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Abstract—Deep Convolutional Neural Networks (DCNNs) have
enhanced the performance of semantic image segmentation but
many challenges still remain. Specifically, some details may be
lost due to the downsampling operations in DCNNs. Furthermore,
objects may appear in an image at different scales, and extracting
features using convolutional filters with large sizes is costly in
computation. Moreover, in many cases, contextual information,
such as global and background features, is potentially useful
for semantic segmentation. In this paper, we address these
challenges by proposing a Multi-Receptive Atrous Convolutional
Network (MRACN) for semantic image segmentation. The pro-
posed MRACN captures the multi-receptive features and the
global features at different receptive scales of the input. MRACN
can serve as a module easily being integrated into existing models.
We adapt the ResNet-101 model as the backbone network and
further propose a MRACN segmentation model (MRACN-Seg).
The experimental results demonstrate the effectiveness of the
proposed model on two datasets: a benchmark dataset (PASCAL
VOC 2012) and our industry dataset.

I. INTRODUCTION

Deep convolutional neural networks [1] have improved
the performance of semantic image segmentation task that
performs pixel-level classification in an image [2]-[5]. Many
DCNN based models have been designed such as Full Con-
volutional Networks (FCNs) [2], and they usually employ a
pre-trained classification network and output a probability map
for categorizing every pixel of an input image. In DCNNS,
consecutive downsampling operations are employed to reduce
image resolution, which makes very deep architectures feasible
[6]-[8]. However, these repeated combinations of the down-
sampling operations significantly reduce the spatial resolution
of the feature maps, resulting the loss of the informative details
that are potentially useful for semantic segmentation.

To solve the resolution reduction problem, many approaches
have been proposed. One type of approaches is to recover the
resolution by the upsampling operations or the deconvolutional
layers that generate feature maps with high resolution [2], [3],
[9]. This upsampling process restores the feature maps to the
input resolution for classification at pixel level. However, the
parameter size of the network cascaded with the deconvolu-
tional and the unpooling layers is doubled, compared with the
original convolutional network. For example, Long et al. [2]
and Wang et al. [9] use the pre-trained VGG16 network [7] to
generate the initial parameters. Furthermore, directly extending
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these networks to deeper architectures usually degrades their
performance [8]. Another type of approach is to keep the
input resolution unchanged by atrous convolutions, also known
as dilated convolutions [4], [10], [11]. In atrous convolution,
filters with large dilation rates are used to enlarge the receptive
field while remaining the spatial resolution.

Another problem to semantic image segmentation is that
objects exist in images at different scales. A natural idea is
to enlarge the receptive field by stacking more convolutional
layers or using convolutional filters with larger sizes for
capturing contextual information at different receptive scales.
As the term “multi-scale” is also used in methods that re-
scale the input images, such as [12], in this paper, we use
“multi-receptive” to refer different sizes of receptive fields
by changing filter sizes. Based on the convolutional filters
with different sizes, the inception module [13] and the spatial
pyramid pooling [14] are two widely adopted modules by
many recent works for extracting multi-receptive features such
as [8], [15], [16]. However, it incurs high computational cost
when filters with large sizes are used. Chen et al. [4] also
adopt this idea in their work using multiple atrous convolu-
tions. In addition, recent works exploit the global/background
information of the input images to enhance feature extraction
processes [11], [17], [18].

In this work, we address the aforementioned problems
together and propose a multi-receptive atrous convolutional
network for semantic image segmentation. Inspired by the
atrous/dilated convolution [4], [10], [11] and the inception
module [13], in the proposed MRACN, we employ a combi-
nation of atrous convolutions for extracting the multi-receptive
feature maps. These atrous convolutions with different dilation
rates are able to capture the contextual information of the
input map at different receptive scales without reducing the
resolution. More importantly, we exploit the global features
of an input map also in a “multi-receptive” fashion, rather
than extracting only one global feature from the input feature
map [11], and the underlay reasons are twofold. On one
hand, intuitively, some objects would only exist in certain
background. For example as shown in Fig. 1, 110 speed limit
signs can only appear in highway scenes, while vehicles would
have a large chance to be located on roads rather than on
roadside grass. On the other hand, multiple global feature



Fig. 1: Examples of object scale and its relation to the
background.

maps extracted from each multi-receptive feature maps are
potentially helpful for semantic segmentation. For example,
a computer screen would be sit on a desk with a mouse
when increasing the receptive field, and the global features
extracted from the multi-receptive features are able to capture
the contextual information of the related objects regarding the
computer screen in the global context. Furthermore, the pro-
posed MRACN consumes significantly small parameter space
than the inception module with the similar structure, and can
serve as a module being easily integrated into existing models.
Finally, we adapt the ResNet-101 model [8] as the backbone
network and propose a MRACN segmentation model for
semantic image segmentation. We evaluate the performance
of the proposed models on PASCAL VOC 2012 dataset [19]
and our industry dataset to demonstrate the effectiveness of
the proposed models. The main contributions of this paper are
listed as follows:

o We propose a MRACN that captures the multi-receptive
features and the global features at different receptive
scales of the input.

e We propose a MRACN-Seg for semantic image segmen-
tation that integrates MRACN.

e We perform a thorough evaluation on a benchmark
dataset and our industry dataset in comparison with
the state-of-the-art methods, and the experimental results
demonstrate the effectiveness of the proposed models.

In the following section, we review the most relevant state-
of-the-art methods. Section III presents the proposed multi-
receptive atrous convolutional network for semantic image
segmentation. In Section IV, we detail the experiments and
report the results. Finally, Section V concludes the paper.

II. RELATED WORK

In the previous decade, semantic segmentation relied on
hand-crafted features and flat classifiers, such as Support
Vector Machines [20] and Random Forests [21]. With the
advances of deep learning in recent years, DCNN based
approaches achieved significant improvements on computer
vision tasks. In this section, we review the recent DCNN based
approaches.

DCNNSs have demonstrated to be powerful to extract dense
features from images for many computer vision tasks, such
as image classification [7], [8], [15], [22], object detection
[23]-[25] and semantic segmentation [26], [27]. For example,
U-Net [26] exploits multi-level features by using the con-
tracting path and the expanding path with skip connections.
SegNet [27] uses a stack of the encoders, that are pipelines
containing e.g. convolutions and poolings, and the decoders
that upsample the encoded feature maps to obtain pixel-wise
labelling. DCNN based approaches use repeated combinations
of pooling operations that extract features with reduced reso-
Iutions. When the network goes deeper, the resolution can be
reduced dramatically. Although the resolution can be restored
by deconvolutions [2], [3], [28], the informative details of
images are lost.

Atrous convolution [4], [10], [11], that inserts ‘“holes”
between filter weights for allowing the filter with a specified
size to sample the field with a larger size than that with
the specified size, has been proposed to address the resolu-
tion reduction problem. In DeepLab [4], Chen et al. replace
the downsampling operations in last two stages of DCNNs
by atrous convolutions. The advance of DeepLab makes it
prevalent, and many following works [11], [29], [30] have
been proposed based on atrous convolution. For example,
Dai et al. [29] propose a deformable convolution network
that generalizes the atrous convolution with additional offsets.
Similar to [11], Wang et al. [30] propose a hybrid dilated
convolution framework that enlarges the receptive field to
aggregate contextual information.

Multi-scale, multi-receptive and global features are bene-
ficial to semantic segmentation, as the rich contextual infor-
mation can be obtained from them. Furthermore, integrating
these features can make the deeper processing stages robust
to scale changes [13]. Many models have been proposed to
obtain the multi-scale features. For example, Chen et al. [12]
propose an attention mechanism that learns the shared weights
from the input images at multiple scales. Similarly, RefineNet
[31] uses multiple paths to extract features from images
with different resolutions and then generates high-resolution
semantic features. Pinheiro et al. [32] and Amirul et al. [33]
use multi-scale features to refine the performance of their
segmentation models. For multi-receptive and global features,
two widely-adopted models, the inception module [13] and the
spatial pyramid pooling [14], use multiple convolutional filters
with different sizes to extract the multi-receptive features and
then fuse them by concatenation. However, when the networks
become deeper or the sizes of the convolutional filters go
larger, the complexity of the model parameter space usually
becomes a problem. Chen et al. [4] propose DeepLab in which
a atrous spatial pyramid pooling based on atrous convolutions
is used to limit the parameter space.

ITI. MULTI-RECEPTIVE ATROUS CONVOLUTION

In this section, we first revisit the atrous convolution, and
then present the proposed MRACN and the extraction of the
multi-receptive features and the global features. Finally, we
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Fig. 2: Illustration of atrous convolution. Kernel size is 3 x 3
and dilation rates r4s are 1 and 8. An atrous convolution with
rq = 1 is equivalent to a standard convolution.

describe our segmentation model MRACN-Seg in which the
proposed MRACN has been integrated.

A. Atrous convolution

Rather than the repeated combinations of convolutions and
pooling operations at consecutive layers that significantly
reduce the resolution of the feature maps [2], [6], [7] or
the convolutional filters with large sizes that increase the
parameter space [13], [14], atrous convolution [4], [10], [11]
uses the resolution of the feature maps and allows convolve
a receptive field with a larger size and without increasing the
parameter space. Fig. 2 shows the idea of atrous convolution.
Using the same kernel size, atrous convolution enlarges the
receptive field by increasing the dilation rate r4.

Formally, when convolving a two-dimensional input feature
map x, for each location [ on the output feature map f and a
filter w, atrous convolution is applied over the input feature
map X, and the output feature map f is computed:

flI] = x[l + 74 - K]w[k] (1)
k

where k is the size of the filter w. Therefore, by changing
the dilation rate rgy, we are able to sample the receptive
field at different scales. For example, an atrous convolution
with a dilation rate r4 = 8 is equivalent to convolving an
input with enlarged filters in which 7 zeros (ry — 1) have
been inserted between two consecutive filter values along each
spatial dimension. An atrous convolution with r4 = 1 is
equivalent to a standard convolution.

B. Multi-receptive atrous convolutional network

The architecture of the proposed MRACN is shown in
Fig. 4 (a). We employ a 1 x 1 convolution and multiple
atrous convolutions with different dilation rates in a parallel
fashion to extract the multi-receptive feature maps. After that,
we obtain the global feature maps from each multi-receptive
feature map, and then fuse the output feature maps from all
branches by concatenation.

The multi-receptive feature maps f™"s are computed by
using Eq. 1. The global feature maps are extracted similarly
to [11], [17] but rather than extracting one global feature map
from the input feature map, we obtain multiple global feature
maps at multiple receptive scales. Specifically, we first apply
global average pooling on the multi-receptive feature map.
Using the i-th multi-receptive feature map f;"" with h x w x d
dimension as an example, the global average g;[j] for each
h x w x 1 dimensional map f;""[j] of the i-th multi-receptive
feature map f;"" can be computed:

o B LR 0]

h xw
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where f]""[j][h/,w'] is the value at the location (h',w’) on
£ 5]

Then, bilinear upsampling is applied on the 1 x 1 x d
dimensional output g; to obtain the global feature map f7 of
the i-th multi-receptive feature map f;'". Note that, as the
h x w x d' dimensional input feature map x of MRACN
could be from other pre-trained networks such as ResNet [8],
d' can be significantly larger than d. If we directly use the
global features x? with the dimension of h x w x d’ extracted
from x, x9 would dominate the performance of MRACN.
Thus, we apply a 1 x 1 convolution (with d filters and batch
normalization [34]) on xY to generate a dense global feature
map x9" with the desired spatial resolution h X w X d.

After that, we fuse the output feature maps from all branches
by concatenation:

Fruse — g(x/, £ T x9

1) 3)
where @ is the concatenation operation, and n is number of
the atrous convolutions (n = 3 in Fig. 4 (a)). Finally, the
fused feature map is fed to another 1 x 1 convolution (with
d filters and batch normalization) to generate the final output
2! of the proposed MRACN that captures the multi-receptive
features and the global features at multiple receptive scales of
the input.

C. MRACN based segmentation

With the proposed MRACN, we further proposed the
MRACN segmentation model for semantic image segmenta-
tion, as shown in Fig. 3. Specifically, we adapt the ResNet-
101 model [8] as our backbone network. Similarly to [4], we
find the last “block” of the ResNet-101 model and remove all
subsequent layers. Then, we integrate the proposed MRACN
with the adapted ResNet in cascade. Finally, the output of the
MRACN is passed through the final 1 X 1 convolution that

Block 1 .. | Block n (—

upsample

Fig. 3: Architectures of the proposed MRACN-Seg.
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Fig. 4: Architectures of the proposed MRACN and the inception module.

generates the final logits. Step-wise process of the proposed
MRACN-Seg is as follows.

o Step 1: Feed the train set (original images and the pixel-
wise labels) to MRACN-Seg.

o Step 2: Pass the train data to ResNet blocks and output
the feature maps x.

o Step 3: Pass the feature maps x to MRACN and output the
feature maps f° that capture the multi-receptive features
and the global features at different receptive scales of the
input.

o Step 4: Pass the feature maps f*** to the 1 x 1 convolution
and finally upsample to the original resolution.

o Step 5: Back propagate to optimize the model parameters.

o Step 6: Save the trained weights of MRACN-Seg.

o Step 7: Load the trained model and test with the test set.

Note that, the reasons that we do not adapt other models as

the backbone network are twofold. Firstly, we want to keep
the simplicity of the network structure to validate the effec-
tiveness of the proposed MRACN. Secondly, our segmentation
model MRACN-Seg is similar to replacing the ASPP module
in DeepLabv2 [4] by MRACN. Furthermore, the proposed
MRACN can be easily integrated into other state-of-the-art
models, such as [11] and [5], in cascade or in parallel.

IV. EXPERIMENTS

In this section, we first analyze the complexity of the
proposed MRACN in terms of the parameter space. Then,
we evaluate the proposed MRACN-Seg on two datasets:
PASCAL VOC 2012 dataset [19] and our DTMR-DVR dataset.
Intersection-over-Union (IoU) and averaged IoU across all
classes (mloU) are used to measure the performance of the
proposed MRACN-Seg.

A. Complexity analysis of MRACN

In order to analyze the efficiency of the proposed MRACN,
we investigate the complexity of the proposed model in

TABLE I: Comparison on the parameter spaces of the pro-
posed MRACN and the inception module [13].

MRACN Inception module
Convolution Parameters | Convolution Parameters
1x1onx 268M 1x1 268M
rq1 X rg; onx  2416M r1 X T1 2,416M
rqe X rga on X  2416M ro X T2 9,664M
rq3 X rg3 onx  2416M r3 X r3 38,656M
1x1onx9 M 1x1 1M
1 x 1onffuse  134M 1x1 84M
Total 7,651M Total 51,089M

terms of the parameter space. To conduct fair comparison,
we compare MRACN demonstrated in Fig. 4 (a) with the
inception module with the similar structure shown in Fig. 4
(b). We use the same convolutions with 256 filters for all
convolutions, and set the receptive fields of the convolutions
in the two models at the same scales (rqy1 = 7 = 3,
rqgo = r9 = 6 and ry3 = rg = 12). The atrous convolutions
in MRACN use 3 x 3 kernels. For example, assuming the
input dimension is 16 x 16 x 4096, for both models, the
parameter space of the 1 x 1 convolution on the input x
is 16 x 16 x 256 x 4096 = 268,435,456 ~ 268M. We
calculate the parameter spaces of all convolutions, reported
in Table I. We can see that the parameter space of MRACN is
significantly smaller than that of the inception module, 7,651M
and 51,089M respectively, even at small receptive scales (3, 6
and 12) in this example. When increasing the receptive scales,
the computational cost of the inception module increases dra-
matically while the parameter space of the proposed MRACN
remains the same.



B. Datasets

PASCAL VOC 2012 dataset [19]: A widely used bench-
mark that contains 20 object classes, such as aeroplane, person,
cat and car, and one background class. The original dataset
contains a train set, a validation set and a test set with 1,464,
1,449 and 1,456 images, respectively. Hariharan et al. [35]
have provided extra annotations for creating the augmented
train set with 10,582 images.

DTMR-DVR dataset: This dataset is provided by the
Department of Transport and Main Roads (DTMR), Queens-
land, Australia. Vehicle mounted cameras are used to collect
the Digital Video Recording (DVR) data. We have manually
created our DTMR-DVR dataset for semantic segmentation.
Specifically, we extract image frames from the provided
videos, and then use the Adobe Photoshop to annotate the
extracted images for generating the pixel-wise class labels. Fi-
nally, the DTMR-DVR dataset contains a train set, a validation
set and a test set with 400, 100 and 100 images, respectively.
The dataset contains 13 roadside object classes, such as
electric pole, speed limits and road, and one background class,
listed in Table V.

C. Training protocol

We adopt the similar training protocol to [4], [11].

Image size: As MRACN is able to work with large receptive
scales, images with large size is required. Otherwise, filters
with large dilation rates are mostly applied to the zero padding
regions. Therefore, we resize the images to the size of 513 X
513 for both training and testing. The three dilation rates, 41,
rq2 and rg3, in MRACN are set to 6, 12 and 18, respectively.

Learning rate: Similarly to [4], [11], [17], we employ the
“poly” learning rate policy in which the initial learning rate is
multiplied by (1 — —¢=—)P where p = 0.9.

Batch normalization: In MRACN-Seg, all added modules
on top of ResNet have included batch normalization [34],
except the final 1 x 1 convolution for generating the logits.
The batch size is set to 10, and the batch normalization decay
is set to 0.9997. For PASCAL VOC 2012 dataset, similarly
to [11], after 30K iteration training on the augmented train
set with the initial learning rate set to 0.007, we freeze the
batch normalization parameters, and then double the dilation
rates (rq1 = 12, rgo = 24 and rg3 = 36) and train
on the original train set for another 30K iterations. Note
that, MRACN enables us to control the receptive scales at
different training stages without changing the parameter space
of the model, demonstrated in Section IV-A. For DTMR-DVR
dataset, we train on the train set with 30K iterations.

Data augmentation: To alleviate overfitting, similar data
augmentation strategy [11] has been applied. During training,
images have been randomly re-scaled with a scale factor €
[0.5, 2], and been randomly left-right flipped.

We use the High Performance Computing (HPC) facilities
of our university as our experiment platform, with the allocated
resources (CPU: Intel Xeon Skylake 6126, and GPU: Nvidia
Tesla P100).

D. Experiments on PASCAL VOC 2012 dataset

1) Ablation study: We investigate the effects of the multi-
receptive features and the global features of the proposed
models. We first deactivate all the multi-receptive features
and the global features by removing the proposed MRACN
from MRACN-Seg. Then, we only activate the multi-receptive
features and fix the receptive scales of the three parallel 3 x 3
atrous convolution branches by setting 741, 742 and 743 to 6, 12
and 18, respectively. After that, we add another parallel branch
with rg4 = 24 for larger receptive context. Finally, we activate
the global features. Table II shows the performance of the
variants of our segmentation model on PASCAL VOC 2012
validation set. We can see that either of the multi-receptive
features and the global features (activating either of them) can
improve the performance. Interestingly, adding another parallel
branch with 744 = 24 decreases the performance slightly by
0.11%. Activating both features improves the performance by
2.28% (from 74.52% to 76.80%).

TABLE II: Effects of the multi-receptive features and the
global features of the proposed MRACN. v: activated, and
X: deactivated.

rqs: (6, 12, 18)  rgs: (6, 12, 18, 24) | Global features | mIoU
X X X 74.52
v X X 76.07
X v X 75.96
v X v 76.80

We also investigate the effects of the data augmentation
strategies. As shown in Table III, the data augmentation
strategies further improve the performance by 1.33% (from
76.80% to 78.13%).

TABLE III: Effects of data augmentation. MS: multi-scale
input, and Flip: left-right flipped input. v: activated, and X:
deactivated.

rgs: (6, 12, 18)  Global features | MS  Flip | mloU
v v X X 76.80
v v v X 77.78
v v X v 77.10
v v v 4 78.13

2) Comparison with the state-of-the-arts: We compare
MRACN-Seg with the state-of-the-art methods on PASCAL
VOC 2012 test set. We fine tune our model on PASCAL VOC
2012 train and validation sets, and report the results on the
test set.

As shown in Table IV, MRACN-Seg is able to outperform
the compared baselines. Note that, further improvement could
be achieved by pre-training the model on MS-COCO dataset
[43], demonstrated by [4], [40], [41]. We qualitatively visual-
ize the segmentation results of MRACN-Seg in Fig. 5.
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Fig. 5: Segmentation results on PASCAL VOC 2012 validation set.

Method mloU
FCN [2] 62.2
Zoom-out [36] 69.6
DeepSN-CRF [37] 70.1
DeepLab [10] 71.6
CRF-RNN [38] 72.0
DeconvNet [3] 72.5
GCREF [39] 73.2
DPN [40] 74.1
Piecewise [41] 75.3
VeryDeep FCRN [42] 79.1
PSPNet+Hierarical attention [5] 79.5
DeepLabv2 [4] 79.7
Our MRACN-Seg 80.2

TABLE IV: Performance comparison on PASCAL VOC 2012 g Experiments on DTMR-DVR dataset

To further validate the proposed models, we evaluate our
MRACN-Seg on our DTMR-DVR dataset. We employ the
similar training protocol on PASCAL VOC 2012 dataset,
described in Section IV-C. We compare our MRACN-Seg with
the FCN baseline [2], and the results are shown in Table
V. We can see that our MRACN-Seg achieves substantial
improvement over the baseline by 14.4% (mloU).

(a) Image (b) FCN [2] (c) MRACN-Seg
Fig. 6: Example of the FCN baseline and our MRACN-Seg.



TABLE V: Performance of MRACN-Seg on DTMR-DVR test set, compared with the FCN baseline. IoU per semantic classes
and mean IoU (mloU) are used to measure the performance. S_60: Speed limit sign 60, S_100: Speed limit sign 100, S_110:
Speed limit sign 110, M_bar: Metal barrier, C_bar: Concrete barrier, B_path: Bicycle path, M_concrete: Median concrete,

M_grass: Median grass, and T_light: Traffic light.

Method mloU | Road Line S_60 S_100 S_110 Pole Tree M_bar C_bar B_path M_concrete M_grass T_light
FCN [2] 46.0 91.8 63.7  35.1 30.5 49.3 438 230 483 28.6 88.2 342 18.8 429
MRACN-Seg | 60.4 97.3 79.7 564 49.0 62.7 57.8 395 63.9 47.8 94.0 48.1 29.4 59.6

Ground truth

Image

Segmentation result

Image Ground truth Segmentation result

Fig. 7: Segmentation results on DTMR-DVR validation set.

We notice that our MRACN has made significant improve-
ments on speed limit signs. We visualize a mis-classified
example by showing the output from the FCN baseline and
MRACN-Seg in Fig. 6. We can see that FCN misclassifies
the 100 speed limit sign in the middle of the image as a 60
speed limit sign, while our MRACN-Seg is able to produce
the correct segmentation. We also notice that both models have
limited performance on the tree class. The reason is that, in our
DTMR-DVR dataset, we focus on the roadside objects relating
to road safety. For the tree class, we are only interested in the
trees with thick stems that would case serious traffic accidents,
and only the thick stems of the trees have been annotated in
our dataset. Therefore, the tree class may be similar to the pole
class. Finally, the qualitative visualization of our MRACN-Seg
is shown in Fig. 7.

V. CONCLUSION

In this paper, we proposed a multi-receptive atrous convo-
Iutional network for semantic image segmentation. MRACN
uses the contextual information of the input, and captures the

multi-receptive features and the global features at different
receptive scales. MRACN requires a smaller parameter space
than the inception module with the similar structure. Finally,
the proposed MRACN segmentation model (MRACN-Seg) has
been evaluated on PASCAL VOC 2012 dataset and DTMR-
DVR dataset, and the experimental results demonstrate the
effectiveness of the proposed model, compared with other
state-of-the-art models. In the future, more roadside objects
will be annotated and added to our DTMR-DVR dataset.
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