
Latent Context Based Soft Actor-Critic
Yuan Pu, Shaochen Wang, Xin Yao, Bin Li

University of Science and Technology of China, Hefei, China
Email: {puyuan, samwang, xinyao}@mail.ustc.edu.cn, binli@ustc.edu.cn

Abstract—The performance of deep reinforcement learning
methods prone to degenerate when applied to tasks requiring
relatively longer horizon memory or with highly variable dy-
namics. In this paper, we utilize the probabilistic latent context
variables motivated by recent Meta-RL materials, and propose
the Latent Context based Soft Actor-Critic (LC-SAC) approach
to address aforementioned issues. The latent context is capable
to encode information about both the agent’s previous behaviors
and the dynamics of the current undergoing environment, which
empirically believed to be beneficial for efficient policy optimiza-
tion. Experiment results demonstrate that LC-SAC can achieve
comparable performance with SAC on a collection of continuous
control benchmarks and outperforms SAC in some particular
tasks with above two characteristics. Moreover, we also introduce
a simple but general procedure to integrate LC-SAC with diverse-
quality demonstrations to enable efficient reuse of human prior
knowledge, and finally achieve competitive performance with
comparatively small number of interactions with environments.

I. INTRODUCTION

Recent years, deep reinforcement learning (DRL) algo-
rithms [1] have present many impressive results in many
challenging domains, such as Atari 2600 arcade games [2],
board games [3], robot manipulation tasks [4] [5] .

To achieve sample efficiency and robust performance, many
works have been advanced. Especially, soft actor-critic al-
gorithm [6] achieves state-of-the-art performance on many
challenging continuous control benchmarks, which is an off
policy actor-critic setting RL algorithm based on the max-
imum entropy reinforcement learning framework. The actor
reuses past experience through off-policy optimization and acts
maximize expected reward while also maximizing entropy to
increase exploration.

However, when one task implicitly requires long-horizon
sequential decisions or varies with initial conditions or specific
dynamics, the conventional algorithms usually could not solve
it because the agent lacks effective memory mechanism and
cannot obtain the necessary long-horizon information. For ex-
ample, in Mujoco task [22], Striker-v2, the simulated mechan-
ical arm aims to strike a ball into a target locket. The initial
location of the target locket changes randomly every episode.
Keeping the location of this target locket in mind and planning
a move trajectory is crucial to successfully accomplish this
mission. A natural improvement could be explicitly increase
the agent’s memory length. In previous research [7], their
proposed Deep Recurrent Q-Network (DRQN), successfully
integrates information through time and replicates DQN’s
performance on discrete Atari domains. However through
empirical experiments, they found that using recurrent neural

networks can not guarantee systematic performance improve-
ment.

Recently, in Meta-RL domain, [8] [9] [10] have proposed
to encode task’s salient identification information to a latent
embedding space to reuse experience among different similar
tasks and achieve both meta training and adaptation efficiency.

Motivated by these insights, in this paper, we incorporate
probabilistic latent context variables into SAC to tackle the
aforementioned issues, and propose the Latent Context based
Soft Actor-Critic (LC-SAC) approach. The performance of
the LC-SAC is evaluated on representative single continuous
control tasks. And the capability of latent context techniques
to solve tasks that require longer-horizon memory is also
investigated.

Experiment results show that LC-SAC can achieve compa-
rable performance with SAC in many continuous tasks and can
outperform SAC in certain particular tasks, which we believe
that is because the latent context goes beyond providing the
agent with relatively long-horizon memory, and potentially
enabling better representation learning in the anterior part of
the value and policy neural networks.

In addition, conventional RL algorithms usually require very
large number of interactions with environments to achieve
acceptable performance. Sometimes, these interactions are
limited and economically expensive. [11] [12] show that hu-
man’s prior knowledge such as demonstrations can be used to
accelerate agents’ learning, which can be implemented through
behavior cloning methods to simply mimic human experts’
behavior or inverse reinforcement learning [13] [14] to learn a
reward function that contains the task’s characteristics. How-
ever, these methods typically require the expert demonstra-
tions, which are usually hard to get and may be sub-optimal.
In present paper, we show that simply combining LC-SAC
with different-quality demonstrations can achieve comparable
results in fewer interactions with environments and ultimately
outperform the best performance of demonstrations in most
tasks.

The main contributions in this paper are:
• proposing the LC-SAC method to explicitly memorize

recently acquired knowledge through learning a latent
context variable and exploring its practical impacts on
the original SAC on a variety of continuous Mujoco
benchmarks.

• combining LC-SAC with diverse-quality demonstrations
to effectively learn from both interactions with environ-
ments and human knowledge, and competitive perfor-
mance is observed.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Our code is based on this open-source implementation 1.

II. RELATED WORKS

A. Soft Actor-Critic

Before introducing SAC, we first present the deep rein-
forcement learning problem definition. Reinforcement learning
problem is often formulated as a Markov Decision Process
(MDP), M = (S,A, p, r, γ). When the RL agent interacting
with the environment, at each step, the agent observes a state
st ∈ S, where S is the state space, and chooses an action
at ∈ A, according to policy π(at|st), where A is the state
space, then the agent receives a reward r (st,at) and the
environment transforms to next state st+1 ∼ p(st+1|st,at).
Note that the environment’s dynamics is contained in both the
transition probabilities p and reward functions r, which are
usually unknown to the agent.

The objective of maximum entropy reinforcement learning
framework [15] is to maximize the discounted expected total
reward plus the expected entropy of the policy:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r (st,at) + αH (π (·|st))] (1)

, where γ is the discounted factor, ρπ (st,at) denotes the state-
action marginal of the trajectory distribution induced by the
policy π(at|st).

Soft Actor-Critic (SAC) [6] is an off-policy actor-critic
method in the maximum entropy reinforcement learning
framework. It utilizes an actor-critic architecture with separate
policy and value networks, an off-policy paradigm that enables
reuse of previously collected data, and entropy maximization
to enable effective exploration. In contrast to other off-policy
algorithms, SAC is quite stable and achieving state-of-the-
art results on a range of continuous control benchmarks.
To verify our hypothesis that latent context could increase
the the agent’s memory length and implicitly benefit the
representation learning, our modification is based on SAC.

B. RL with Recurrent Neural Networks

One way to tackle memory-required problems is to use
recurrent neural networks. Many prior work [7] [16] [17] have
combined LSTM networks with policy gradient methods to
solve POMDPs. [7] investigated the effects of adding recur-
rence to a Deep Q-Network (DQN), successfully integrates
information through time and receives comparable scores
with DQN on most standard Atari games. Meanwhile, [16]
proposed to extend deterministic policy gradient and stochastic
value gradient to recurrent neural networks variants to solve
challenging memory problems such as the Morris water maze.

Recently, [17] empirically investigated the training of RNN-
based RL agents from distributed prioritized experience replay,
and obtained remarkably good results in Atari games domain.
But it also showed representational drift and recurrent state
staleness problem is exacerbated in the continuous training

1https://github.com/katerakelly/oyster

setting, and ultimately results in diminished training stabil-
ity and performance. Meanwhile in [8], experimentally they
found that straightforward incorporation of recurrent policies
with off-policy learning is difficult, especially in continuous
settings.

C. Probabilistic Meta-RL

In Meta-RL materials, many approaches [18] [19] [20]
have been proposed to transfer among different similar tasks.
MAESN [19] combines structured stochasticity with MAML
[18] by learning exploration strategies from prior experience,
resulting in fast adaptation to new tasks.

The most related work with us is PEARL [8] algorithm.
They represent task contexts with probabilistic latent variables,
which encode the commonness of different tasks in some
meaning. This probabilistic interpretation enables temporally
extended exploration behaviors that enhance adaptation effi-
ciency while requiring far less experience.

Our proposed LC-SAC algorithm is a variant based on
PEARL. The main difference is that, PEARL aims to solve
Meta-RL problems, so the latent context variables c encode
salient identification information about the task, while in our
LC-SAC, the latent context is trained to memorize the recent
information about the dynamics of the current undergoing
environment and the agent’s past actions (or behaviors).

Our first main concern in this paper is if adding latent
context will impair conventional RL algorithms’ performance
in simple continuous tasks in different experimental param-
eters settings and if latent context can be used to improve
original SAC algorithms’ performance in tasks that require
long-horizon memory for decision.

D. Learning from Human Demonstrations

Reinforcement learning typically require numerous inter-
actions with environments before obtaining acceptable per-
formance. However, in some conditions, for example, auto-
driving, the cost of interactions with environments is huge
even unacceptable. In these cases, prior work [11] [12] [13]
[14] [21] try to leverage existing human knowledge (usually
demonstrations) to reduce the strong dependency on interac-
tions with environments.

However, demonstrations may be sub-optimal and not cover
all states space. So simply mimic the demonstrations through
behavior cloning is not consistent to obtain a comparable
results in most cases. Another way is inverse reinforcement
learning methods, which try to infer a intrinsic reward function
from different demonstrations and then use it to optimize
policy based on conventional forward RL, which is a viable
method in sparse reward settings but usually need much more
computational cost.

So our second main concern in this paper is how to integrate
the usage of the prior knowledge and policy optimization from
interactions with environments. Empirically, we find that our
LC-SAC can be simply but effectively combined with diver-
quality demonstrations and achieve comparable results with
SAC in most continuous control benchmarks.

III. METHODS

In this section, through introducing latent context variable
c to capture information about recent knowledge of the envi-
ronment’s dynamics and the agent’s past behaviors, we first
present our new proposed LC-SAC algorithm. In addition,
[8] indicated that, in an off-policy meta-RL method with the
probabilistic context, the data used to train the latent context
encoder need not be the same as the data used to train the
policy. Motivated by this hypothesis, next we presented LC-
SAC-DD procedure, which can effectively integrate the LC-
SAC algorithm with diverse-quality demonstrations to largely
reduce the numbers of interacting with environments before
getting achievable performance.

A. Latent Context Based Soft Actor-Critic
Notation Recall that both the transition and reward func-

tions are usually unknown, and can be sampled by taking
actions in the environment. We denote the agent’s transition
collected at t time step as experience et = (st,at, rt, s

′
t) and

e1:H as the experience collected so far, where H denotes the
length of memory: Horizon. And we propose an latent context
encoder network qω(c|e), which maps the experience e ∈ E
to c ∈ C, where E denotes the experience space, C denotes
the latent context space, and ω denotes latent context encoder
network parameters. Note, for simplicity, in the subsequent
content, we use e represents the experience collected in recent
H steps: e1:H .

Based on original soft actor-critic algorithm, our Latent
Context based Soft Actor-Critic (LC-SAC) methods utilize
one state value network Vψ (st, c), two soft Q-value networks
Qθi (st,at, c), for i ∈ {1, 2}, a policy network πφ (at|st, c).
All networks argument their input with the latent context
variable c, which encodes recent N steps experience, consisted
of the information of environmental dynamics and agent’s
past behaviors, explicitly enabling longer-horizon memory. We
also adopted the soft policy iteration framework, alternating
between optimizing these networks with stochastic gradient
descent.

To optimize the latent context encoder network qω(c|e). We
use the amortized variational inference approach same as [8].
The optimization objective is as follows:

Jq (ω) = E
c∼qω(c|e)

[Lcritic + βDKL (qω (c|e) ‖p(c))] (2)

in equation (2), the first term is conventional SAC critic
loss, in our setting, specifically, Lcritic = JQ(θ1) + JQ(θ2),

JQ(θi) = E
(st,at) ∼ D
c ∼ qω(c|e)

[
1

2

(
Qθi (st,at, c)− Q̂θi (st,at, c)

)2]

(3)
where,

Q̂θi (st,at, c) = r (st,at) + V̄ψ (s′t, c) (4)

where D is a replay buffer containing previously sampled
states and actions, and V̄ψ is the soft value target network,
which is trained to minimize the squared residual error:

Algorithm 1 LC-SAC
Initialize network parameters: ω, θ1,2, ψ, ψ̄, φ, and two replay
buffers: Dc for training latent context encoder, Drl for training
policy and value networks.

1: while not converged do
2: for each collecting data step do
3: clear context buffer Dc
4: for t = 0 : Nc do
5: sample c ∼ p (c), rollout policy πθ(a|s, c) to get

experience ect
6: end for
7: add ect=1...Nc

to buffer Dc and Drl
8: for t = 0 : Nrl do
9: sample c ∼ qω (c|e), rollout policy πθ(a|s, c) to

get experience et
10: end for
11: add et=1...Nrl to buffer Drl
12: end for
13: for each training step do
14: sample Bc context batch randomly from Dc

sample Brl RL batch randomly from Drl
sample c ∼ qω (c|e)

15: ω ← φ− αq∇ωJq(ω)
16: θi ← θi − αQ∇̂θiJQ (θi), for i ∈ {1, 2}

ψ ← ψ − αV ∇̂ψJV (ψ)
φ← φ− απ∇̂φJπ(φ)

17: ψ̄ ← τψ + (1− τ)ψ̄
18: end for
19: end while
20: return qω, Qθ, Vψ, πφ

JV (ψ) = E
st∼D

[
1

2

(
Vψ (st, c)− V̂ψ (st, c)

)2]
(5)

where,

V̂ψ (st, c) = E
at∼πφ

[Qθ (st,at, c)− log πφ (at|st, c)] (6)

Recent work theoretically proofed that the the soft (Boltz-
mann) policy iteration is guaranteed to improve and can
converge to the optimal policy. Derived from the soft policy
iteration procedure, the objective for policy update is below:

Jπ(φ) = E
st∼D,c∼qω(c|e)

[log πφ (at|st, c)−Qθ (st,at, c)]

(7)
in equation (2)’s right hand, the second term, p(c) is a

zero mean, unit variance Gaussian probabilistic distribution.
The KL divergence term is a kind of regularization aiming
to enable our latent encoder network’s output similar as a
Gaussian distribution as much as possible when minimizing
the critic loss, and implicitly increases the exploration in the
latent context space and avoids the premature convergence.

We summarize an overview of LC-SAC approach in Algo-
rithm 1. Note that, the off-policy RL batch Brl for training
value and policy networks are uniformly sampled from the

entire RL replay buffer Drl, however the context batch Bc

can be uniformly or sequentially sampled from context buffer
Dc. In addition, the experience been added to the replay buffer
can be (st,at, rt) or (st,at, rt, s

′
t).

In section 4, we fist empirically studied the impacts on
the performance when removing the next observation in
the experience e, then empirically investigated our proposed
approach’s performance in different sampling strategies and
buffer settings in a number of challenging tasks in the contin-
uous control domains.

B. LC-SAC with Diverse-quality Demonstrations

In this part, we incorporate our LC-SAC algorithm with
learning from diverse-quality demonstrations, forming a novel
approach to effectively learn continuous locomotion skills
from both interactions with environments and leveraging ex-
isting knowledge (here is human demonstrations), we refer it
as LC-SAC-DD.

Some simple modifications on Algorithm 1 can lead to our
LC-SAC-DD algorithm.
• First, apart from reusing human knowledge, we still need

some interactions to collect information about recent en-
vironment and agent. In our setting, at each iteration, Nc
steps experiences according to rollout policy πθ(a|s, c)
will be added to both the context replay buffer Dc and
the RL replay buffer Drl. Here, the policy is conditioned
on the latent context c sampled from qω (c|e).

• Second, in collecting demonstrations stage, we directly
put the diverse-quality demonstrations into the replay
buffer Drl instead of interacting with environments using
concurrent rollout policy.

• Third, in training stage, the context batch Bc is sequen-
tially sampled from context buffer Dc.

Our training procedure is presented in Algorithm 2. In
section 4, we show that the final performence after training
by combining demonstrations with the agent’s own real expe-
rience can outperform the original demonstration used.

IV. EXPERIMENTS

This section presents our experimental results and some
analysis. We first present the performance comparison between
our proposed LC-SAC over the original SAC algorithm in
a collection of continuous tasks. Next, we will show LC-
SAC can be incorporated with different quality demonstrations
effectively and simply. To be consistent with previous work,
our implementation almost use the same network architecture
and hyper-parameters across all the tasks except the total
training steps. 2

Experimental Setup In this section, our experiments are
based on five robotic locomotion tasks with the MuJoCo
simulator [22] [23], namely Ant-v2, HalfCheetah-v2, Hopper-
v2, and Humanoid-v2, Striker-v2. Among these tasks, the goal
of the robot is to move forward as fast as possible and without
falling to the ground. To implement and train the model, we

2https://github.com/puyuan1996/IJCNN2020

Algorithm 2 LC-SAC-DD
Collect diverse-quality demonstrations Ddemo
Initialize network parameters: ω, θ1,2, ψ, ψ̄, φ, and two replay
buffer: Dc for training latent context encoder, Drl for training
policy and value networks

1: while not converged do
2: for each collecting data step do
3: for t = 0 : Nc do
4: sample c ∼ qω (c|e), rollout policy πθ(a|s, c) to

get experience ect
5: end for
6: add ect=1...Nc

to buffer Dc and Drl
7: sample Nrl experiences: et=1...Nrl from Ddemo and

add to buffer Drl
8: end for
9: for each training step do

10: update steps are almost the same as Algorithm 1
11: end for
12: end while
13: return qω, Qθ, Vψ, πφ

used PyTorch machine learning framework and applied Adam
optimization [24] for learning the neural network parameters.
Each value and policy network has 3 fully connected layers
of 300 hidden units with ReLU non-linear functions.

Latent Context Encoder The latent context encoder net-
work also has 3 fully connected layers of 200 units with ReLU
non-linear functions. And we set the dimension of the latent
context variable c as 5. Correspondingly, the output dimension
of the latent context encoder network is Dc∗2 = 10, five values
in which represents the mean µ of c, five values represent
the variance σ of c. The latent context c is sampled from
the Gaussian distributionN (qµω (e) , qσω (e)), where qω denotes
latent context encoder network,

qω(e, ξ) = G (µω(e) + σω(e)� ξ)
where ξ ∼ N (0, I)

(8)

Note that, we set memory Horizon as 20 or 100. It means the
H in qω (c|e1:H) ∝

∏H
t=1 Gω (c|et), which is adapted from

[8]. When the present time step t is less than H , we just use
currently collected experience so far, namely e = e1:t, which
could theoretically lead some deviation but empirically, we
found it didn’t make much harm on final performance.

In the following graphs, each algorithm’s performance is
measured once every 4000 or 1000 training steps by running
the rollout policy for ten trajectories, in different random seeds,
and reporting the average return over those test trajectories.
More detail experimental hyper-parameters and MuJoCo en-
vironment information can be found in Appendix.

A. LC-SAC

We first investigated the effect of the next observation in
experience et on our proposed method LC-SAC, in Hopper-
v2 environment. Concretely, et = (st,at, rt, s

′
t) or et =

(st,at, rt). The result is shown in Figure 1. From it, we

can get the insight that the next observation is typically not
beneficial to the final performance and explicitly increase the
computational cost. Thus, we use the et = (st,at, rt) in our
following experiments.

Fig. 1: Using or no using next observation in experience et.
We compare our LC-SAC in this two variant settings, blue line
denotes the performance curve of no using the next observation
in et, orange line denotes using. We found that no using the
next observation in experience is slightly better than using,
and is obviously computational cheaper.

Fig. 2: The performance curves of LC-SAC (the context
batch Bc is uniformly sampled from context buffer Dc,
the training steps each iteration Ntrain=4000, Horizon=100)
against original SAC on continuous control tasks. Introducing
latent context can offer performance benefits in some tasks.

Next, we assess the performance of our algorithm 1, namely
LC-SAC, and analyze its properties comparing against prior
original SAC, in the aforementioned continuous tasks. We used
the SAC implementation from OpenAI SpinningUp with the

same hyper-parameters as the LC-SAC. The plots is showed
in Figure 2. We found that our approach obtained comparable
final performance with SAC in HalfCheetah-v2, Hopper-v2,
learned slightly faster in Humanoid-v2, and outperforms SAC
marginally in Ant-v2. We also found both LC-SAC and SAC
algorithms cannot solve Striker-v2 task (large than -150 score
means been partially solved), but seemly LC-SAC can always
obtain 50 more scores than SAC.

LC-SAC-Seq We also evaluated the performance of LC-
SAC when the context batch Bc is sequentially sampled from
context buffer Dc. And RL replay buffer Drl are exactly same
as the context replay buffer Dc, in which experiences are
collected by roll-outing the policy πθ(a|s, c), and the latent
context c is obtained by sampling from posterior probability
qω (c|e). For brevity, we denote this variant of Algorithm
1 as LC-SAC-Seq below. And the memory Horizon is set
as 20. The training steps each iteration Ntrain=4000. The
performance curves are displayed in Figure 3. (the results
when Ntrain=1000 can be found in Appendix Figure 5)

Fig. 3: The performance curves of LC-SAC-Seq (the training
steps each iteration Ntrain=4000, Horizon=20) against orig-
inal SAC on continuous control tasks. The shaded regions
denote the standard deviation in 3 random seeds runs.

In conclusion, both the LC-SAC and LC-SAC-Seq is an
effective way to extend the memory of the agent, but at the
same time they also induce some bias like certain noise on
current state and increase the computation cost. From the
experimental results, we see that in some relatively simple
tasks (e.g., Hopper-v2), introducing latent context cannot offer
performance benefits and even makes the performance of
original algorithm worse but not much.

B. LC-SAC-DD

1) Demonstrations: Because lacking the human demonstra-
tions in MuJoCo tasks, to generate diverse-quality demonstra-
tions, we reused the pre-trained Proximal Policy Optimization
(PPO) policy [4] [14] which is trained with the ground-truth
reward for 500 training steps (64,000 simulation steps) and
checkpointed every 5 training steps.

For each checkpoint policy, we generated 200 episodes
which have different trajectory length. This provides us diverse
quality demonstrations whose performance are almost ranked
based on the training stage. In the LC-SAC-DD procedure, we
added the demonstrations into the replay buffer according to
the checkpoint time of the corresponding policy.

2) Results: We evaluate the performance of LC-SAC-DD
on the aforementioned 3 challenging tasks with the continuous
action space: Ant-v2, HalfCheetah-v2, Hopper-v2, developed
in the MuJoCo physics simulator.

The LC-SAC-DD’s performance is showed in the Figure
4 (the results when Horizon=100 can be found in Appendix
Figure 6). To clearly evaluate the quality of our training
approach, we also plot the average return of the original
demonstrations by the ordering of training stage of the policy
used to generate them and the LC-SAC-DD’s performance in
the same figure.

Fig. 4: The performance curves of LC-SAC-DD (The training
steps each iteration Ntrain=4000, Horizon=20) on continuous
control tasks. The shaded regions denote the standard deviation
in 3 random seeds runs. The green dots denote the average
return of the demonstrations sampled to put into the RL replay
buffer Drl, at that training step.

When the training steps are 2e6, the required quantity of
interacting with environments is Nc ∗ 500 = 400 ∗ 500 = 2e5,
which is one order of magnitude less than training without hu-
man demonstrations. But the performance curves show certain
unstable behaviors, especially in Ant-v2, partially because the
actor and critic are trained with nearly fullly off-policy data
induced by the diverse-quality demonstrations. Even though,
we consider that LC-SAC-DD could be a viable way to
achieve acceptable performance when largely interacting with
environments is expensive or even unrealistic.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed the latent context based soft
actor-critic (LC-SAC) which incorporates the latent context
variables with SAC, enabling longer-horizon memory about
recent environment dynamics and agent’s behavioral infor-
mation. In empirical evaluations on a variety of continuous

benchmarks, we found that LC-SAC can obtain comparable
results against SAC. To reuse prior human knowledge, we also
proposed the LC-SAC-DD procedure, which simply combined
LC-SAC with diverse-quality demonstrations, and achieved
moderate results while using the relatively small number of
interactions with the environment.

In this paper, we only investigate the effect of adding latent
context on the continuous domain. Does this method can be
used for discrete action space? How to extend LC-SAC to
discrete action domains remains as the valuable future work.
We also expect that hyper-parameters such as the dimension
of the latent context variable, the length of memory horizon
can be automatically adjusted during training.

ACKNOWLEDGMENT

Thanks for insightful discussion with Xin Yao and Shaochen
Wang. The research is partially supported by the National Nat-
ural Science Foundation of China under grant No.U19B2044
and No.61836011.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou and D. Hassabis, ”Human
level control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[3] D. Silver, A. Huang, C. Maddison, et al. ”Mastering the game of Go with
deep neural networks and tree search,” Nature vol. 529, pp. 484–489,
2016.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
”Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, ”Continuous control with deep reinforcement learning,”
in International Conference on Learning Representations (ICLR), 2016.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ”Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning (ICML), 2018.

[7] M. Hausknecht and P. Stone. ”Deep recurrent Q-Learning for partially
observable MDPs,” arXiv:1507.06527, 2015.

[8] K. Rakelly, A. Zhou, D. Quillen, C. Finn, S. Levine. ”Efficient off-policy
Meta-reinforcement learning via probabilistic context variables,” in
Proceedings of International Conference on Machine Learning (ICML),
2019.

[9] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller,
”Learning an embedding space for transferable robot skills,” in Interna-
tional Conference on Learning Representations (ICLR), 2018.

[10] C. Finn, K. Xu, S. Levine, ”Probabilistic model-agnostic meta-learning,”
in Advances in Neural Information Processing Systems (NIPS), 2018.

[11] J. S. Albus. ”Brains, behavior, and robotics.” Peterboro, NH: Byte Books,
1981.

[12] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. ”A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
57(5):469–483, 2009.

[13] A.Y Ng, S. J. Russell, et al. ”Algorithms for inverse reinforcement
learning,” in International Conference on Machine Learning (ICML),
2000.

[14] D. S. Brown, W. Goo, P. Nagarajan, S. Niekum. ”Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from
observations,” in Proceedings of International Conference on Machine
Learning (ICML), 2019.

[15] B. D. Ziebart, ”Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,” Carnegie Mellon University, 2010.

[16] D. Wierstra, A. Foerster, J. Peters, and J. Schmidthuber. ”Solving deep
memory POMDPs with recurrent policy gradients,” in Proceedings of
the International Joint Conference on Neural Networks (IJCNN), 2007.

[17] N. Heess, J. J Hunt, T. P. Lillicrap, D. Silver. ”Memory-based control
with recurrent neural networks,” arXiv:1512, 2015.

[18] C. Finn, P. Abbeel, and S. Levine. ”Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv:1703.03400, 2017.

[19] A. Gupta, R. Mendonca, Y. X. Liu, P. Abbeel, and S. Levine. ”Meta
reinforcement learning of structured exploration strategies,” in Advances
in Neural Information Processing Systems (NIPS), 2018.

[20] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, R. Munos. ”Re-
current experience replay in distributed reinforcement learning,” in
International Conference on Learning Representations (ICLR), 2019.

[21] M. Taylor and P. Stone. ”Transfer learning for reinforcement learning
domains: A survey,” in The Journal of Machine Learning Research,
2009.

[22] E. Todorov, T. Erez and Y. Tassa. ”MuJoCo: A physics engine for model-
based control.” 2012.

[23] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba. ”OpenAI gym,” arXiv preprint
arXiv:1606.01540, 2016.

[24] D. P. Kingma, J. Ba. ”Adam: A method for stochastic optimization,” in
International Conference for Learning Representations (ICLR), 2015.

APPENDIX

Parameter Name Value
leaning rate 3e-4
entropy coefficient 0.05
discount factor 0.99
latent context dimensions 5
context encoder network architecture (200, 200, 200)
value and policy network architecture (300, 300, 300)
optimizer Adam
activation function ReLU
replay buffer size 1e6
RL batch size 256
kl lambda 0.1
Nc+rl 1000
Horizon 100 or 20
Nc 400
Nrl 600
training steps each iteration (Ntrain) 4000 or 1000

TABLE I: Hyper-parameters

Environment Observation Dimensions Action Dimensions
Ant-v2 111 (27 dims non-zero) 8
HalfCheetah-v2 17 6
Hopper-v2 11 3
Humanoid-v2 376 (292 dims non-zero) 17
Striker-v2 23 7

TABLE II: Mujoco Environment Parameters

Fig. 5: The performance curves of LC-SAC-Seq. (The training
steps each iteration Ntrain=1000, Horizon=20)

Fig. 6: The performance curves of LC-SAC-DD. (The training
steps each iteration Ntrain=4000, Horizon=100)

