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Abstract—Graph convolution networks are potent methods in
graph representation learning. Meta-paths, which connect differ-
ent types of nodes, are extensively used to represent various se-
mantic meanings in heterogeneous graphs. Inspired by the above,
we design a higher-order heterogeneous graph convolutional net-
work based on meta-paths. It not only chooses a few meta-paths
but also captures higher-order meta-paths with important higher-
order relations (such as communal relation). Besides, it contains
a calculation method of higher-order meta-path-based adjacency
matrices and a novel heterogeneous graph convolution network
for generating node embeddings. At every message passing step,
it linearly aggregates information from higher-order meta-path-
based neighbors. The computational complexity analysis shows
that our proposed model is of high efficiency and applies to large-
scale heterogeneous graphs. Our proposed model outperforms the
state-of-the-art results in three real-world heterogeneous graphs:
DBLP, IMDB, and Amazon Kindle Review. The classification
experiments show that the calculation of higher-order meta-
path-based adjacency matrices brings 2.23% average accuracy
improvement in DBLP and IMDB.

Index Terms—heterogeneous graph, network embedding,
graph convolutional network

I. INTRODUCTION

Many real-world data are intuitively modeled as graphs.
These graphs containing different types of nodes or edges
are usually called heterogeneous graphs (or heterogeneous
information networks [1]), such as E-commerce networks,
bibliographic networks, and knowledge graphs. Heterogeneous
graphs not only model complex network structures but also re-
tain rich original information. Hence it has a significant effect
on data mining and has been increasingly used. In heteroge-
neous graphs, meta-path [2] is defined as a composite relation
between the starting node type and the ending node type. For
example, meta-path APC (Author-Paper-Conference) starting
with the node type ”Author” and ending with the node type
”Conference, ” which describes the relation of authors who
publish their papers at conferences. Meta-path is universally
used to extract structural features and collect information from
neighbors based on it. In some ways, the choice of meta-paths
largely determines the performance of data mining. Generally,
there are two primary methods for selecting meta-paths:
• Method I: Selecting optimal meta-paths by domain ex-

perts with prior knowledge [3]–[5]. The selected meta-
paths are strict relationship descriptors, which can not

accommodate variance in relations, resulting in only a
small part of paths matching the meta-paths [6].

• Method II: Using all meta-paths no longer than a pre-
defined length maxLen [2], [7], [8]. However, selecting
massive meta-paths is hard to avoid due to the number
of meta-paths with the exponential growth in maxLen.

So a new meta-path selection method is needed to avoid
the disadvantages of the above methods. In GraRep [9] and
MixHop [10], higher-order neighbors (such as 2-hop neighbors
and 3-hop neighbors) have proven useful for graph analysis
tasks. As for heterogeneous graphs, we noticed that higher-
order meta-paths (see the definition of higher-order meta-
paths in section III) contain special meanings. Especially 2-
multiples meta-paths, which are palindrome, they represent
communal relations: APA represents Co-Author relation,
PTP represents two papers include a common terminology,
APCPA represents two authors publishing papers at the same
conference, etc. If two nodes are connected by a higher-order
meta-path, there is a higher-order relation between them.

The higher-order meta-path is proposed in this paper,
which considers the higher-order relations (such as communal
relation) and selects a few meta-paths. Higher-order meta-
paths can be obtained through the following two steps. First,
choosing the meta-paths no longer than K, K = 2 is generally
sufficient. Second, expanding each meta-path to higher-order
meta-paths. For instance, meta-path APC can be expanded to
higher-order meta-paths APC, APCPA, APCPAPC, etc.
0ur K can be much shorter than the maxLen in method II.
It is because our second step expands meta-path to higher-
order meta-paths. For example, to get the meta-path APCPA,
which is important in DBLP, the method II’s maxLen needs
to be 4, while our method simply used K = 2 to get the
meta-path APC, then expand APC to 2-multiples meta-path
APCPA.

Graph neural networks (GNNs) [11]–[15], especially graph
convolution networks (GCNs) [11], [12] are powerful methods
for graph representation learning. Their embedded results are
useful in various graph analysis tasks, including classification,
link prediction, and visualization. However, a great majority
of the existing GNNs are designed for homogeneous graphs,
which cannot learn a general embedding to mix information
from different meta-paths.
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For heterogeneous graphs analysis tasks, we design a novel
Higher-Order Heterogeneous Graph Convolutional Network
based on meta-paths, called HOHGCN. At each message
passing step, HOHGCN collects information from different
higher-order meta-paths, then mixes the information linearly.
Specifically, our major contributions are as follows:
• We propose higher-order meta-paths, which not only

reduce the number of selected meta-paths but also cap-
ture important higher-order relations, such as commu-
nal relations. Benefitting from higher-order meta-paths,
HOHGCN dramatically reduces training time without
affecting experimental results.

• A calculation method of the adjacency matrices based
on higher-order meta-paths is proposed. We first normal-
ize relation-based adjacency matrices, and then multiply
them according to higher-order meta-paths. It reduces
the impact of nodes with a lot of neighbors and brings
1.72%, 2.75%, and 0.19% accuracy improvement in
DBLP, IMDB, and Amazon Kindle Review experiments,
respectively.

• Our HOHGCN mixes the information from different
higher-order meta-paths. We designed experiments to
evaluate its performance, proving that our model has
0.97% to 1.45% performance improvement compared
with the best result of state-of-art baselines. HOHGCN is
of high efficiency and is suitable for large-scale heteroge-
neous graphs. Meanwhile, it is able to learn embeddings
for nodes that never appear while training, which can be
applied to dynamic graphs easily.

II. RELATED WORK

Graph neural network. In recent years, graph neural
networks [11]–[13], [15] that model graph-structured data
as neural networks are popular topics. They aggregate in-
formation from neighbors to generate node embeddings. For
example, in GCN [12], a normalized adjacency matrix is used
to collect information from neighbors, then a convolutional
aggregator is used to learn embeddings as follows:

Â = D̃−
1
2 ÃD̃−

1
2 (1)

H(l+1) = σ
(
ÂH(l)W (l)

)
(2)

where Ã denotes an adjacency matrix with self-connections,
D̃ is a diagonal matrix where D̃ii =

∑
j Ãij , H

(l) denotes
the output of layer l, W (l) denotes a trainable weight matrix,
and σ is an activation function. In GraphSAGE [11], mean
aggregator, pooling aggregator, and LSTM [16] aggregator are
used to collect neighbors’ information. MixHop [10] mixes
features of neighbors at various distances to obtain neighbor
mixing relationships. GAT [13] learns the influence weights
of each neighbor via self-attention mechanism to generate
node embeddings. HAN [3] extends GAT to heterogeneous
graphs with hierarchical attention, in which the significance
of different nodes and different meta-paths are considered.
HetGNN [17] first samples heterogeneous neighbor nodes
through a random walk, second group neighbor nodes by their

types, then aggregates the information of nodes for every
group, and finally aggregates the information of different
groups into final embeddings. The final embeddings can be
used for node classification, clustering, link prediction, and
recommendation.

Network Embedding. It aims to learn a low dimensional
latent representation of nodes from graph structure. Inspired
by word2vec [18], in DeepWalk [19] and node2vec [20],
random walks are used to generate node sequences (analogy to
sentences), then SkipGram is used to learn node embeddings
from node context. Similar to DeepWalk, LINE [21] learns
node embeddings from the similarity of direct neighbors and
the similarity of 2-hop neighbors. Besides, there are many
other approaches, such as the self-encoded based methods
[22], [23], matrix factorization based methods [9], [24], and
methods based on adversarial generation networks [25]–[28].
The above methods are designed for homogeneous graphs.
Regarding model heterogeneous graphs, metapath2vec [29],
which random walks based on meta-paths is proposed. More-
over, HIN2vec [7] learns embeddings of nodes and meta-paths
from relationships among nodes.

III. PRELIMINARIES AND PROBLEM DEFINITION

Before introducing our model, some necessary basic defini-
tions should be introduced firstly.

Definition 1. Directed Heterogeneous Graph [30]. A di-
rected heterogeneous graph is defined as G = (V, E , T ,R)
with a node type mapping function V → T and an edge type
mapping function E → R, where V denotes a set of nodes, E
denotes a set of directed edge, T denotes a set of node types,
R is a set of edge types (edge types are called relations in
this paper), and |T |+ |R| > 2.

Paper p1 Paper p2 Paper p3

Conference c1 Conference c2

Author a1 Author a2 Author a3 Author a4 Author a5

T T T
Term t2 Term t3 Term t4

T
Term t1

Fig. 1: Example of a heterogeneous graph.

Example. We model DBLP (a bibliography dataset) as a
heterogeneous graph in Fig. 1. It includes multiple node types,
such as Authors (A), Papers (P ), Conferences (C), and Terms
(T ). It also includes multiple edge types. For instance, A→ P
represents the relation of authors to papers, P → C represents
the relation of papers to conferences, P → T represents the
relation of papers to their terms. Besides, P → A, C → P , and
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Fig. 2: Example of calculating higher-order meta-path-based directed adjacency matrix Ĉφ×p (using data in Fig. 1), where
p = 2, φ represents meta-path APC ( Author → Paper → Conference). Ar is the original binary directed adjacency matrix
of relation r. Âr denotes a normalized relation-based adjacency matrix. B̂φ denotes the meta-path-based adjacency matrix of
meta-path φ.

T → P represents the reverse relations of A → P , P → C,
and P → T , respectively.

Definition 2. Meta-Path [2]. A meta-path φ with a length
of l is usually represented as t1

r1−→ t2
r2−→ · · · rl−→ tl+1,

where t1, t2, · · · , tl+1 denote node types, r1, r2, · · · , rl denote
relations (different types of edge). It can be abbreviated as
t1t2 · · · tl+1 or r1 ◦ r2 ◦ · · · ◦ rl, where φ = r1 ◦ r2 ◦ · · · ◦ rl
denotes a composite relation of node types t1 to tl+1, ◦ is a
composition operator.

Definition 3. Higher-Order Meta-Path. Given a meta-path φ
and a multiplier p, the higher-order meta-path φ×p is defined
as p-multiples of φ. Besides, the length of φ×p is p times the
length of φ. For example, if φ is APC, φ×1 is APC, φ×2 is
APCPA, φ×3 is APCPAPC, and φ×4 is APCPAPCPA.
Given a higher-order meta-path φ × p, if nodes u and v are
connected by φ × p, v can be seen as a higher-order meta-
path-based neighbor of u.

Definition 4. Relation-based Directed Adjacency Matrix.
Given a relation r, the relation-based adjacency matrix Ar
is a sparse matrix. Only when there is a r type edge connects
node u to node v, Ar,u,v = 1.

Definition 5. Meta-Path-Based Directed Adjacency Matrix.
Given a meta-path φ = r1 ◦ r2 ◦ · · · ◦ rl, the meta-path-based
directed adjacency matrix B̂Φ is defined as the product of
Âr1Âr2 · · · Ârl , where Âr1 , Âr2 , · · · , Ârl are relation-based
directed adjacency matrices of relations r1, r2, · · · , rl, respec-
tively.

Definition 6. Higher-Order Meta-Path-Based Directed Ad-
jacency Matrix. Given a meta-path φ and a multiplier p,
the higher-order meta-path-based adjacency matrix Ĉφ×p is

defined as p-multiples of B̂φ(B̂φ is a meta-path-based Ad-
jacency Matrix). For example, if meta-path φ = r1 ◦ r2,

then B̂Φ = Âr1Âr2 and Ĉφ×3 = B̂φ

(
B̂φ

)T
B̂φ =

Âr1Âr2

(
Âr2

)T (
Âr1

)T
Âr1Âr2 .

Definition 7. Binary Higher-Order Meta-Path-Based Di-
rected Adjacency Matrix. Given a meta-path φ and a multiplier
p, the binary higher-order meta-path-based adjacency matrix
Cφ×p is defined as a sparse binary matrix, where only when
φ× p connects node u to node v, Cφ×p,u,v = 1.

IV. OUR PROPOSED MODEL

We are interested in messaging based on higher-order meta-
paths, where nodes collect information from their higher-order
meta-path-based neighbors at every step. As is known to all,
GCNs are powerful in information collection via neighbors. So
we design our model based on GCNs. The model learns to gen-
erate representations from neighbor information. Firstly, the
method of obtaining higher-order meta-path-based adjacency
matrices is introduced. After that, our proposed HOHGCN is
described, which learns representations from above adjacency
matrices and nodes’ features. Finally, the classification method
using the output of HOHGCN is given.

A. Higher-Order Meta-Path-Based Directed Adjacency Matrix

As shown in Fig. 1, if we directly utilize the binary
higher-order meta-path-based adjacency matrix Cφ×p to node
classification, the nodes with a lot of neighbors may have too
much influence. For instance, given a meta-path φ = AP
and a multiplier p = 2, then higher-order meta-path φ × p is
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Fig. 3: Our proposed higher-order heterogeneous graph convolution network based on meta-paths (HOHGCN), in which N
denotes the number of nodes, X denotes an original feature matrix that contains features from different types of nodes. Ĉφi×p
denotes a higher-order meta-path-based adjacency matrix, where φj is the jth meta-path and p denotes the multiplier. W (i)

φ×p
denotes the trainable weight matrix of higher-order meta-path φ × p in layer i, D represents the embedding dimension, and
H(i) represents the output of layer i.

APA, the binary adjacency matrix Cφ×p represents co-author
relation. It is already known that authors a1, a2, and a3 belong
to category C1 while author a5 belongs to category C2, now
we need to classify author a4. Based on the binary matrix
Cφ×p, author a4 will be classified as category C1, because
author a4 has only one co-author belongs to category C2,
but three co-authors belong to category C1. It is unreasonable
because author a4 published two papers with author a5 but
only one paper with a1, a2, and a3.

So, it is necessary to compute higher-order meta-path-based
adjacency matrix Ĉφ×p, which is not a binary matrix. The
calculation steps are shown in Fig. 2 and the heterogeneous
graph is shown in Fig. 1. First step is to normalize relation-
based adjacency matrix by:

Âr,i,j =

{ Ar,i,j√
(
∑N

k=1 Ar,i,k)(
∑N

k=1 Ar,k,j)
, Ar,i,j > 0

0 , Ar,i,j = 0
(3)

where Ar is the original binary directed adjacency ma-
trix based on relation r. N denotes the number of nodes,∑N
k=1Ar,i,k and

∑N
k=1Ar,k,j are the out-degree of node i

and the in-degree of node j in Ar. The result Âr is called the
normalized relation-based (directed) adjacency matrix.

(3) is similar to (1) in GCN [12], but the difference is that
the self-connections in (1) may not exist in the relation-based
adjacency matrix. For example, given a relation A → P that
represents the relation between authors and papers, an author
can not be connected with itself in the relation-based adjacency
matrix. Therefore, sometimes the degrees Dii is 0, that is why

(1) can not be used in this paper. Our normalization reduces
the impact of nodes with a lot of neighbors.

The meta-path-based directed adjacency matrix is calculated
as follows:

B̂φ =

|φ|∏
i=1

Âri (4)

where φ = r1 ◦ r2 ◦ · · · ◦ r|φ| describes a meta-path, |φ| is
the length of φ, ri is a relation (a type of directed edge),
Âri is the normalized adjacency matrix based on relation
ri. For example, meta-path φ is APC which represents the
path of Author → Paper → Conference, the length
|APC| = 2, Âr1 = ÂA→P and Âr2 = ÂP→C are the relation-
based adjacency matrices of relations Author → Paper and
Paper → Conference respectively.

Higher-order meta-path-based directed adjacency matrix can
be calculated as follows:

Ĉφ×p =
(
B̂φB̂

T
φ

)b p
2 c (

B̂φ

)p mod 2

(5)

where φ denotes a meta-path, p denotes the multiplier, φ× p
denotes a higher-order meta-path, Ĉφ×p is the higher-order
meta-path-based adjacency matrix of φ × p, B̂Tφ is the trans-
posed matrix of B̂φ, bp2cdenotes the floor of p

2 , and p mod 2
is the remainder of p divided by 2. For example, meta-
path φ is APC (Author → Paper → Conference), the
multiplier p = 2, the 2-multiples of meta-path φ is APCPA,
Ĉφ×2 = B̂φB̂

T
φ = (AA→PAP→C) (AA→PAP→C)

T
=

AA→PAP→CAC→PAP→A



TABLE I: Statistics of the datasets.

Dataset Node or Edge Type Number Feature Training Validation Test

DBLP

Nodes

Author 4,057 330
Conferences 20 4

Paper 14,328 0
Term 8,789 0 800 400 2,857

Edges
Paper-Author 19,645 0

Paper-Conferences 14,328 0
Paper-Term 88,420 0

IMDB
Nodes

Movie 3,088 6,045
Actor 4,410 0

Director 1,678 0 300 300 2,488

Edges Movie-Actor 9,255 0
Movie-Director 3,017 0

Amazon Kindle Review
Nodes

Review 184,992 101

4,000 4,000 176,992
Product 46,934 0

User 39,375 0

Edges Product-Review 184,992 0
User-Review 184,992 0

B. Higher-Order Graph Convolution Layer Based on Meta-
Paths

As shown in Fig. 3, we design a multi-layer higher-
order graph convolutional network based on meta-paths (HO-
HGCN), the layer-wise propagation rule is as follows:

H(i+1) = ‖φ∈M‖Pp=1σ
(
Ĉφ×pH

(i)W
(i)
φ×p

)
(6)

where ‖ denotes column-wise concatenation. M is a set, which
includes an empty path and all the meta-paths no longer than
a predefined length K. P indicates the maximum multiplier of
higher-order meta-path. σ(·) is the ReLU activation function.
Ĉφ×p is the higher-order meta-path-based adjacency matrix.
H(i) ∈ RN×D denotes the output of the ith layer. W (i)

φ×p
represents a trainable weight matrix, and H(0) = X is the
original features of nodes.

C. Node Classification

For classification tasks, the final layer of our model outputs
the probability distribution of predict labels:

Ỹ = softmax
(
H(L)Wo

)
(7)

where HL denotes the output of layer L. Wo ∈ RN×D
denotes a trainable weight matrix, softmax is a normalized
exponential function of a probability distribution. Our model
parameters are learned through minimizing cross-entropy loss
with a L2 regularization, where cross-entropy loss is calculated
only on the nodes that belonging to a particular type with
known labels, similar to [12].

D. Computational Complexity

In the calculation of Ĉφ×pH(i), there is no need to cal-
culate Ĉφ×p. We expand Ĉφ×pH

(i) to Âr1Âr2 · · ·H(i)and
calculate Ĉφ×pH(i) with right-to-left multiplication. For ex-
ample, if meta-path φ is APC, p = 2, then Ĉφ×pH

(i) =(
ÂA→P

(
ÂP→C

(
ÂC→P

(
ÂP→AH

(i)
))))

. The adjacency

matrices Â∗ is a sparse matrix with no more than S non-zero

entries. Our layer (as shown in (6)) takes O (|M |KPSD)
computational time, where |M | denotes the count of meta-
paths, K denotes the maximum length of meta-paths, P
denotes the maximum multiplier of higher-order meta-path,
and D is the embedding dimension of H(i).

In general, |M |, P , and D are small numbers. In most
experiments, P = 2, K = 2, and D = 64, therefore, the
number of meta-paths |M | is lower than |R|2+ |R|+1, where
|R| is the number of edge types. Our HOHGCN is of high
efficiency and is appropriate for large-scale heterogeneous
graphs easily.

V. EXPERIMENTS

A. Datasets

We select three real heterogeneous graph datasets for eval-
uation and summarize their statistics in TABLE I.
• DBLP1. Similar to [3], we select a subgraph from DBLP

dataset includes four node types, use bag-of-words feature
vectors as author features represent their keywords, use
one-hot vectors of research areas as conference features.
Besides, we tag authors into four categories based on their
research areas.

• IMDB2. We select the movies that belong to a single
class of action, comedy, or drama from IMDB. It contains
3,088 movies, 4,410 actors, and 1,678 directors. Movie
features are bag-of-words feature vectors represent their
plots.

• Amazon Kindle Review3. We choose a subset from the
Amazon Kindle Review dataset. The subset contains
184,992 reviews, 46,934 products, and 39,375 users. Re-
views are divided into two classes, helpful and unhelpful,
which are tagged by whether more than 50% of people
think they are helpful. Review features are the one-hot
vector of their scores and the bag-of-words feature vectors
of their review texts.

1https://dblp.uni-trier.de/
2https://www.imdb.com/
3https://www.amazon.com/



TABLE II: Node classification accuracy in different number of training data per class.

Dataset Training per class DeepWalk metapath2vec GCN GAT HetGNN HOHGCN-binary HOHGCN

DBLP

20 80.29 90.93 91.39 91.28 90.34 92.54 93.98
50 88.31 92.47 91.50 91.49 92.19 92.19 94.12
100 89.71 92.44 92.76 90.79 93.66 93.14 94.54
200 90.93 92.44 92.62 90.97 93.80 92.37 94.49

IMDB
20 38.14 39.49 48.51 49.32 44.21 48.79 50.56
50 42.16 39.69 50.64 52.25 48.91 50.92 54.50
100 45.02 42.38 53.82 56.31 53.38 54.14 57.03

Amazon Kindle Review
20 61.31 65.78 68.69 68.82 61.87 72.70 72.83
200 73.69 72.66 79.29 78.42 74.29 80.08 80.10

2000 77.30 78.31 84.43 81.25 80.56 82.09 82.52

B. Baselines

We compare our method against homogeneous and het-
erogeneous methods. To validate our higher-order meta-path-
based adjacency matrix, we also test a variant of HOHGCN.

• DeepWalk [19]: It is a homogeneous network embedding
method via random walk. In this paper, we ignore the
node types and edge types, i.e., test heterogeneous graphs
as homogeneous graphs.

• metapath2vec [29]: An embedding method designed for
heterogeneous graphs. It random walks based on meta-
paths, then embeds heterogeneous graphs using skip-
gram. We show the best result of experiments on every
higher-order meta-paths.

• GCN [12]: A graph convolutional network which learns
node embeddings in homogeneous networks. We test
every higher-order meta-path-based directed adjacency
matrices (Ĉφ×p), then report their best result.

• GAT [13]: A graph neural network, which learns the
influence weights of each neighbor via self-attention
mechanism. We experiment on every higher-order meta-
path-based adjacency matrices, then show their best re-
sult.

• HetGNN [17]: A heterogeneous graph convolutional net-
work, which first samples heterogeneous neighbor nodes
through a random walk, second group neighbor nodes by
their types, then aggregates the information of nodes for
every group, and finally aggregates the information of
different groups into final embeddings. It treats different
types of nodes separately but ignores differences in edge
types.

• HOHGCN-binary: A variant of our model, which uses
binary higher-order meta-path-based adjacency matrices
(Cφ×p is proposed in section III). When there are some
nodes with a lot of neighbors, HOHGCN-binary may be
significantly affected by these nodes. It is used to verify
whether the calculation method of higher-order meta-
path-based adjacency matrix is available.

• HOHGCN: Our proposed model in section IV.

C. Implementation Details

For our algorithm, we train a two-layer network as described
by (6) using TensorFlow [31]. The predefined length K = 2,

the maximum multiplier of meta-paths P = 2, and the em-
bedding dimension D = 64 are used in our experiments. The
above parameters are determined by parameter experiments in
V-F. We use the Gradient Descent optimizer to train our model
with a 0.0005 L2 regularization. Meanwhile, the learning rate
αt = 0.05×0.997t is used in epoch t, dropout is used in input
and hidden layers.

For a fair comparison, the same training set, validation set,
and test set are used for all algorithms. Besides, the embedding
dimension is 64 for all baselines. Other settings for DeepWalk
and metapath2vec include: walk length is 40, walks per node
is 10, window size is 5, and the number of negative sample is
5.

D. Node Classification Experiments

We report node classification accuracy in TABLE II. Ac-
cording to the results with different numbers of training nodes,
such as 20, 50, and 100 training nodes per class, we have the
following observations:
• Compared with the best performing baselines, the av-

erage accuracy of our model is improved by 1.45%,
1.40%, and 0.97% in DBLP, IMDB, and Amazon Kindle
Review datasets. Our model outperforms all baselines,
except GNN when using 2000 training nodes per class
in Amazon Kindle Review dataset. It is because when
using a large number of training sets on the reviews
usefulness classification, the information collected from
edge type ”User-Review” is sufficient, but the edge type
”Products-Review” brings the noise to HOHGCN. In
general, with the increase of training nodes, the accuracy
of classification increases. Moreover, it is noteworthy that
for different datasets, the more relevant the neighbors are,
the better our approach performs.

• Compared with DeepWalk and metapath2vec, our HO-
HGCN performs better, especially when using few train-
ing nodes. It is because our HOHGCN not only considers
the heterogeneity of nodes and edges but also utilizes
the node features of neighbors to generate better node
embeddings.

• The graph convolutional networks, such as GAT, GCN,
and HetGNN gain better performance compared with
DeepWalk. It illustrates that collecting information from
connected nodes is effective. Compared with our model,
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Fig. 4: Embeddings visualization. Spots represent authors which are colored according to their research area.

GAT, GCN, and HetGNN have lower accuracy. It is
because our model gathers information from different
meta-paths, and the calculation of higher-order meta-
path-based adjacency matrices reduces the impact of
nodes with a lot of neighbors.

• Compare with the variant HOHGCN-binary, HOHGCN
improves the average accuracy by 1.72%, 2.75%, and
0.19% in DBLP, IMDB, and Amazon Kindle Review ex-
periments, respectively. It shows that learning embedding
in higher-order meta-path-based adjacency matrices can
achieve better performance than in binary adjacency ma-
trices. It verifies the validity of using normalized relation-
based adjacency matrices when calculating higher-order
meta-path-based adjacency matrices.

E. Visualization

We compare the visualization results of different embedding
methods in Fig. 4. First, we learn the author embeddings
on DBLP with different methods, such as DeepWalk, meta-
path2vec, GCN, and our proposed HOHGCN. Second, we
visualize the authors’ embeddings using t-SNE [32], which
gives each author a location in a 2-dimensional map and colors
the nodes according to their research areas.

In the visualization using DeepWalk, authors in various
research areas are mixed. In metapath2vec and GCN, the
distributions of authors belonging to the same research areas
are dispersed. From Fig. 4, we find that the visualization
of HOHGCN performs best. In HOHGCN, the authors with
the same colors are distributed close. Meanwhile, there are
distinct boundaries between different color groups. The above
analysis demonstrates that our HOHGCN learns meaningful
node embeddings.

F. Parameters Experiments

We discuss our parametric sensitivity via experiments in
DBLP dataset.
• The number of layers L. Fig. 5a shows that with the

layer number from 0 to 5, the accuracy rises initially and
then almost unchanged. This is because HOHGCN needs
to collect information from a suitable range of neighbor
nodes, but an oversized range is unnecessary.

• The dimension of embeddings D. Some results are not
shown in Fig. 5b because their embedding dimension is

less than the number of higher-order meta-paths. When
there are enough dimensions to encode information, em-
bedding dimensions have little effect on accuracy.

• The maximum length of meta-paths K. In Fig. 5b, the
accuracy increases rapidly when the maximum length of
meta-paths increases from 0 to 2. It is because the meta-
paths AP and APC are significant for author classifica-
tion in the DBLP dataset. When the length exceeds 2, the
accuracy is almost unchanged.

• The maximum multiplier of meta-paths P . As shown
in Fig. 5c, when using 0-multiples meta-paths (just
using the original features of nodes), the accuracy is
only 80.15%. When using 2-multiples meta-paths, the
accuracy rises to 94.49% because the 2-multiples meta-
path APCPA is important for DBLP. However, with the
growth of the maximum multiplier, the accuracy drops
slowly may because of the noise from distant nodes.

VI. CONCLUSION

In this paper, we analyze the popular methods of meta-
paths selected and show their disadvantages. To address this,
we propose higher-order meta-paths, which not only lead to
a few meta-paths but also contain various special meanings
(such as communal relations). To reduce the impact of nodes
with a lot of neighbors, a calculation method of higher-
order meta-paths-based adjacency matrices is designed, which
improves the accuracy by 1.72% and 2.75% in node clas-
sification experiments of DBLP and IMDB respectively. A
novel heterogeneous graph convolution network is proposed
to generate node representations, which collects information
from higher-order meta-path-based neighbors. The analysis of
computational complexity shows that our proposed model is of
high efficiency and can be used for large-scale heterogeneous
graphs. Our visualization and classification experiments prove
that our HOHGCN outperforms state-of-the-art methods on
three real-world datasets. Compared with the best performing
baselines, there is 0.97% to 1.45% accuracy improvement in
node classification tasks.

For graphs with numerous types of edges, we have to use
a large embedding dimension to encode information from
various higher-order meta-paths. In the future, we plan to learn
the significance of every path, then generate node embeddings
based on those important paths.
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Fig. 5: Parametric sensitivity w.r.t. the count of layers L (excluding output layer), the dimension of embeddings D, the maximum
length of meta-paths K, and the of meta-paths P .
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