreground trees, will be assigned a drift detector, with
a drift warning threshold. When a warning is detected on F1
and we did not find a match the second bit representing the
F1’s tree ID is turned off. F1’s background tree B1 will start
growing (Fig. 4 (B)). When a drift is detected on F1 and
there is no candidate tree, F1 is firstly copied to CPU tree

Fig. 4: An example of initial state transition.

pool (Step 1), B1 gets a new ID and B1 replaces F1 (Step
2) and an allocation in CPU tree pool (Step 3). Finally F1
consist of the new background tree B1 which is also stored
in as Tree ID 3 in the CPU Tree pool (Fig. 4 (C)).

State Matching Process. When a warning is detected, state
matching finds candidate trees to add to the candidate group of
the forest. This process iterates the LRU state list, and finds
the closest state pattern that satisfies the following criteria:
(1) Minimum edit distance to the current state, (2) Highest
frequency when multiple states have the same minimum edit
distance, and (3) Positions that matches the ID of the warning
trees must be unset. Fig. 5 illustrates how a state is constructed
and matched. Consider a fixed CPU tree pool size of 7, and
there are 3 trees in each group of the trees in the forest, as
shown in Fig. 5. The current state pattern is built according to
the presence of trees in the forest’s foreground group. Since
the trees with IDs 0, 4 and 2 are in the foreground group of
the forest, we set the 0th, 4th and 2nd positions (zero-based
indexing) of the state pattern bitset, and leave the rest unset,
i.e., 1010100. Suppose we have detected a warning on the tree
labeled F1 in the forest. We firstly set the 4th position of the
current pattern to 2 i.e., 1010200. This means any pattern with
its 4th position with value of 1 should not be considered. We
specifically set the value of the position as 2 instead of 0 or
1. The value 2 denotes that that specific tree is changing, and
should not be considered in the next round, whereas 1 indicates
that it is still useful and should be considered. We then try to
find the best match for the target pattern 1010200 across all
the states in the LRU pattern list, for example, the 3 patterns
shown in Fig. 5. State 2 is not a match since it has the 4th bit
set to 1. State 0 is also not a match as it had lower frequency
than State 1, despite them having the same minimum edit



Fig. 5: Pattern matching for CPU tree in candidate group

distance to the target pattern. State 1 with pattern 1110000
is selected in this case. The State 1’s frequency counter is
increment and the State object is removed from its position
and append it to the end of the pattern list. Note that F1’s
background tree B1 is also set to start growing. Next, we
select candidate trees with positions of bits that are set but
are unset in the current pattern. In our example, the tree with
ID 1 from the CPU tree pool is copied to the next available
position in the candidate group in the GPU forest. In the event
the candidate group of the forest is full, we remove the LRU
candidate trees in the forest. The warning detection shown in
Fig. 5 gives an example for such case. In this case, only the
drifted tree’s corresponding background tree starts growing.

Tree Replacement Process. When a drift is detected, we
first try to replace the drifted trees with candidate trees based
on performance. We then try to replace the drifted trees
with their background trees, if none of the candidate trees
is qualified to replace the drifted trees. The individual can-
didate tree’s confusion matrix is used to calculate Cohen’s κ
statistics [11] for assessing the performance of each candidate
tree. It measures inter-rater agreement for the prediction of
a tree against the true prediction. Candidate trees with the
best κ value is compared against the drift foreground tree’s κ
value. The drifted trees will be replaced by the best candidate
trees only if the candidate tree’s κ value is greater than the
drifted tree and above an ε threshold. The ε threshold is used to
account for variation within the data stream. If the difference
in the agreement is above the ε threshold, the candidate tree is
assumed to be legitimate. If the candidate tree is not chosen,
the drifted tree is replaced with its background tree.

If a background tree is chosen to replace the drifted tree,
we compare its κ value to the κ value for the drifted tree. If
their difference in κ value is below the δ threshold, we add
the background tree to the next available slot in the CPU tree
pool and assign it with a new tree ID. This constraint avoids
trees with similar performance to existing tree in the CPU
tree pool from being added to the pool. The background tree
is added to the CPU tree pool at this stage, in preparation for it
potentially becoming a candidate tree in the future. The current
state pattern is also updated, since it represents the presence

Fig. 6: Tree replacement upon drift detection on both fore-
ground trees F1 and F2, and only candidate tree C0 has better
performance than both of the drifted trees.

of trees in the foreground group of the forest. The updated
current state pattern will then be used to update the LRU state
pattern list. As an example, we use the current state of the trees
(i.e. 1011000) shown in Fig. 6. Suppose we detect a drift on
both tree F1 and F2. The candidate trees is first sorted by
their kappa measurement κ to find the best candidate trees.
Suppose tree C0 has the best κ value and is greater than that
of the F1’s. F1 first copies itself back to the CPU tree pool
(Step 1), since it may have grown from when it was last pulled
from the CPU tree pool. F1 then gets replaced by C0 (Step 2),
and the current state pattern becomes 0011100. If the drifted
tree F2 had no candidate tree that has better performance than
itself, and that its background tree B2 has a better κ value than
it over δ. F2 first copies itself back to the CPU tree pool at
position 3 (Step 3). B2 gets the next CPU tree ID 6 (Step 4),
replaces F2 (Step 5). The current state pattern now becomes
0010101. Lastly, the background trees of the drifted trees get
disabled after the tree replacement process.

Pseudocode Discussion. Our random forest tree training
uses the Hoeffding tree [12] as base classifer. The drift
detector used is ADWIN [4]. The function responsible for
state transition is shown in Algorithm 1. The state adaptive
algorithm has two parameters ε and δ. The ε is used to reduce
false positive tree matching and the δ threshold is used to avoid
adding trees with similar background trees that already exist
the CPU tree pool. Both these parameters need to be tuned
depending on the memory and runtime requirements. Setting
too low of an ε threshold, may results in no candidate tree
being reused, thus rendering the candidate group useless. On
the other hand, setting ε threshold too high would often result
in finding a matching candidate tree. This would render the
entire random forest less accurate. One would have to set the
ε threshold proportional to the variability of the fluctuation of
the data stream. If the δ threshold is set too low, we would be
storing additional trees in our CPU pool.

Theoretical Analysis. Similar to a single Hoeffding tree,



Algorithm 1: State Transition
Data: Forest, CPU Tree Pool, CurrentState

TargetState← CurrentState;
foreach Tx in Forest do

if warning detected then
reset and start growing background tree Bx;
TargetState[tree id(Tx)]← 2;

else if drift detected then
DriftedTreeList.append(Tx);

end
end
ClosestState← StatePatternMatch(TargetState);
if ClosestState 6= ∅ then

for i ∈ [0, StateLength) do
if CurrentState[i] = 0 and ClosestState[i] = 1 and Ti is not

in the Forest then
pull Ti from CPU Tree Pool and add it to the candidate

tree section in the forest;
end

end
end
Sort candidate trees by kappa;
NextState← CurrentState ;
foreach Di in DriftTreeList do

Copy Di back to the CPU Tree Pool;
SwapTree← null;
C ← candidate tree with the highest kappa;
Fi ← foreground tree at position i;
if Kappa(C) - Kappa(Fi) ≥ ε then

SwapTree← C
else

SwapTree← Bi;
if Kappa(Bi)− Kappa(Di) ≥ δ then

assign a new tree id for Bi;
add Bi to CPU tree pool;

end
end
Replace Di with SwapTree in the forest ;
Disable Bi in the forest ;
NextState[tree id(SwapTree)]← 1;
NextState[tree id(Di)]← 0;

end
LRUStateList.Add(NextState);
CurrentState← NextState;

the complexity of memory required, given the maximum
features per split m, the number of classes c, the number of
leaves l, and the maximum number of possible values per
feature v, is O(lmcv) [12]. Given T as the total number
of trees and lmax as the maximum number of leaves for all
trees, a plain random forest algorithm, without warning/drift
detection, requires O(T lmaxmcv).

When we use background trees with drift detection, the
space allocated for each tree is O(T ((Mlog(W/M) +
lmaxmcv)). This is similar to ARF [10], whereby ADWIN
requires O(Mlog(W/M)) [11], such that M is the number
of buckets, while W is maximum error rate window size.
In the worst case, like ARF, we allocate 2n trees for both
foreground and background trees concurrently. Similarly, the
number of candidate trees stored on the GPU is normally
greater than n. However, this number is normally dependent
on allowable CPU pool storage τ and is inversely proportional
to the concept recurrence rate in the data stream, r, i.e. τ ·n· 1r .

In terms of execution time, if it costs tT seconds to build a
tree, and tA to access and match a recurrent tree, whereby
tA < tT , then the gain in time is tT − tA = tG. Given the
recurrence rate τ , the execution time gain is tG · τ .

V. EXPERIMENTAL EVALUATION

We evaluate the performance of our GSARF algorithm by
classification performance, speed, and memory usage. The
classification performance is based on prequential evaluation.
In our implementation, the state transition algorithm can be
turned off such that foreground trees in the forest can only be
replaced by its background tree upon drift detection, which is
the GPU Adaptive Random Forest (GARF) algorithm. We use
this as a baseline algorithm.

The experimentation is performed on the following machine
and architecture: NVIDIA Tesla V100 16G Passive GPU, Dell
PowerEdge R740 with 40 CPUs, 125.42 GiB (Swap 976.00
MiB) and Ubuntu 18.04 with AMD64 4.15.0-46-generic. Our
code, synthetic dataset generators and test scripts are available
here1 for reproducible results. In our experiments, the set of
foreground and candidate trees are set to 100 unless otherwise
specified. We use two synthetic and two real datasets (KDD99
Cup [13] and Covertype datasets [14]) on our experiments.
The synthetic data sets include recurrent abrupt, gradual, and
mixed drifts data stream, while the real data sets have been
thoroughly used in the literature to assess the classification
performance of data stream classifiers. We use common dataset
generators including Agrawal and LED.

Accuracy Evaluation. Data streams may contain new con-
cepts or old concepts may reoccur, indicated by changes in
feature space and decision rules losing relevance over time.
Under such circumstance one should take into account compu-
tational aspects such as processing time, recovery of the model
after the concept change, and memory usage. Fast updating of
a learning model and recovery of old models may often be
more reasonable comparing to rebuilding a completely new
model. We are interested in tracking its characteristics over
the course of stream progression [15].

In these sets of experiments, we generate four types of
data streams: recurrent abrupt drift streams (drift interval
of 1 instance), recurrent gradual drift stream (drift interval
of 25K), mixed drift streams consisting of both abrupt and
gradual concept drifts, with each containing 2 or 3 different
concepts. Both Figs. 7 (a-c) and 8 (a-c) are examples of
results from Agrawal and LED generator. In the figures the
purple line represents accuracy for GARF, and the green line
represents the accuracy for GSARF. We noticed that with our
technique, the accuracy recovered faster when there was a drift
as opposed to GARF. This is to demonstrate the results of our
techniques. The cumulative accuracy gain is shown in Figs. 7
(d-f) and 8 (d-f). The cumulative accuracy gain is:

accuracy gain =
∑

((accuracy(GSARF)− accuracy(GARF))

1https://github.com/ingako/gsarf
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Fig. 7: Example of Performance Accuracy on Agrawal datasets
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Fig. 8: Example of Performance Accuracy (LED datasets)

This metric is inspired by measures used in lifelong learning
research and provides a more accurate depiction of the recov-
ery period after drift occurs. Intuitively the positive gain shows
the advantage obtained during recovery period just after a drift.
As compared to previous metrics, such as average accuracy,
previous metrics may be bias to the long stable stream period,
when both the baseline and our approach perform similarly.

We repeated all experiments ten times with varying seeds for
every synthetic dataset configuration. Table I summarized the
accuracy mean and standard deviation. We noticed that there
is no discernible difference between GARF and GSARF, as

effects are dampened over the entirety of the stream, whereby
the long periods of stream stability in between drifts allows
both GSARF and GARF to provide similar accuracy levels.
The recovery of accuracy when a drift appears is shown using
the cumulative gain plots in Figs. 7 and 8. The #Concepts
represents the number of recurring concepts captured in the
system. As both KDD99 and Covertype are real world datasets
we do not have details on their drift intervals.

Runtime and Memory Evaluations. In these experiments,
we used the NVProf, a CUDA applications profiling tool, for
measuring the runtime of each the CUDA memcpy and kernel



TABLE I: Recurrent Concept Drifts Evaluation.

Dataset Drift Type #Concepts
Accuracy (%) Runtime

ARF (CPU) GARF (GPU) GSARF (hybrid) ARF (CPU) GSARF (hybrid)

Agrawal Abrupt 2 87.04± 0.12 81.84± 0.38 82.19± 0.76 18m17s 2m44s
Gradual 2 86.59± 0.10 84.20± 0.13 84.48± 0.18 31m44s 4m31s
Abrupt 3 89.14± 0.13 82.21± 0.38 82.76± 0.43 31m00s 2m42s
Gradual 3 82.82± 0.14 79.36± 0.30 80.30± 0.27 38m16s 3m40s
Mixed 3 84.56± 0.13 79.48± 0.65 79.83± 0.58 37m55s 3m10s

LED Abrupt 2 71.21± 0.22 66.58± 0.36 71.44± 0.57 4m30s 1m31s
Gradual 2 64.86± 0.12 66.53± 0.24 68.17± 0.43 6m20s 1m46s
Abrupt 3 71.53± 0.16 67.40± 0.52 67.66± 0.39 4m44s 0m57s
Gradual 3 67.16± 0.24 66.48± 0.47 67.32± 0.20 5m34s 1m36s
Mixed 3 69.49± 0.30 67.35± 0.33 68.83± 0.37 4m49s 1m20s

KDD99 unknown unknown 99.87 99.85 99.85 11m16s 7m4s

Covertype unknown unknown 72.48 77.82 77.82 7m07s 1m00s

Agrawal* Gradual* 3 82.40 73.21 77.52 32h22m37s 14m32s

NOTE: Both GARF and GSARF have tree depth limited. We omitted the speed evaluation of GARF, since GARF is simply GSARF having the
state-adaptive algorithm turned off. Agrawal* contains a high number of data instances (3 million) for assessing performance in the long run.

TABLE II: Number of drifts and runtime evaluation: Agrawal

Drift Type # Drifts ARF (CPU) GARF (GPU) GSARF (hybrid)

Abrupt 12 31m00s 2m38s 2m42s
27 23m27s 3m02s 2m50s
40 18m47s 3m28s 3m36s

Gradual 12 38m16s 4m08s 3m40s
27 30m28s 4m07s 4m35s
40 34m21s 4m26s 5m01s

TABLE III: Number of trees and CPU memory usage

Dataset Drift Type # Concepts # Trees Memory (GB)

Agrawal Abrupt 2 667± 197 1.80± 0.53
Gradual 2 1068± 70 2.89± 0.19

Abrupt 3 1124± 61 3.05± 0.17

Gradual 3 1090± 36 2.95± 0.10
Mixed 3 923± 28 2.50± 0.08

LED Abrupt 2 142± 37 0.38± 0.10

Gradual 2 357± 18 0.95± 0.05

Abrupt 3 751± 11 2.04± 0.03
Gradual 3 458± 20 1.24± 0.05

Mixed 3 389± 29 1.05± 0.08

KDD99 unknown unknown 120 0.33

Covertype unknown unknown 100 0.27

Agrawal* Gradual* 3 2260 6.12

calls. The runtime was affected by the number of trees grown,
the number of instances being trained in parallel, and the
number of drift points in the dataset. Table I compared the
runtime between ARF (CPU) and GSARF. We omitted the
runtime results of GARF, since both GARF and GSARF have
the same bottleneck on data transfers, as GARF is simply
GSARF with the state-adaptive algorithm turned off. As a

result, the difference in runtime between GSARF and GARF is
negligible. In our implementation, whenever a warning or drift
is detected on any number of trees, the full state of the GPU
random forest are copied from GPU to CPU’s side of memory
for simplicity. We also conducted a runtime analysis of number
of drifts for the Agrawal dataset as shown in Table II.
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Fig. 9: Candidate vs Background Tree Swap (Average Case)

Results for the number of trees stored on the CPU side and
a memory estimation as shown in Table III. In our experiments
we have fixed the tree depth to 11 since the size of the tree
state grows exponentially to the depth. It takes approximately
2.71 MB to store the full state of a single tree. The tree can
be brought back to the GPU and continue growing.

Tree Reuse Rate Evaluation. We evaluate the performance
of candidate tree reuse rates across data streams with different
characteristics. The proportion of candidate to background tree
swaps from both a gradual and abrupt dataset are shown in
Fig. 9. The experiments demonstrated the algorithm swapped
in candidate trees as the expected.

Parameter Sensitivity Evaluation. There are three param-
eters that may have an effect on the system specifically the ε
threshold, δ threshold, the minimum edit distance threshold.
We varied the ε threshold from 0.01 to 0.80. This threshold
is calculated from the tree’s prediction and the true label for



the data instance. Table IV shows an increasing ε threshold
had a relatively consistent decreasing effect on the reuse rate
of abrupt drifts. This gives us an indication that in abrupt
datasets, the foreground trees are significantly dependant on
the candidate trees to be swapped into the ensemble.

TABLE IV: Sensitivity Analysis ε Threshold

Datasets ε Threshold Accuracy Gain Reuse Rate

LED (Abrupt) 0.01 4,956.46 0.90
0.05 4,849.98 0.89
0.20 4,810.29 0.89
0.60 4,129.89 0.79

LED (Gradual) 0.01 1,637.79 0.63
0.05 1,525.81 0.58
0.20 887.71 0.32
0.60 23.46 0.18

TABLE V: Sensitivity Analysis δ Threshold

Datasets δ Threshold Accuracy Gain # Trees

LED (Abrupt) 0.00 4,962.37 136.2± 31.8
0.05 4,805.28 144.7± 38.7

0.15 4,857.62 144.3± 38.1
0.20 4,868.42 144.2± 37.9

LED (Gradual) 0.00 1,367.78 362.3± 11.8

0.05 1,687.28 371.1± 23.3

0.15 1,803.62 362.2± 21.2
0.20 1,669.98 336.8± 25.2

TABLE VI: Minimum Edit Distance Threshold

Datasets Min. Edit Distance Accuracy Gain Reuse Rate

LED (Abrupt) 50 22.18 0.02
100 22.18 0.02
110 165.13 0.03
120 4,849.98 0.89

LED (Gradual) 50 570.25 0.18
100 1,764.38 0.60
110 1,689.00 0.62
120 1,637.79 0.63

Table V showed a consistent number of potential candidate
trees appended to the CPU. Table VI shows that reducing
the minimum edit distance threshold from 120 resulted in
an abrupt reduction in the accuracy gain and reuse rate. This
indicates that GSARF finds pattern even when given a larger
edit distance threshold.

VI. CONCLUSION

By exploiting the parallelism, provided by GPU, and more
available CPU memory, we designed an algorithm that mem-
orizes seen concepts and effectively adapted them when the
same concepts reappear. We have shown that we can get a
substantial speed up in comparison to CPU based random
forest technique. Our results show that the state adaptive
algorithm effectively maintains its accuracy when the data

streams contains recurrent concepts. When compared against
random forests without memory of discarded foreground trees,
our technique is shown to achieve a gain in accuracy.

In the future, we may fine tune the number of trees allowed
in the random forest. This will make the size of the random
forest adjustable to the distribution of the stream. In terms of
design requirements, the swapping scheme between GPU and
CPU pools can potentially be devised to reduce the affect of
data transfers.
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