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Abstract—Gated Recurrent Neural Networks (GRNNs) are
important models that continue to push the state-of-the-art
solutions across different machine learning problems. However,
they are composed of intricate components that are generally
not well understood. We increase GRNN interpretability by
linking the canonical Gated Recurrent Unit (GRU) design to
the well-studied Hopfield network. This connection allowed us
to identify network redundancies, which we simplified with an
Input Residual Connection (IRC). We tested GRNNs against
their IRC counterparts on language modelling. In addition, we
proposed an Input Highway Connection (IHC) as an advance
application of the IRC and then evaluated the most widely
applied GRNN of the Long Short-Term Memory (LSTM) and
IHC-LSTM on tasks of i) image generation and ii) learning
to learn to update another learner-network. Despite parameter
reductions, all IRC-GRNNs showed either comparative or
superior generalisation than their baseline models. Furthermore,
compared to LSTM, the IHC-LSTM removed 85.4% parameters
on image generation. In conclusion, the IRC is applicable, but
not limited, to the GRNN designs of GRUs and LSTMs but
also to FastGRNNs, Simple Recurrent Units (SRUs), and
Strongly-Typed Recurrent Neural Networks (T-RNNs).

We release our codes at
https:\\github.com\Nic5472K\IJCNN2020 IRC .

Index Terms—GRU, LSTM, Hopfield network, interpretability

I. INTRODUCTION

Recurrent neural networks (RNNs) are the machine learning
tools of choice for modelling data with temporal dependencies.
Their applications include language modelling [1], speech
recognition [2], and image generation [3]. Earlier RNN designs
suffer from exploding and vanishing gradients [4] and are
difficult to train. To this end, gated RNNs (GRNNs) were
developed to stabilise gradients. GRNNs possess gated units
to control how information flows in and out of the recurrent
network feedback. Though extensively applied, GRNN archi-
tectures are not immediate clear, and the individual mathemat-
ical meanings of gated units are not well understood.

Previously, GRNNs have been analysed through empirical
evaluations and through search studies. In natural language
processing (NLP) of text [5], GRNN outputs responded dis-
tinctly to different types of characters; and on spoken NLP
[6], GRNN gated units could be used to suggest phoneme
boundaries. However, these evaluations were conducted on
trained networks, and that the GRNN components possess un-
known properties prior to training. The work of [7] conducted
an extensive search on GRNN architectures, but was unable
to yield a design with significant improvements against the
canonical gated recurrent unit (GRU) design [8].

In this paper, we increase interpretability by returning
to first principles and establish mathematical meanings for
GRNN variables by linking GRUs to the well-studied Hopfield
network [9]. We model GRU memories as systems of differ-
ential equations and show that they share desirable qualities
possessed by Hopfield networks. Under our mathematical
framework, we identify GRU redundancies and dispense them
with a novel input residual connection (IRC). Furthermore,
we present input highway connection (IHC) as an advance
application of the IRC.

Our main contribution is showing that the IRC is generally
applicable to most existing GRNN designs. We tested the
GRU, the long short-term memory (LSTM) [10], the simple
recurrent unit (SRU) [11], the strongly-typed RNN (T-RNN)
[12], and the FastGRNN [13] against their IRC counterparts
on language modelling [1]. In addition to NLP, we took the
most widely applied GRNN of the LSTM and tested it against
the IHC-LSTM on a computer vision (CV) task on image
generation [3] and on a meta-learning / learning to learn
(L2L) task to update another learner network [14]. Despite
having less parameters, all IRC-GRNN exhibited higher gen-
eralisation than their baseline counterparts. Furthermore, all
IHC-LSTMs exhibited comparative performances to LSTMs;
and notably, the IHC-LSTM removed 85.4% of the parameters
on the image generation task.
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II. CONNECTING GRUS TO HOPFIELD NETWORKS

This section links GRUs [8] to Hopfield Networks [9]. We
model GRU memories as systems of differential equations and
describe their desirable properties.

A. The GRU Design

For each time step t, GRUs receive input data xt to compute

it, rt = σ(W{I,R}xt + U{I,R}ht−1 + b{I,R}), (1)
at = tanh(WAxt + UA(rt � ht−1) + bA), and (2)
ht = (1− it)� ht−1 + it � at. (3)

The input gate it is employed to control the update of the
network memory ht, also known as the recursive feedback
and the hidden state. Parts of the old memory is replaced by
an equal portion of the newly generated input of at. The reset
gate rt fine-tunes recurrent connections within at, whereas
the parameter b is the bias and W and U are the respective
forward and recursive connections. With the input and hidden
dimensions of N and M , GRU components have dimension-
alities xt ∈ RN , it, rt,at,ht,b ∈ RM , W ∈ RM×N , and
U ∈ RM×M . The symbols σ, tanh, and � represent the
sigmoid, the hyperbolic tangent, and the element-wise product
functions, respectively.

B. Recursive Feedbacks as Systems of Differential Equations

The GRU ht is updated like variables of a system of
differential equations. Eq. (3) updates ht from ht−1 with
the additive update at. For this reason, we model ht as a
differential equation with the autonomous function

h′t = H(ht−1,at). (4)

Ideally, the function H should provide the GRU memory
with robustness and plasticity. Robustness allows the network
memory to generalise data under the presence of unknown
noises; whereas plasticity allows the network to shape its
memory as according to the input data. Both desirable qualities
can be found in the theoretical physics model of the dynamic
spin-glass Hopfield network [9], [15], [20].

Dynamic Hopfield networks possess attractive equilibria
[20] and phase transitions [21]. Attractive equilibria are con-
vergent singularities in the neural solution space which allow
for the creation of robust network memory. Phase transitions
are parametric transitional boundaries for internal degrees of
freedom to successively fall out of equilibrium, and provide
the network memory with the plasticity to transmute among
various configurations of robust memories.

For the reasons above, we formulate H as a dynamic
Hopfield model and write (4) as

h′t = H(ht−1,at) = −ht−1 + at. (5)

Equivalently, the discrete time version of Eq. (5) is

ht = ht−1 + ξ(−ht−1 + at), (6)

where the positive constant ξ serves as the discretised time
step. Alternatively, ξ can be a positive vector to enable

different timescales. This is similar to the practice of scaling
in Echo State Networks [22]. Thus, we write Eq. (6) as

ht = ht−1 + ξ � (−ht−1 + at), (7)

and rearranging Eq. (7) yields

ht = (1− ξ)� ht−1 + ξ � at. (8)

By comparing Eq. (3) to Eq. (8), we see that the GRU ht is
updated as a discretised dynamic Hopfield network. Under this
mathematical framework, the input gate it plays a similar role
to ξ and serves as the dynamic time step. This connection thus
increases the individual interpretability of GRU components.

However, readers should note that Eq. (8) is not a specific
update for any RNN. Instead, it represents a class of RNN
memory updates with the desirable properties of Hopfield
network-like robustness and plasticity. That is, the GRU for-
mulation can only be recovered if we were to choose to define
ξ as it in Eq. (1), and at as in Eq. (2) with rt as in Eq. (1).

III. AN INPUT RESIDUAL CONNECTION

As we discussed in Section II, the GRU is one design that
updates its memory as according to Eq. (8). That is, there
are infinitely many ways to formulate the update of an RNN
memory to achieve the same, or potentially better, level of
Hopfield network-like robustness and plasticity. In this section,
we look for the lightest possible simplification for the GRU.

Eq. (8) highlights two types of GRU redundancies. One
relates to the network non-linearities, and the second relates
to the recursive network feedback.

A. An Analysis on the Non-linearity of at
Eq. (8) required neither the step size ξ nor the update at

to undergo non-linear transformation. The hyperbolic tangent
function of at can be limiting for the network because it
bounds at ∈ [−1, 1]. The upper and lower bound restrict at
from distinguishing pre-activated neurons with large magni-
tudes. Thus, the hyperbolic tangent function in at restricts a
piece of diverse information to be added towards the hidden
state ht. For this reason, our first simplification on the GRU
at of Eq. (2) is

at = WAxt + UA(rt � ht−1) + bA. (9)

However, for a very different reason, we choose to keep the
sigmoid activation function in it.

B. An Analysis on the Non-linearity of it
We keep the sigmoid activation function in it on the same

grounds as having small learning rates for gradient descents.
The update of ht in Eq. (6) is similar to gradient descent
methods, which in its simplest form, updates a neural network
with parameters θt via

θt = θt−1 + ξ(−∇θt−1Lt), (10)

where ∇θt−1Lt is the gradient of the optimised loss at time
step t with respect to the existing parameters θt−1.



Both Eq. (6) and the gradient descent of Eq. (10) comply
with the properties of a vector field. The vector field in gradient
descent can be described with the loss landscape. Eq. (10)
first specifies the direction to update the network parameters
via −∇θt−1

Lt, and then takes a step ξ towards this specific
direction on the loss landscape. In Eq. (10), ξ is known as
the learning rate. Large learning rates can cover more ground
in each step but risks overshooting minima. Similarly, Eq. (6)
possess entities with equivalent importance to minima in Eq.
(10); such entities are known as the attractive equilibria [19].

A point z in the network solution space is an equilibrium if,
for all solutions which start or enter z, remain on z for all time.
An equilibrium is said to be attractive if nearby solutions were
to be updated towards it. That is, they are singularities that
behave as the relative minima on different regions of the vector
field; they describe stable behaviours within the solution space.
For this reason, a small step size of ξ in Eq. (6) is required in
order for the network memory to traverse within the vicinity
of an attractive z. This will help to stabilise network memories
for achieving robustness. Since a comparison between Eq. (8)
and Eq. (3) showed that the input gate it acts as the dynamic
time step of the GRU, we decide to keep the sigmoid function
in Eq. (3) to restrict it ∈ [0, 1].

C. An Analysis on The Recurrent Feedback

Judging by Eq. (8), it is not immediately clear how the
recursive pre-activated neural values of Uht−1 should be
designed in Eq. (1) and Eq. (2). Thus, it is necessary to rethink
whether at and it should take the forms of{

it = it(xt,ht−1)

at = at(xt,ht−1, rt)
(11)

or as {
it = it(xt)

at = at(xt)
. (12)

Since Eq. (11) and Eq. (12) both suffice for Eq. (8), we
hypothesise that the recursive Uht−1 is not directly required
for formulating it, rt, and at. Hence, we simplify Eq. (1) as

it, rt = σ(W{I,R}xt), (13)

and further simplify Eq. (2) from Eq. (9) as

at = WAxt. (14)

Note, the biases were also removed from Eq. (13) and
Eq. (14). We made this change because the mathematical
framework of Eq. (8) does not require them. Interestingly, an
identical form for at in Eq. (14) can be found in the SRU
[11]. However, the sole concern for [11] was the proposal of a
highly parallelisable RNN architecture, and their modifications
towards at were provided without explanations.

After removing the recursive Uht−1, this simplified version
of the GRU is no longer a real RNN. We describe where we
restore the relinquished recurrent feedback in the next section.
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Fig. 1. The GRU architecture and the IRC-GRU architecture

D. An Input Residual Connection

Thus far, we have established the connection between the
dynamic Hopfield network and the GRU in Section II, and
used this connection to motivate the simplified it, rt, and
at provided in Eq. (13) and Eq. (14). Removing Uht−1 and
biases b have resulted in a large parametric reduction to the
GRU. However, this variant of the GRU does not utilise the
recurrent feedback ht and hence is not a RNN. Here, we
introduce our novel input residual connection (IRC) design
to restore ht while maintaining a light architecture.

Since Eq. (12) suffices for Eq. (8), we hypothesise that
GRUs function properly with Wxt as the sole pre-activated
neural values. For this reason, we see the recursive Uht−1
as regularisations to Wxt for easing the training of the
feedforward input in the activation functions. Under this
interpretation, we propose to regularise Wxt before they enter
the activation functions. We replace xt in the gated units of
Eq. (13) with the regulated inputs of vt, xt ← vt, such that

vt = xt + α� (UV ht−1). (15)

Variable vt connects the recursive UV ht−1 to the input
xt with a residual connection [23] to provide xt with a
learnt discretised update based on the network memory. Since
the residual connection is applied to the input, we call this
technique an IRC. The new variables have dimensionality
α ∈ RN and UV ∈ RN×M . Note, the recursive connections
in the original GRU design of Eq. (1) and Eq. (2) have
dimensionality U ∈ RM×M and are typically much larger
than the size of that of UV in Eq. (15). The vector α is an
idea which we borrowed from the FastGRNN [13]. This



TABLE I
A COMPARISON BETWEEN BASELINE GRNNS AGAINST IRC-GRNNS

Traditional design Simplified design
GRU [8] IRC-GRU (Ours)

it, rt = σ(W{I,R}xt+U{I,R}ht−1 + b{I,R}), (1)

at = tanh(WAxt+UA(rt � ht−1) + bA), and (2)

ht = (1− it)�ht−1 + it� at. (3)

vt = xt + α� (UV ht−1), (15)

it, rt = σ(W{I,R}vt), (16)
at = WAxt, and (14)

ht = (1− it)� ht−1 + it � (rt � at). (17)
LSTM [10] IRC-LSTM (Ours)

ft, it,ot = σ(W{F,I,O}xt+U{F,I,O}ht−1 + b{F,I,O}),
(18)

at = tanh(WAxt+UAht−1 + bA), (19)
ct = ft � ct−1 + it � at, and (20)
ht = ot � tanh(ct). (21)

vt= xt + α� (UV ht−1), (22)
ft, it,ot = σ(W{F,I,O}vt), (23)

at = WAxt, (24)
ct = ft � ct−1 + it � at, and (25)
ht = ot � tanh(ct). (26)

SRU [11] IRC-SRU (Ours)

ft,pt = σ(W{F,P}xt+ω{F,P} � ct−1 + b{F,P}), (27)

at = WAxt (28)
ct = ft � ct−1 + (1− ft)� at, and (29)
ht = pt � ct + (1− pt)� xt. (30)

vt= xt + α� (ωV � ht−1), (31)
ft,pt = σ(W{F,P}vt), (32)

at = WAxt, (33)
ct = ft � ct−1 + (1− ft)� at, and (34)
ht = pt � ct + (1− pt)� xt. (35)

T-LSTM [12] IRC-T-LSTM (Ours)

ft,ot = σ(W{F,O}xt+U{F,O}xt−1 + b{F,O}), (36)

at = WAxt+UAxt−1 + bA, (37)
ct = ft � ct−1 + (1− ft)� at, and (38)
ht = ot � ct. (39)

vt= xt + α� (ωV � ht−1), (40)
ft,ot = σ(W{F,O}vt), (41)

at = WAxt, (42)
ct = ft � ct−1 + (1− ft)� at, and (43)
ht = ot � ct. (44)

FastGRNN [13] IRC-FastGRNN (Ours)

ft = σ(WFxt+UFht−1 + bF ), (45)
at = tanh(WAxt+UAht−1 + bA), (46)
ht = ft � ht−1 + (β(1− ft) + κ)� at. (47)

vt= xt + α� (UV ht−1), (48)
ft = σ(WFvt), (49)
at = WAxt, and (50)
ht = ft � ht−1 + β(1− ft)� at. (51)

Note: With IRC highlighted in colour red, and network redundancies highlighted in colour brown; best viewed in colour.

vector contains trainable weights where 0 ≤ αj ≤ 1 for j =
1, . . . , N and are parameterised by the sigmoid function. The
vector α is employed to limit the extent that the recurrent
feedback modifies the features of xt.

To summarise, the IRC-GRU consists
i) the IRC regulated input of Eq. (15)

vt = xt + α� (UV ht−1),

ii) which substitutes xt in the simplified gates of Eq. (13)

it, rt = σ(W{I,R}vt), (16)

iii) the simplified internal input of Eq. (14)

at = WAxt, and

iv) the hidden state update

ht = (1− it)� ht−1 + it � (rt � at). (17)

Readers should note that, unlike the gated units of Eq. (16),
the IRC-GRU at does not substitute xt with vt. The reason
is because that, similar to the dynamic Hopfield network of

Eq. (5), the memory ht is supposed to receive a new source
of information at that is dissimilar to the existing memory.
See Fig. 1 for a figurative comparison of the architectural
differences between the GRU and the IRC-GRU.

IV. IRC-/IHC-GRNNS

In the previous section, we addressed IRC as a technique
for simplifying the GRU. In this section, we introduce other
GRNN baselines which we will use in our experimental
section. The alternative GRNN designs in this section are
the LSTM [10], the SRU [11], the T-LSTM [12], and the
FastGRNN [13]. We show that the IRC is generally applicable
to all GRNNs which we consider, and we contrast the baseline
designs against their IRC simplified counterparts in Table I.
This section mainly focuses on the differences between the
baseline models and their IRC counterparts. Refer to Section
VI for an in-depth discussion.

A. LSTMs and IRC-LSTMs

The LSTM architecture is given in Eq. (18) to Eq. (21).
It possesses 3 gates and 2 network memories. The cell ct



is similar to the GRU ht in Eq. (3). The LSTM ht is ct
transformed with controlled exposure from the output gate
ot. Unlike GRUs of Eq. (3), the LSTM ct is updated with
a forget gate ft and an input gate it. Therefore, in the LSTM
terminologies, GRUs couple their forget and input gate to
update their network memories. The IRC adapts LSTMs in
a similar way to GRUs, and is given in Eq. (22) to Eq. (26).

B. SRUs and IRC-SRUs

The SRU architecture is given in Eq. (27) to Eq. (30). SRUs
regulate their pre-activated recursive neural values linearly
through ω. Thus, the IRC-SRU, as given in Eq. (31) to Eq.
(35), linearly regulates the memory through ωV with trainable
weights −1 ≤ ωVj ≤ 1 for j = 1, . . . , N . The weights are
parameterised by the hyperbolic tangent function.

C. T-LSTMs and IRC-T-LSTMs

The T-LSTM architecture is given in Eq. (36) to Eq. (39);
and the IRC-T-LSTM architecture is given in Eq. (40) to Eq.
(44). Eq. (40) is identical to Eq. (31) because matrices W and
U in Eq. (36) and in Eq. (37) have the same dimensionality.

D. FastGRNNs and IRC-FastGRNNs

The FastGRNN architecture is given in Eq. (45) to Eq. (47);
and the IRC-FastGRNN architecture is given in Eq. (48) to Eq.
(51). FastGRNNs possess one gated unit, but regulate their
memory with the additional trainable constants 0 ≤ β, κ ≤ 1
parameterised by the sigmoid function.

E. A Highway Connection

Here we introduce the more powerful IRC variant of the
IHC. As the name implies, IHC prepares a regulated input
with a highway connection [24]. The variable vt of Eq. (15)
is alternatively computed as

vt = (1− gt)� xt + gt � (UV ht−1) where (52)
gt = σ(WGxt + Γht−1 + bG). (53)

The components have dimensionality gt,bG ∈ RN , and
Γ ∈ RM×N . Similar to UV in Eq. (15), the size of matrix
Γ is typically much smaller than U ∈ RM×M of Eq. (1) and
Eq. (2). The parametric vector of α in Eq. (15) is replaced
with the gate gt. The gate gt provides a two-fold advantage
over α. First, unlike the static control exerted by α, gt limits
the extent of modification from UV ht−1 to xt in a dynamic
manner based on the memory of the network. Second, xt is
modified with 1−gt; and in principle, this allows the network
to learn when to extrapolate information based on the recurrent
feedback UV ht−1 rather than the input xt. We reserve IHC
for LSTMs in our experiments, and replace Eq. (22) with Eq.
(52) and Eq. (53) if the IHC is used instead.

V. EXPERIMENTS

The GRNNs included in this section are the GRU and
all alternative designs mentioned in Section IV. The focus
of our study is to show that the IRC and the IHC enable

GRNNs to achieve comparative performances to their base-
line counterparts while removing network redundancies. It is
noteworthy however, that our results actually demonstrate a
superior generalisation performance for our IRC-GRNNs in
comparison with their baseline counterparts. We conjecture
that this improvement may be due to the theoretical advantages
of the low complexity of simpler models [32].

This section includes 3 tasks. First, we tested the GRNNs
against their IRC counterparts on language modelling [1].
Then, we tested LSTM against IHC-LSTM on image gen-
eration [3], and L2L to update another learner network [14].

Image generation and L2L were reserved for LSTMs for
fairness. GRNNs have been applied on a wide range of tasks,
and to our knowledge, most of the baseline GRNNs included in
this paper have previously been tested on language modelling;
but such is not the case for image generation and for L2L.
For this reason, we reserved image generation and L2L for
the most extensively applied GRNN of LSTM.

The 3 tasks were carefully chosen to analyse different
aspects of GRNNs. The GRNNs were employed as generative
language models to test for their abilities to represent and
to manipulate high dimensional probability distributions. The
GRNNs were employed as decoders in image generation to test
for their reconstruction powers. Last, the GRNNs operated for
variable lengths on L2L to test their robustness against their
regularisation of compounded prediction errors conditioned on
unseen sequential context at test time.

A. GRNNs vs IRC-GRNNs on Language Modelling

Background. Language models employ RNNs to construct
probabilistic predictions of the next word given preceding
ones. For this task, we used the Penn Treebank (PTB) dataset
[25], which consists of 929K training words, 73K validation
words, and 82K test words, with vocabulary size of 10K words.

Setup. The codes of our GRNNs were based on the pop-
ular AWD-LSTM [1] model, and all GRNNs and their IRC
counterparts were trained for 50 epochs. The hyperparameters
were not fixed across all models; instead, the dimensionality
and the amount of layers were taken from their respective
original paper (if provided). Below, we use the tuple of
(ED, HD) to denote the combination of word embedding
dimension and hidden dimension.

Following [12], we tested 2-layer IRC-GRU and 3-layer
IRC-T-LSTM with (650, 650). The FastGRNN paper [13]
tested language models with training settings significantly
different to [1]1. Thus we implemented 1-layer and 2-layer
FastGRNN and IRC-FastGRNN with (650, 650). The SRU
paper [11] did not include word-level language modelling as
a task. Thus we tested 3-layer SRU and IRC-SRU with (1150,
1150). Last, we trained 3-layer LSTM and IHC-LSTM with
(400, 1150) for 800 epochs.

Results. All of our IRC-GRNNs achieved lower perplexities
than their baseline counterparts (Table II). Thus, all IRC-
GRNNs had better generalisation ability than their GRNN

1Refer to page 6 of Section 3.2.1 of [13] for their training scheme, and
Refer to page 22 of [13] for additional hyperparametric changes.



TABLE II
PERPLEXITY ON THE PTB DATASET.

Model Test PPL #RNN-Params Reduction
Lower is better

3-layers, (ED, HD) = (400, 1150)
LSTM [1] 57.3 24.9M –

LSTM (Ours) 58.32 24.9M –
IHC-LSTM (Ours) 57.44 15.1M 39.2%

1-layers, (ED, HD) = (650, 650)
FastGRNNπ [13] 116.11 – –
FastGRNN (Ours) 88.48 1.7M –

IRC-FastGRNN (Ours) 85.60 1.3M 25.0%
2-layers, (ED, HD) = (650, 650)

GRU [12] 93.44 5.1M –
T-LSTM [12] 81.52 5.1M –

FastGRNNπ [13] 106.23 – –
FastGRNN (Ours) 89.30 3.4M –
IRC-GRU (Ours) 76.51 3.4M 33.4%

IRC-T-LSTM (Ours) 79.56 2.5M 50.0%
IRC-FastGRNN (Ours) 85.60 2.5M 25.0%

3-layers, (ED, HD) = (1150, 1150)
SRU (Ours) 92.42 12.0M –

IRC-SRU (Ours) 86.70 12.0M 0.06%

Note:
PPL = Perplexity; M = Million;
(ED, HD) = (Word embedding dimension, Hidden dimension);
π = With different (ED, HD) to the original paper, see text.
We emphasised the reduced parameters of our IRC-/IHC-GRNNs
in bold font, and highlighted their better performances in italic font.

counterparts. In addition, this was achieved while IRC-GRNNs
had lower amount of learnable parameters. Redundancy re-
moval is most remarkable when the hidden dimension is much
larger than the word embedding dimension. The IRC-T-LSTM
removed up to 50.0% of the T-LSTM redundancies; while the
IRC-SRU only removed up to 0.06% SRU redundancies. As
a final note, we showed that our IHC-LSTM was capable of
achieving a competitive sub-60 perplexity. This matched the
result reported in [1] despite a near-40% parametric reduction.

B. LSTMs vs IHC-LSTMs on Image Generation

Background. [3] proposed the deep recurrent attention
writer (DRAW) architecture to generate highly realistic natural
images. DRAW employed LSTM-decoders to sequentially
adjust the generated pixels of an image in order to provide
the canvas with more details. This experiment used the multi-
digit Street View House Numbers (SVHN) dataset [27] which
contains 231,053 training images, and 4,701 validation images.

Setup. Following [3], we employed single-layer LSTM and
IHC-LSTM with 800-hidden dimension to decode encoded
pixel information. The encoded inputs were latent vectors of
R100 and the canvas was reassessed by the LSTM for 32
iterations as according to the paper. We used the pre-cropped
Format 2 dataset provided by [27], and thus the canvas of our
input images were of boxes of pixels of size 32×32.

Results. No metric was given in [3] for assessing the quality
of the generated SVHN images. However, as we show in Fig.
2 overleaf, the IHC-LSTMs were capable of generating images
of similar qualities to those of the LSTM. The LSTM-decoders
had 2.88 million parameters, while the IHC-LSTM-decoders
had only 0.42 million, thereby removing 85.4% parameters.

C. LSTMs vs IHC-LSTMs on L2L

Background. Learning to learn (L2L) was selected to test
IHC-LSTM’s ability to run online for a variable length of
instances. The work of [14] trained optimisee learner networks
with LSTM-based optimisers, and found that the optimisees
were trained faster than traditional optimisation methods such
as SGD [28] and ADAM [29], and yielded lower losses.

Setup. We followed [14] and classified the CIFAR-10
dataset [30] under the L2L framework. The optimisee network
in [14] was a relatively small network with 3 convolutional
layers with max pooling followed by a fully-connected layer.
Their LSTM-based optimiser was trained to update their
optimisee network for 100 steps; and during test time, was
set to run freely to optimise the optimisee for 1000 steps. The
iteration in test time is significantly longer than that in train
time to test for the LSTM’s robustness against unseen error
during training. We selected to train the much larger ResNet-
34 [23] optimisee network. Our ResNet-34 contained one entry
convolutional layer, 16 ResNet building blocks, followed by a
fully-connected layer. Each ResNet building block contained a
pair of filters, and a shortcut connection connected the input to
the output of every block. We updated weights of the ResNets
according to [31] (a follow-up paper of [14]).

Results. The average result over training 50 ResNet-34s are
shown in Fig. 3 overleaf. Both GRNN-optimisers significantly
outperformed the hand-crafted SGD and ADAM. The IHC-
LSTM-based optimiser yielded ResNets with lower losses
than the LSTM-based optimiser. With 20-input dimension and
20-hidden dimension, the LSTM-based optimiser had 3.28
thousands parameters, while the IHC-LSTM-based optimiser
had 2.82 thousands, thereby removing 14.0% of parameters.

VI. RELATED WORKS AND DISCUSSION

Our related works section mainly covers two different types
of studies. We review existing interpretations on GRNNs,
and review GRNN architectures simpler than the canonical
GRU design. Then, we provide an in-depth comparison on
the findings in those papers to our own mathematically driven
approach, in which we connected GRUs to dynamic Hopfield
networks in order to propose the generally applicably GRNN
simplification of IRC and IHC.
Search study and Empirical study

Here we provide more details to the literature mentioned in
Section I. Paper [7] employed a large scale mutation scheme
starting with LSTMs and GRUs as baseline models. Random
edits were applied on activation functions, on element-wise
operations, and on node values. The paper was unable to yield
a design significantly better than the LSTM and the GRU.
LSTMs have shown to possess the capability of capturing data
attributes. In speech [6], the average forget gate activation
could be used to suggest phoneme boundaries; and in text
[5], hidden states responded differently to normal English
characters and to special C-programming characters.
Ablation study

Paper [16] presented an in-depth ablation study on LSTMs.
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Fig. 2. DRAW for generating street-view-house-number images.
With style of presentation adopted from [3] (p. 7, Fig. 9).
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The paper found that significant performance reductions oc-
curred by removing the output activation function (no OAF) or
by removing the forget gate (NFG). The authors considered the
two lesions to be caused by similar reasons. They hypothesised
that OAF prevented unbounded cell states from destabilising
learning; and similarly, NFGs could triggered unbounded cell
growths for not relinquishing old cell values. They conjectured
that GRUs do not need OAF because the cell is bounded by
the coupling of the input and the forget gate.
Simplified GRNNs

GRNN simplification is an active field of study. SRU [11]
achieved convolutional neural network-like parallelism with
high reliance on element-wise computations. As shown in Eq.
(27), they replaced Uht−1 with ω�ht−1. T-RNNs [12] recon-
figured the recurrent network feedback to ensure dimensional
homogeneity. As shown in Eq. (36) and in Eq. (37), they
replaced Uht−1 with Uxt−1; and T-LSTMs outperformed
LSTMs on language modelling. In another paper, the kilobyte
sized FastGRNN [13] achieved LSTM-like performance with
a single gate by regularising the input gate to address ill-
conditioned gradients. As shown in Eq. (47), they replaced
1− ft with β(1− ft) + κ.

Gated units are not the only approach to improve (G)RNNs.
Clockwork RNNs (CWRNNs) [17] are simple recurrent units
[18] without gated units and in favour for a periodic weight
nullification masking mechanic. CWRNNs were shown to
achieve better performances than LSTMs. By vacating the
gated units, CWRNNs possessed significantly less parameters
than LSTMs. However, the CWRNN masking mechanic
required users to make assumptions on the data structure.

Discussion
The mutation scheme in paper [7] restricted candidate

RNNs from both the creation of new gated units and that
of new hidden states. As a result, their top 3 discovered
architectures all share very close resemblances to the GRU
design. As shown in Eq. (15), our IRC idea introduced a
new regulated variable vt, and the experiments in Section
V showed that IRC-GRNNs enjoyed fewer parameters and
had better generalisation ability than their baseline GRNN
counterparts. This suggests that optimal RNN designs might
be networks with multiple small units, instead of networks
with few large units.

Both the empirical studies of [5] and [6] were conducted
on trained networks, and the mathematical properties of the
LSTM components were not addressed. This was supported
by [5]2, as they admitted having difficulties in explaining the
behaviours of gated units in different LSTM layers. In Section
II, we showed that GRUs update their network memories ht
as discretised dynamic Hopfield networks. In addition, we
showed that the GRU input gate it behaved as adaptive time
steps for the GRU ht by comparing Eq. (3) to Eq. (8). The
same interpretation is also applicable to the LSTM gated units.
This will be separately discussed later in this section.

There are several reasons to simplify GRNNs. The main
concern of the SRU paper was to optimise RNN parallelism
for GPU/CUDA programming, but their modifications were
not based on mathematical grounds. In contrast, the papers
that introduced T-RNNs and FastGRNNs presented mathe-
matical justifications for their network alterations. However,
the analysis in FastGRNN mainly addressed the stability in
learning, and that explanations for the individual importance of
FastGRNN components were not in their scope. Furthermore,
while T-LSTMs performed better than LSTMs on language
modelling, T-GRUs performed considerably worse than GRUs
on language modelling. In Section III, we showed that our
IRC simplification was derived from a dynamic mathematical
framework, and is generally applicable to the GRU, the LSTM,
and all other GRNNs mentioned in this paper.

2Refer to page 5 of Section 4.2 of [5].



Note, the CWRNN is not a GRNN. The IRC is thus
inapplicable on the CWRNN; and for this reason, it was not
included in our experimental section.

Last, our findings complemented [16], and explains the
architectural differences between GRUs and LSTMs. As stated
in Eq. (3), GRUs update their hidden states via

ht = (1− it)� ht−1 + it � at;

in contrast, LSTMs update their hidden state along with their
cell state as according to Eq. (20) and Eq. (21) where

ct = ft � ct−1 + it � at,

ht = ot � tanh(ct).

Under our mathematical framework from Eq. (5) to Eq. (8),
we found that the GRU it served as the dynamic time step
for updating the GRU ht. Hence, given the presence of it,
GRUs do not require an additional unit ft. By contrast, LSTMs
require the extra unit ot to restrict the exposure of the network
memory from potential step size mismatches. That is, when
f jt > 1 − ijt occurs for any neuron j = 1, . . . , N in the
forget and input gate, the relinquishment rate of cjt−1 is lower
than the replenishment rate of ajt , and will cause cjt to increase
uncontrollably and ultimately destabilising learning. The same
conjecture is also applicable on the performance reduction in
[16] exhibited by LSTM with no OAF.

VII. CONCLUSION

This paper modelled GRU memories as discretised dynamic
Hopfield networks. Our mathematical framework interpreted
gated units as adaptive time steps, and highlighted redundant
network components. Based on our insights, we introduced
IRC and IHC as generally applicable techniques to simplify
GRUs, LSTMs, SRUs, T-RNNs, and FastGRNNs.

For our experiments, we evaluated IRC-GRNNs against
their GRNN counterparts in language modelling, and tested
IHC-LSTMs against vanilla LSTM in image generation and
L2L. All IRC-GRNNs showed better generalisation abilities
than their respective baselines, and all IHC-LSTMs exhibited
comparative performances to LSTMs. Most notably, the IHC-
LSTM removed up to 85.4% LSTM parametric redundancies
on the task of image generation.

Our work connected GRNNs to well-studied mathematical
models. Hence it is likely that more mathematical theories,
such as bifurcation analysis [19], can be applied to forward
our understanding for recurrent neural networks.
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