
Temporal Fusion Pointer network-based
Reinforcement Learning algorithm for

Multi-Objective Workflow Scheduling in the cloud

1st Binyang Wang
Laboratory of intelligent information processing and control

Beijing Institute of Technology
Beijing, China

wbybit@163.com

2nd Huifang Li*
Laboratory of intelligent information processing and control

Beijing Institute of Technology
Beijing, China

huifang@bit.edu.cn

3rd Zhiwei Lin
Laboratory of intelligent information processing and control

Beijing Institute of Technology
Beijing, China

linzhiwei@bit.edu.cn

4th Yuanqing Xia
Laboratory of intelligent information processing and control

Beijing Institute of Technology
Beijing, China

xia yuanqing@bit.edu.cn

Abstract—Cloud computing is emerging as a deployment
promising environment for hosting exponentially increasing sci-
entific and social media applications, but how to manage and
execute these applications efficiently depends mainly on workflow
scheduling. However, scheduling workflows in the cloud is an NP-
hard problem and its existing solutions have certain limitations
when applied to real-world scenarios. In this paper, a Temporal
Fusion Pointer network-based Reinforcement Learning algorithm
for multi-objective workflow scheduling (TFP-RL) is proposed.
Through adopting reinforcement learning, our algorithm can
discover its heuristics over time by continuous learning according
to the rewards resulting from good scheduling solutions. To
make more comprehensive scheduling decisions as the influence
of historical actions, a novel temporal fusion pointer network
(TFP) is designed for the reinforcement learning agent, which
can improve the quality of our resulting solutions and the
ability of our algorithm in dealing with versatile workflow
applications. To decrease convergence time, we train the proposed
TFP-RL model independently by the Asynchronous Advantage
Actor-Critic method and use its resulting model for scheduling
workflows. Finally, under a multi-agent reinforcement learning
framework, a Pareto dominance-oriented criterion for reasonable
action selection is established for a multi-objective optimization
scenario. We first train our TFP-RL model by taking randomly
generated workflows as inputs to validate its effectiveness in
scheduling , then compare our trained model with other existing
scheduling approaches through practical compute- and data-
intensive workflows. Experimental results demonstrate that our
proposed algorithm outperforms the benchmarking ones in terms
of different metrics.

Index Terms—Multi-objective workflow scheduling, Reinforce-
ment Learning, Cloud computing, Neural networks

This work was supported by the National Key Research and Development
Program of China under grant 2018YFB1003700.

*Corresponding author. E-mail address:huifang@bit.edu.cn(Huifang Li).

I. INTRODUCTION

The amount of data is increasing exponentially with more

and more scientific as well as social media applications. To

store, access, analyze and process such a great amount of data,

cloud computing is explored, which provides users with types

of computational services by the means of internet [1]. The

performance of cloud systems is mainly influenced by task

scheduling and resource allocation. Any kind of computational

applications, such as data calculation and analysis, can be

described by workflows. Therefore, cloud workflow scheduling

becomes an important issue needed to be solved. However,

it faces great challenges: First, it is widely acknowledged

that scheduling workflows on distributed platforms is an NP-

hard problem [2]; Second, there are multiple objectives to

be optimized when scheduling, such as minimizing makespan

and maximizing resource utilization; Third, the elasticity and

heterogeneity of cloud resources make it more complex.

Plenty of heuristic and meta-heuristic algorithms are pro-

posed to produce approximate optimal solutions [3]. However,

heuristics are always restricted by problem statements while

meta-heuristics own high computational cost due to its large

number of iterations during evolutionary processes. More-

over, scheduling should be dynamic, but heuristics and meta-

heuristics can only make assignments of tasks from a given

workflow [4]. As machine learning algorithms are becoming

increasingly versatile and powerful, reinforcement learning

(RL) is discovered and adopted into scheduling. It is a kind of

novel method where agents can continuously learn to promote

its scheduling performance concerning to defined objectives.

But the generalization and solution quality of current RL based

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

scheduling approaches still have great promotion space.
To tackle the issues mentioned above, in this paper, we

proposed a temporal fusion pointer network-based reinforce-

ment learning algorithm for multi-objective workflow schedul-

ing (TFP-RL). The main contributions can be demonstrated

as follows: First, by exploring cloud workflow scheduling

mechanisms from an RL perspective, our method can discover

its own heuristics by continuous learning according to the

rewards received from good scheduling decisions over time.

Second, based on the pointer network (Ptr-net), a novel

temporal fusion pointer (TFP) network is developed for the

RL agent, which can help our algorithm make more informed

scheduling decisions under considering the historical effects,

thus improving its solution quality and ability to deal with

versatile workflow applications. Third, our model is trained

independently adopting the Asynchronous Advantage Actor-

Critic (A3C) method, and then the resulting model is applied

to schedule workflows, which can dramatically improve the

time efficiency of our algorithm; Finally, a Pareto dominance-

oriented criterion is established for selecting reasonable ac-

tions under multi-objective optimization situations.
The rest of the content is organized as follows. Section

II outlines the formulation of the cloud resource, workflow

and scheduling problems. Section III demonstrates the TFP-

RL approach in detail, including its agent network design and

training methods. Section IV displays the analysis and discus-

sion about experimental results. Section V investigates related

researches in recent years. Finally, Section VI concludes the

paper and discusses some future work.

II. SCHEDULING PROBLEM FORMULATION

Cloud Service Providers (CSPs) offer users with computa-

tional services through virtual machines (VMs) over internet

[5]. Thus, we define a resource set R =
{
r0, r1, r2, · · · , r|R|

}
to represent available VMs that can be availed to meet the

client requirements. Besides, the CSP provides VMs with

different performances like CPU computational capacity and

bandwidth, which can be denoted by cu(rf) and bw(rf)
respectively. In addition, there are different kinds of pricing

models applied by CSPs, such as charging all partial hours

in Amazon EC2 [6] and counting used minutes in Microsoft

Azure [7]. Here, we calculate the cost of leasing rf as follow:

Cost(rf) = μ(rf)× [LDT (rf)/tu] (1)

where μ(rf) is the price of leasing rf per unit time, LDT (rf)
is the leasing duration of rf and tu represents the minimum

leasing time duration.
A workflow is always depicted as a Directed Acyclic Graph

(DAG) where nodes represent tasks T =
{
t0, t1, t2, · · · , t|T |

}
and edges represent data and control dependencies D =
{(ti, tj) |ti, tj ∈ T, i �= j or i < j} between tasks [8]. An ex-

ample of a workflow model is given in Fig. 1.
Based on the cloud resource and workflow models men-

tioned above, the execution time (ET) of task ti can be

calculated as:

ET (ti) =
fpo(ti)

cu(rf)
(2)

t
t

t
t t

Fig. 1: A DAG sample with five tasks.

where fpo (ti) represents the computational size of ti and rf is

the VM for executing ti. The transmission time (TT) between

two tasks ti and tj can be computed as:

TT (ti, tj)=

{
dataSize(ti,tj)

min{bw(rf),bw(rg)} (rf �= rg)

0 (rf = rg)
(3)

where dataSize(ti, tj) is the size of data to be transferred,

while rf and rg are the VMs for executing ti and tj respec-

tively.

Definition 1: Suppose we have nwa workflow applications

(modeled as DAGs) and a cloud data center consisting of nc

VMs. The goal of multi-objective workflow scheduling is to

find a solution which can assign all tasks to VMs such that

both makespan and economic cost of the whole workflow

applications are minimized. It can be formulated as:

Minimize F = (Makespan,Cost)

To estimate the makespan, we first define the start time (ST)

and finish time (FT) for each task ti as:

ST (ti) = max

⎧⎨
⎩

avail[rf],

max
tj∈parent(ti)

{
FT (tj)+
TT (tj , ti)

} ⎫⎬
⎭ (4)

FT (ti) = ST (ti) + ET (ti). (5)

where avail[rf] is the available or ready time of VM rf on

which task ti is scheduled to execute. Note that when ti =
tentry) (entry task tentry is a task without any predecessors),

ST (tentry) = 0. Otherwise, ST (ti) can be computed as Eq. 4.

Then, makespan can be obtained as:

Makespan = max
ti∈T

{FT (ti)} (6)

For cost, we define the start lease time (SLT), finish lease

time (FLT) and lease duration (LD) of rf as:

SLT (rf , ti)=

{
0 (ti = tentry)
min

tj∈parent(ti)
{FT (tj)} (ti �= tentry) (7)

FLT (rf , ti)=

⎧⎪⎨
⎪⎩

FT (ti) (ti= texit){
FT (ti)+

max
t′j∈children(ti)

{
TT (ti, t

′
j)
}

(ti �= texit)
(8)

LD(rf , ti) = FLT (rf , ti)− SLT (rf , ti) (9)

where texit denotes a task without any successors. Then, the

accumulated total lease time (TLT) of rf and the whole

workflow execution cost under a specific scheduling scheme

can be computed as:

TLT (rf) =
∑
ti∈T

LD(rf , ti) (10)

Cost =
∑
rf∈R

Cost(rf) =
∑
rf∈R

μ(rf)× [TLT (rf)/tu] (11)

III. TFP-RL

A. Reinforcement learning framework

To handle the above formulated problems, we choose RL

based structure and make several novel changes so as to

get better performance. The basic framework of RL usually

consists of two parts: an agent and environment [9]. The

interaction between them can be depicted as follows: Through

observations, the agent obtains current state s containing

environmental information and takes an action a. Influence

by a, the environment changes its state which needs to be re-

observed. To solve multi-objective optimization problems, in

this paper, we apply a multi-agent RL architecture shown as

Fig. 2. There are two sub-agents and each of them is used to

optimize one objective, i.e., makespan and cost respectively.

RL problems are always modeled as Markov Decision Pro-

cesses (MDPs) which can be defined as:

Definition 2: A Markov Decision Process is a tuple <S, A,

P , r, γ> [10] where:

• S is a finite set of states s
• A is a finite set of actions a
• P is a state transition probability matrix, P a

ss′ =
P [St+1 = s′|St = s, At = a]

• r is a reward function, ras = E[rt+1|St = s, At = a]
• γ is a discount factor, γ ∈ [0, 1]

In this study, a state at time step t consists of the features

for alternative scheduling assignments at time step t, which

can be depicted as:

st = (p1, p2, .., pi, ., pnt) (12)

where nt is the size of st, representing the number of

alternative scheduling schemes in the current scheduling stage.

For time and cost sub-agent, each element pi of st is a

characteristic value of the scheduling scheme i, and its value

equals corresponding time and cost resulting from the schemes

i respectively. For instance, given that there is one task to be

executed and two VMs, nt = 2. p1 and p2 in st for time sub-

agent represent current makespan if the task is executed on

VM1 and VM2 respectively.

The action at at time step t is a selection of alternative

scheduling schemes. In the above example, the ready task will

be assigned to VM2 if the action value equals 2. The reward

rt for each sub-agent is derived from their objectives.

In the following parts of this section, the network model

of sub-agents, the interaction processes and the RL training

methodology will be presented in more detail.

a

S

Fig. 2: Multi-agent reinforcement learning architecture.

B. Agent design

In this paper, the agent is designed for selecting eligible

tasks (i.e.tasks whose dependencies have been satisfied) and

assigning them to available VMs at any time step, which can

be modeled as a seq2seq problem. Recurrent Neural Networks

(RNNs), such as Long Short Term Memory (LSTM) [11],

are usually employed in this kind of problems due to its

capability of learning a probability distribution over a sequence

[12]. Considering the number of eligible tasks is variable

due to different dependency relationships among tasks, we

choose pointer network (Ptr-Net) from [13], [14] and [15] as

the baseline of our problem with discrete outputs and size

changing inputs. In Ptr-Net (depicted in Fig. 3), vectors ui
j

are firstly calculated by the alignment model as:

ui
j = νT tanh(W1ei +W2dj−1), j ∈ (1, ..., ns) (13)

where i is time step, ν, W1 and W2 are trainable parameters, ei
and dj are the elements in hidden states of the encoder and the

decoder respectively, ns equals the number of input vectors.

ui
j scores the matching degree between the ith output and the

jth input. Then, Ptr-Net utilizes vector ui
j as a pointer to input

elements and the conditional probability can be estimated as:

P (ypi | yp1 , ..., ypi−1, X
p) = softmax(ui) (14)

where Xp is the input of Ptr-net, ypi is the output at time step

i. The softmax function normalizes ui (of length ns), which

outputs a distribution over input vectors. Considering recurrent

models are normally designed for solving problems associated

with neural machine translation, it would be inappropriate to

apply original Ptr-net directly to handle scheduling problems.

Therefore, in this paper, Ptr-net is ameliorated so as to tailor

for workflow scheduling and obtain better results. The details

about our network (depicted in Fig 4) designed for sub-

agents (time and cost sub-agents use the same network) are

demonstrated as follows:

Our TFP mainly includes an inner pointer network (IPtr)

and an outer layer LSTM network (OLstm). The hidden layer

of IPtr is composed of basic RNN units. At each time step,

IPtr reads the input vector st = (p1, p2, ..., pnt
) as its order,

where t represents actual time step of the current scheduling

stage. The output vectors yp1
, ..., ypnt

of IPtr are obtained

through the RNN layer as follows:

ypi = Wfohpi + bfo (15)

hpi = vT tanh(W d
frpi +W e

frh
e
pi
), i ∈ (0, nt) (16)

Fig. 3: Pointer network.

softmax

softmax

Fig. 4: Temporal fusion pointer (TFP) network.

where v , Wfo, bfo, W d
fr and W e

fr are corresponding linear

weight matrixes, he
pi

is an RNN hidden state of IPtr encoder.

hpi
is the state of augmented decoder, which contains much

information about the effects among alternative scheduling

assignments than he
pi

. Then, through the softmax layer of IPtr,

the conditional probability is generated as:

p(hpi
|st) = softmax(ypi

), i ∈ (0, nt) (17)

It represents the initial selecting probability of alternative

scheduling schemes i at state st. After that, the first nx hpi
s

are selected according to p(hpi
|st) and concatenated to form

the initial determining condition Xt.

Then in Olstm, we define the finial determining state Yt as:

Yt = g(ct−1, Ht, Xt) (18)

where Ht and Xt are a hidden and cell state of LSTM in

Olstm respectively. g is the model transformation which can

be depicted as follows:

f(t) = σ(Wf [Ht−1, Xt] + +bf) (19)

η(t) = σ(Wη[Ht−1, Xt] + bη) (20)

c̃t = tanh(WcHt−1 + bc) (21)

ct = ct−1 � f(t) + i(t)� c̃t (22)

o(t) = σ(Wo[Ht−1, Xt] + bo) (23)

Ht = o(t)� tanh(ct) (24)

Yt = WboHt + bbo (25)

where σ is the sigmoid activation function, � is expressed

as Hadamard product, W and b in each formula are linear

weight matrixes. From the above Eq. (19)-(25) we can see,

Yt contains not only the effects among current alternative

scheduling schemes, but also the information about historical

decisions, which means the assignments engineered by our

agent are much reasonable.

Finally, through the outer softmax layer, the final selection

probability of an alternative scheduling scheme at time step t
is obtained as:

P (y′j |Y0, ..., Yt−1, Xt) = softmax(Yt), j ∈ [1, nx] (26)

where y′j is an element of Yt. Compared with the Ptr-net

used in [16], it is obvious that our model can generate

better scheduling schemes due to its deeply considering the

information both from the current and historical time stages.

Throughout the whole network, one notice is that IPtr is

composed of basic RNN cells since there is no temporal

correlation among each pi.

C. Interaction

Based on the agent model mentioned above, in our problem,

the interaction between the agent and scheduling environment

can be demonstrated in Fig. 5. First, the environment is reset

to an initial state where the executed task set ξe = ∅ and

available task (tasks can be executed) set ξa = ∅. Then, the

agent observes time state smt and cost state sct , and delivers

them to its sub-agents. Each sub-agent outputs probabilities

of alternative schemes which will be taken as its attribute

values, and the final action at is selected according to Pareto

dominance. The criterion for action selection can be defined

as:

Definition 3: Suppose Pm
i and P c

i are final time and cost

selection probability associated with pi, then the action related

to pi will be selected as at if:

∀ j ∈ (0, nx) P
m
i ≥ Pm

j ∧ P c
i ≥ P c

j

After that, at is mapped to its related scheme which will

be implemented immediately and the environmental system

evolves to next stage. In addition, the time reward rmt and

cost reward rct are obtained, and the MDP processes emt =
(smt , at, r

m
t , smt+1) and ect = (sct , at, r

c
t , s

c
t+1) are stored to a

sample which will be pool used to train agent network models.

The above processes (except the first step) will be repeated

until all tasks are assigned. When the whole scheduling

process is finished, agent network models will be trained by

using samples in the pool.

D. Training

In this study, A3C is adopted to train our agent model due

to its good performance in researches. It is a class of policy

gradient algorithms in RL, which has two main features [17]:

First, its training and updating processes are asynchronous

between its two kinds of agents: a global agent for storing and

updating parameters of sub-agent networks, and local agents

for interacting with the environment and recording samples;

Fig. 5: Interaction processes between agent and environment.

Second, it adopts the idea of value function approximation

to obtain a lower variance than normal Monte-Carlo policy

gradient. Therefore, it consists of two kinds of models: the

critic model evaluating an action-value function, and the actor

model taking actions suggested by the critic. When it is

combined with our RL structure, as a result, there are two

types of sub-models contained in each sub-agent to achieve

its decision making and model updating.

The actor and critic in A3C algorithm follow approximate

policy and value gradients as follows:

∇θq
a
J(θqa) = E(∇θz

a
log π(at|st; θza)(R− V (si; θ

z
s))) (27)

∇θq
s
J(θqs) = E(∇θz

s
(R− V (st; θ

z
s))

2) (28)

where θqa, θza, θqs and θzs are actor and critic model parameters

in global and local agents respectively, V (st) is the value of

state st, R is the long-term reward which can be calculated

as:

R =
t∑

m=1

γm−1rt (29)

where γ is a discount factor. It can be seen that A3C utilizes

the sum of future discounted reward R rather than only using

r when computing gradients to update model parameters,

which can help to reduce variance and improve the stability

of models.

To accelerate the training process, we collect samples in

parallel since the learning procedures are based on varied

samples. More specifically, 6 threads are activated and each

thread contains one global agent and four local agents. When

different environment parameters (corresponding to different

types and sizes of workflow applications) are set for each

thread, the sequences of interactions among threads are dif-

ferent. Details of our training approach for time sub-agent are

listed in Algorithm 1 (it is the same as cost sub-agent).

In general, the processes of TFP-RL are shown in Algorithm

2 as follows: First, an agent is initially constructed using

the TFP network mentioned in Section III-B. Then, it will

interact with the scheduling environment continuously. Once

a workflow application is finished, we will train our model

based on the A3C method. Finally, if the training time reaches

the maximum number of episodes, the resulting model will be

output which can be used to produce scheduling plans.

Algorithm 1: A3C based training method

Reset gradients: dθqa ← 0 and dθqs ← 0. Synchronize

model parameters: θza ← θqa, θ
z
s ← θqs . nsa ← the

number of samples in sample pool for i = 1 to nsa do
take a sample according to chronological order.

nw ← the number of the sample. for t = nw − 1 to 0
do

R ← rmt + γR. accumulate gradients:

dθqa ← dθqa +∇θz
a
J , dθqs ← dθqs +∇θz

s
J .

end
perform asynchronous update: θqa ← dθqa, θqs ← dθqs .

end

Algorithm 2: Total procedures of TFP-RL

Construct agent (based on network in Section III-B)

model. emax ← defined maximum number of episodes.

for i = 0 to emax do
interact with the scheduling environment. train agent

model.
end
Output trained model and apply to schedule tasks

IV. EXPERIMENTS AND ANALYSIS

In this section, we first train our agent network using

randomly generated workflows (with 60-120 tasks) to establish

its convergence. Then, we increase the number of training and

enlarge workflow size to promote its scheduling performance

and compare the trained model with other scheduling methods.

More details are described as follows.

A. Training

To train our network model outlined in Section III-B and

test its convergency, a simulated workflow scheduling envi-

ronment is implemented. It contains all necessary functions

for workflow executions, which can realize simulations with

variable workflow sizes, the number of VM and computational

power. For each episode, a workflow is dynamically generated

whose size is 60-120 tasks and there are 500 episodes during

each training. Additionally, the IPtr and OLstm in our network

model consist of 260 and 300 hidden units respectively. To

reduce and avoid random effects, we conduct model training

for 6 times training and the results are depicted in FIG. 6 and

Table. I.

From FIG. 6, the time-learning process of our agent starts

at approximately 850, and makes a rapid decline before

converging to an average makespan of around 150. For cost-

learning, the agent starts at a relatively lower value and then

makes a gradual increase until reaching an average cost of

approximately 900. This results from initially the agent hasn’t

made enough explorations and prefers to use one or a few

VMs. However, this leads to a large negative time reward

and drives the agent to learn to accept some costs by using

different kinds of VMs. Finally, it finds the balance between

reducing makespan and cost. FIG. 6 just shows the third

0 50 100 150 200 250 300 350 400 450 500
Episodes

0

100

200

300

400

500

600

700

800

900

A
ve

ra
ge

 m
ak

es
pa

n(
s)

(a)

0 50 100 150 200 250 300 350 400 450 500
Episodes

0

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 c
os

t($
)

(b)

Fig. 6: The convergence of TFP-RL with respect to makespan

and cost:(a)Average makspan over training process;(b)Average

cost over training process.

learning process, while from Table. I, we can see that our

agent can always converge to approximate 200 and 900 for

makespan and cost though the initial condition is various in 6

training runs. It is apparent that TFP-RL is capable to handle

workflow scheduling problems outlined in Section II.

B. Scheduling performance testing

In this subsection, the trained model is encapsulated and

its scheduling performance is tested. Six types of VMs in

the pricing model of Amazon EC2 [18] and three real-

word workflows proposed in [19] are utilized. More details

about VMs and workflows are depicted in Table. II and FIG.

7 respectively, where CPU capacity (cu) is represented by

million floating-point operations per second (MFLOPS).

1) Algorithm parameters: For the comparison study,

ECMSMOO [12] and NSGA-II [20] are selected as the

benchmark algorithms, which are typical methods used to

address multi-objective optimization problems. Additionally,

an RL model with normal Ptr-net (RL-NP) is trained by the

same approach as our model, which is used as the baseline

method to verify our model effectiveness. For each workflow,

16 independent simulations are conducted for all algorithms.

And for the sake of fairness, TFP-RL and RL-NP run 5000

episodes while ECMSMOO and NSGA-II run 100 generations

with 50 individuals (100 × 50=5000) in each simulation. Other

parameter settings for algorithms are given in Table III. To

simplify the presentation in results, we use M0-M3 to denote

TFP-RL, RL-NP, ECMSMOO and NSGA-II respectively.

2) Analysis: To compare the quality of those solutions

resulting from algorithms, all non-dominated solutions ob-

tained from each algorithm in 16 simulations are put into

four sets respectively. Then, dominated solutions in each set

are removed and the Pareto Fronts (depicted in Fig. 8) of

each algorithm are constituted by the remainder. It can be

intuitively seen that TFP-RL and RL-NP are much better

than ECMSMOO and NSGA-II in all cases. This indicates

that the searching space of multi-objective cloud workflow

scheduling is a little huge for ECMSMOO and NSGA-II to

explore. RL-based approaches grasp the ability to find good

solutions through training, i.e., their exploring is much more

efficient, which indicates a higher probability of obtaining

better solutions. Besides, TFP-RL is better than RL-NP in most

cases, which verifies the effectiveness of TFP.

Efficiency is another performance for TFP-RL to promote

and can be represented as runtime. For each workflow, the

average runtime of each algorithm in 16 simulations is reported

by runtime (other methods)/ runtime (TFP-RL) (depicted in

Fig. 9), which reflects the improvement of TFP-RL over other

algorithms. Compared with ECMSMOO and NSGA-II, RL-

based methods run much faster since the knowledge obtained

through training can help them reduce the searching space.

Although TFP-RL is a little slower than RL-NP due to its more

complete model structure, the solution quality of TFP-RL is

much better. In general, TFP-RL owns the best scheduling

performance over those methods.

V. RELATED WORK

Multi-objective workflow scheduling is an NP-hard prob-

lem, which has been studied for many years. The most

traditional way to handle this problem is to combine multiple

objectives into a single one by assigning different weights [21],

[22]. However, it depends on users’ preferences to assign a

proper weight, thus may not meet the requirements of different

users simultaneously.

Therefore, it stimulates many single-objective optimization

methods converting to a multi-objective field adopting the

idea of Pareto dominance. Durillo and Prodan [23] used basic

Heterogeneous Earliest Finish Time (HEFT) and proposed

a Pareto-based list scheduling heuristic, i.e., multi-objective

HEFT (MOHEFT) to optimize time and cost of the whole

workflow execution. Kaur et al. [24] introduced a multi-

objective bacteria foraging optimization algorithm (MOBFOA)

by applying Pareto-optimal fronts to original BFOA. But

heuristic methods are always restricted by problem statements

and easily fall into local optima. What is more, there are

many meta-heuristics adopted to generate solutions for multi-

objective workflow scheduling, such as MOPSO [25] and

BOGA [26]. But their computational costs are very high due

to a large number of iterations during evolutionary processes.

Recently, RL based algorithms have been developed. Al-

though not as many methods exist in workflow scheduling,

the following ones can be found. Cui et al. [27] developed an

RL based algorithm for multiple DAGs workflow scheduling.

Orhean et al [28] introduced an approach using RL to reduce

execution time when scheduling workflows across distributed

resources. But those two approaches tackle scheduling prob-

lems from a much theoretical perspective which differs from

practical scenarios. Wu et al. [29] proposed an improved Q-

learning algorithm with a weighted tness value function to

optimize completion time and load balancing in the cloud.

However, it is hard for Q-learning to address complex schedul-

ing problems, such as scheduling large-scale workflows, since

the dimension of the Q matrix will become extremely large. In

addition, Wang et al [30] developed a multi-objective workflow

scheduling method with deep-q-network-based multi-agent RL

(DQN-based MARL). But it is not versatile enough since the

input and output size of its DQN network are fixed in length.

TABLE I: Results in 6 different trainings

Training time
1 2 3 4 5 6

average makespan(s)
initial value 1523.63 966.29 852.13 1200.42 879.35 1422.3
final value 148.23 151.92 156.2 166.38 141.22 158.96

average cost/($)
initial value 451.2 382.9 498.2 516.3 299.6 456.3
final value 899.2 954.13 931.26 913.29 962.02 914.26

(a) CyberShake (b) Epigenomics (c) Montage

Fig. 7: Sample structure of five workflow applications.

(a) Montage25 (b) CyberShake100 (c) Epigenomics997

Fig. 8: Cost-makespan trade-off of algorithms for different workflows.

TABLE II: Detailed information of the six types of VM

Type cu(MFLOPS) P (hour)
m1.small 4400 0.06

m1.medium 8800 0.12
m1.large 17600 0.24
m1.xlarge 35200 0.48
m3.large 28300 0.19
m3.xlarge 57200 0.39

TABLE III: Parameter settings for algorithms

Algorithm parameters

M2
c1 = c2 = c3 = c4 = 2, w = 1.0 →
0.35.

M3
crossover rate = 1 and mutation rate
= 1/n, where n is the total number of
tasks in a workflow.

Fig. 9: Runtime comparison for different algorithms on differ-

ent workflows.

On the contrary, our agent is able to schedule workflows with

variable sizes.

VI. CONCLUSION AND FUTURE WORK

In this paper, a temporal fusion pointer network-based RL

algorithm for multi-objective workflow scheduling (TFP-RL)

is proposed. It has the following advantages: (1) an RL

based cloud workflow scheduling framework is explored to

discover its own heuristics by continuous learning according

to rewards from previous good scheduling decisions; (2) a

novel temporal fusion pointer (TFP) network is designed for

RL agent, which can help to generate more comprehensive and

informative scheduling decisions by considering the influence

from historical actions so as to improve solution quality; (3) to

improve the convergence time, our TFP-RL model is trained

independently by using A3C method and the resulting model is

utilized to schedule workflow tasks; (4) to select actions more

reasonably when addressing multi-objective problems, a Pareto

dominance-oriented criterion is developed under multi-agent

RL framework. Adequate experiments have been conducted

to verify our algorithm and the experiment results illustrated

that our algorithm outperforms the compared ones in most

cases. In future work, we intend to consider more complex

problems, like involving more objectives and constraints.

REFERENCES

[1] L. M. Vaquero, L. Roderomerino, J. Caceres, and M. Lindner,
“A break in the clouds: Towards a cloud definition,” ACM-

SIGCOMM Computer Communication Review, vol. 39, no. 1,
pp. 50–55, 2009.

[2] J. D. Ullman, “NP-Complete scheduling problems,” Computer
and System Sciences, vol. 10, no. 3, pp. 384–393, 1975.

[3] D. Nasonov, A. Visheratin, N. Butakov, N. Shindyapina,
M. Melnik, and A. Boukhanovsky, “Hybrid evolutionary work-
flow scheduling algorithm for dynamic heterogeneous dis-
tributed computational environment,” Advances in Intelligent
Systems and Computing, vol. 299, pp. 83–92, 2014.

[4] J. M. Batalla, G. Mastorakis, C. X. Mavromoustakis, and
J. Zurek, “On cohabitating networking technologies with com-
mon wireless access for home automation system purposes,”
IEEE Wireless Communications, vol. 23, no. 5, pp. 76–83, 2016.

[5] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on
scheduling algorithms for scientific workflows in IaaS cloud
computing environments,” Computing Environments, vol. 29,
no. 8, 2017.

[6] Amazon, “Amazon ec2 pricing,” in Available:http://goo.gl/yKb
41s, 2014.

[7] Microsoft, “Virtual machines pricing details,” in Available:http:
//goo.gl/UrDkvF, 2014.

[8] A. Barker and J. I. V. Hemert, “Scientific workflow: A sur-
vey and research directions,” in Parallel Processing and Ap-
plied Mathematics, 7th International Conference, PPAM 2007,
Gdansk, Poland, September 9-12, 2007, Revised Selected Pa-
pers, 2007.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-
ment learning: A survey,” Articial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[10] A. Greenwald and K. Hall, “Correlated Q-Learning,” in Inter-
national Conference on Machine Learning, 20th International
Conference, 2003.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based coevo-
lutionary multi-swarm for multi-objective workflow scheduling
in a cloud system,” Soft Computing, vol. 21, no. 15, pp. 4309–
4322, 2017.

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” Advances in Neural Information
Processing Systems, vol. 4, pp. 1–9, 2014.

[14] D. Bahdanau, C. Kyunghyun, and B. Yoshua, “Neural machine
translation by jointly learning to align and translate,” ArXiv,
pp. 1–15, 2014.

[15] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,”
Advances in Neural Information Processing Systems, vol. 28,
pp. 1–9, 2015.

[16] A. M. Kintsakis, F. E. Psomopoulos, and P. A. Mitkas, “Rein-
forcement learning based scheduling in a workflow management
system,” Engineering Applications of Artificial Intelligence,
vol. 81, pp. 94–106, 2019.

[17] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in International Con-
ference on Machine Learning, 33th International Conference,
2016.

[18] Amazon, “Amazon ec2 pricing,” in Available:https://amazon
aws-china.com/cn/ec2/pricing/on-demand/ , 2019.

[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta,
and K. Vahi, “Characterizing and profiling scientfic worflows,”
Future Generation and Compute System, vol. 29, no. 3, pp. 682–
692, 2013.

[20] K. Deba, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multi-objective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002.

[21] W. Chen and E. Deelman, “Workflowsim: A toolkit for simu-

lating scientific workflows in distributed environments,” in E-
Science, 2012 IEEE 8th International Conference, 2012.

[22] D. Jeffrey and G. Sanjay, “Mapreduce: Simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[23] J. J. Durillo and R. Prodan, “Multi-objective workflow schedul-
ing in amazon ec2,” Cluster Computinng, vol. 17, no. 2,
pp. 169–189, 2014.

[24] M. Kaur and S. Kadam, “A novel multi-objective bacteria
foraging optimization algorithm (MOBFOA) for multi-objective
scheduling,” Applied Soft Computing, vol. 66, pp. 183–195,
2018.

[25] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Han-
dling multiple objectives with particle swarm optimization,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 3,
pp. 256–279, 2004.

[26] L. Zhang, K. Li, C. Li, and K. Li, “Bi-objective workflow
scheduling of the energy consumption and reliability in hetero-
geneous computing systems,” Information Sciences, vol. 379,
pp. 241–256, 2016.

[27] D. Cui, W. Ke, Z. Peng, and J. Zuo, “Multiple dags workflow
scheduling algorithm based on reinforcement learning in cloud
computing,” International Symposium on Intelligence Compu-
tation and Applications, pp. 305–311, 2015.

[28] A. I. Orhean, F. Pop, and I. Raicu, “New scheduling approach
using reinforcement learning for heterogeneous distributed sys-
tems,” Parallel and Distributed Computing, vol. 117, pp. 292–
302, 2018.

[29] J. Wu, Z. Peng, D. Cui, Q. Li, and J. He, “A multi-object
optimization cloud workow scheduling algorithm based on
reinforcement learning,” Intelligent Computing Theories and
Application, pp. 550–559, 2018.

[30] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo,
and H. Xie, “Multi-objective workflow scheduling with deep-
q-network-based multi-agent reinforcement learning,” IEEE Ac-
cess, vol. 7, pp. 39975–39982, 2019.

