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Abstract—The sparse channel estimation problem is drawing
increasing attention in broadband wireless communication. Spar-
sity nature in structure and noise is one of the most important
issues in such problems. Researchers have devised several sparsity
penalty terms such as zero-attracting (ZA) and correntropy
induced metric (CIM) to exploit potential sparse structure infor-
mation and improve sparse channel estimate accuracy. To combat
impulsive (sparse) noises, several adaptive filtering algorithms
based on the maximum correntropy criterion (MCC) have been
developed, which can achieve excellent performance, especially in
heavy-tailed noises. Recently, the concept of mixture correntropy
and the maximum mixture correntropy criterion (MMCC) were
proposed to further promote the robustness of the MCC against
impulsive noises. In this paper, a new robust and sparse adaptive
filtering algorithm is developed to estimate the sparse channels
with impulsive noises by combining the MMCC and CIM penalty.
Thanks to the desirable property of the mixture correntropy, the
proposed method behaves quite well with excellent convergence
performance. Simulation results show that the new method can
outperform several existing methods in sparse channel estimation
including the MCC based methods.

Index Terms—sparse channel estimation, adaptive filtering,
maximum mixture correntropy criterion, mean square deviation

I. INTRODUCTION

In broadband wireless communication scenarios, signal
transmission channel often exhibits sparse structure in time-
domain. It is supported by very few dominant coefficients
while most of the channel taps are zero [1]. Hence, it takes
a very important position to exploit the sparsity in channels
and estimate them accurately for realizing reliable wireless
communications. Due to their simplicity and easy implementa-
tion, adaptive filtering algorithms draw high attention to solve
the above sparse channel identification problems. In [2], the
proportionate-type algorithms were proposed to estimate the
channel parameters, where each channel coefficient is updated
in proportion to its estimated magnitude to exploit the sparse
information. Several methods were developed to improve the
proportionate-type algorithms [3], [4]. By adding different
penalty terms to the well-known minimum mean square error
(MMSE) criterion, researchers have proposed some effective
methods for sparse adaptive filtering, such as zero-attracting
LMS (ZALMS) [5], reweighted zero-attracting LMS (RZA-
LMS) [5], sparse recursive least squares (RLS) [6] and some
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other variants [7], [8]. Gui et al. [9] proposed a method
by incorporating the CIM (correntropy induced metric) into
RLS (RLS-CIM), where, with a small kernel width, the CIM
provides a good approximation to l0-norm and can excellently
exploit the channel sparsity.

In fact, the MMSE based algorithms provide a good perfor-
mance under Gaussian noise assumption, but will deteriorate
when facing non-Gaussian noises. However, non-Gaussian
noises are common in signal transmission channels because
of the impulsive property in man-made electromagnetic inter-
ference as well as nature noise. As is well known, maximizing
the correntropy can effectively suppress impulse noises [10]–
[13]. Therefore, it has great potential to introduce MCC to
combat the non-Gaussian noise in sparse channels. Ma et
al. [14] offered a robust sparse adaptive filtering algorithm
by combining the MCC with the CIM term called CIM-
MCC, which provided a very excellent performance on sparse
channel estimation with impulse noises.

Recently, Chen et al. [15] proposed the concept of mixture
correntropy and extended the MCC to MMCC (maximum
mixture correntropy criterion), based on which several learning
algorithms (ELMMMCC, KMMC and KRMMC) were devel-
oped to improve the performance against complex impulsive
noises. Inspired by this, we propose in the present paper a
new sparse adaptive channel estimation algorithm based on the
MMCC with a CIM penalty, named CIM-MMCC. Specifically,
the MMCC is adopted to improve the performance against
impulsive noises while the CIM item to exploit the channel
sparsity. We theoretically analyzed the mean performance of
the proposed algorithm. The convergence performance and
parameter sensitivity are studied in simulations under non-
Gaussian noises.

The rest of this paper is organized as follows. In Section
II, the preliminaries about the correntropy induced metric and
the mixture correntropy are revisited. Then, the sparse channel
estimation problem is modeled and the new adaptive filtering
algorithm CIM-MMCC is developed in Section III. The mean
performance analysis of the proposed method is shown in the
latter part of this section. Experimental results are presented
in Section IV. Finally, Section V gives the conclusion.
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II. PRELIMINARIES

A. Correntropy and CIM

Given two random vectors X and Y , the correntropy is a
nonlinear similarity measure in the kernel space [16]:

V (X,Y ) = E [κ (X,Y )] =

∫
κ (X,Y ) dFXY (x, y), (1)

where E[·] denotes the expectation operator, κ(·, ·) is a shift-
invariant Mercer kernel, and FXY (x, y) represents the joint
distribution function. In pratical scenarios, the data distribution
is usually unknown and only a finite number of samples
{xi, yi}(i = 1, . . . , N) are available. Thus, the correntropy
can be empirically estimated as:

V̂ (X,Y ) =
1

N

N∑
i=1

κ (xi, yi). (2)

The most widely used kernel in correntropy is the Gaussian
kernel:

κ (x, y) = Gσ (e) = exp

(
− e2

2σ2

)
, (3)

where e = x− y and σ > 0 denotes the kernel width.
In this paper, a CIM based sparse penalty is applied to

develop an efficient sparse channel estimation algorithm. For
a better understanding, we briefly review the CIM below. In a
sample space of vector X and Y , the CIM is defined by [17]

CIM (X,Y ) =

√
Gσ(0)− V̂ (X,Y ), (4)

Where Gσ(0) = 1 according to equation (3). It has been
proven that if elements |xi| > δ, where δ is a small positive
number, then as σ → 0, with CIM we can get arbitrarily close
to the l0-norm of the vector X [17]:

‖X‖0 ∼ CIM2
(
X,~0

)
= 1

N

N∑
i=1

(
1− exp

(
− x2

i

2σ

))
. (5)

Consequently, the CIM provides a good approximation to the
l0-norm of a vector and can be adopted as a desirable penalty
term to exploit the sparsity structure of a signal tranmission
channel.

B. Mixture Correntropy

As a nonlinear similarity measure, correntropy has been
successfully used as an efficient optimization cost in signal
processing and machine learning. For instance, the regression
problem can be solved by maximizing the correntropy V̂ (or
minimizing the C−Loss: 1− V̂ ) between the model output
and the desired response. The MCC has been shown to be very
robust against impulsive noises or large outliers [13], [14]. To
further improve the performance against complex impulsive
noises, a mixture correntropy was defined by [15]

M̂(X,Y ) = εV̂1 (X,Y ) + (1− ε) V̂2 (X,Y ), (6)

where V̂1 and V̂2 are two empirical correntropies with different
kernels, and ε is the mixture coefficient. With the mixture
correntropy, researchers proposed the maximum mixture cor-
rentropy criterion (MMCC) and adopted it to develope some

effective algorithms for adaptive filtering and machine learn-
ing. It was shown that adaptive algorithms with MMCC can
provide superior performance over those with MCC [15]. In
this work, we will utilize the MMCC to combat complex non-
Gaussain noises in the scenario of sparse channel estimation.

III. CIM-MMCC ALGORITHM

A. Problem Description and CIM-MMCC Algorithm
In many wireless communication applications, the signal

transmission channel can be modeled as a linear system like
a finite impulse response (FIR) filter, in which the observed
output signal is:

dn=W
T
0 Xn + vn, (7)

where Xn = [xn−M+1, xn−M+2, · · · , xn]T represents the n-
th input signal, W0 = [ω01, ω02, · · · , ω0M ]T is the channel pa-
rameter vector, vn denotes the additive random noise variable,
and M is the size of the channel memory. It is assumed that the
channel parameters are real-valued with sparse structure, i.e.,
most of the channel coefficients will be set to zero. In many
pratical systems, the noise vn is described as non-Gaussian
because of the impulsive nature in man-made electromagnetic
interference as well as nature noise.

To suppress the impulsive noises and exploit the sparsity
of the system as well, a new cost function by combining the
MMCC and the CIM is proposed as follows:

JCIM−MMCC = −M̂ (ŷn, dn) + λCIM2
(
Wn,~0

)
, (8)

where the weight factor λ > 0 is a regularization parameter to
balance MMCC term and CIM sparsity term, and ŷn=WT

n Xn

is the signal output estimate. Let en be the n-th instantaneous
error:

en = dn − ŷn = dn −WT
n Xn, (9)

where Wn = [ωn1, ωn2, · · · , ωnM ]
T is the n-th channel

estimate. Substituting Eq.(4) and Eq.(6) to Eq.(8), we obtain

JCIM−MMCC = λ
M

M∑
i=1

(
1− exp

(
−ω

2
ni

2σ2
3

))
−ε exp

(
− e2n

2σ2
1

)
− (1− ε) exp

(
− e2n

2σ2
2

) . (10)

Parameters σ1, σ2 and σ3 denote the kernel widths of the
MMCC and CIM, respectively.

In Eq.(8), the MMCC term plays a role to deal with
impulsive noises while the CIM term contributes to exploit
the channel sparsity. Based on the cost function Eq.(10), a
gradient-based adaptive filtering algorithm can be derived as
follows:

Wn+1 =Wn − η ∂JCIM−MMCC

∂Wn

=(I − ρg (Wn))Wn + µ (εf1 (en) + ϕf2 (en)) enXn,
(11)

where
µ = η

σ2
1
, f1 (en) = exp

(
− e2n

2σ2
1

)
,

ϕ =
σ2
1(1−ε)
σ2
2

, f2 (en) = exp
(
− e2n

2σ2
2

)
,

ρ = ηλ
M , g (Wn)= diag

{
1
σ2
3
exp

(
−ω

2
ni

2σ2
3

)}
.

(12)



We use the parameter µ as the step-size and ρ for weight
factor of the CIM. The proposed algorithm is summarized in
Algorithm 1.

Algorithm 1 CIM-MMCC algorithm

Initialize: µ, ρ, ε, σ1, σ2, σ3, and W1 = ~0.
1: while n = 1, 2, . . . do
2: Input: X(n) and d(n)
3: Update: e(n) = d(n)−WT

n X(n))

4: f1(en) = exp(− e2n
2σ2

1
)

5: f2(en) = exp(− e2n
2σ2

2
)

6: g (Wn)= diag
{

1
σ2
3
exp

(
−ω

2
ni

2σ2
3

)}
7: Output: Wn+1 = [I − ρg(Wn)]Wn + µ[εf1(en) +
ϕf2(en)]enXn

8: end while

B. Performance Analysis

In following, we theoretically analyze the mean convergence
performance of the proposed algorithm. First, several assump-
tions are presented below.

Assumption 1: The input signal {Xn} is independent
and identically distributed (i.i.d.) with zero-mean Gaussian
distribution.

Assumption 2: The noise signal {vn} is i.i.d. with zero-
mean and variance σ2

v , and is independent of {Xn}.
Assumption 3: The error nonlinearity fk(en) (k = 1, 2)

is independent of the input signal {Xn}.
Assumption 4: The {Wn} and g(Wn) are independent

of the {Xn}.
Assumption 5: The expectation E(fk(e∞)) (k = 1, 2) is

limited.
Remark: Assumption 1 and Assumption 2 are commonly

used in adaptive filtering [18]. Assumption 3 is valid when
the weight vector Wn lies in the neighborhood of the optimal
solution W0.

The channel estimate weight error vector is

W̃n =W0 −Wn. (13)

Let the mean of W̃n be denoted by δW̃n
= E

(
W̃n

)
.

Substituting Eq.(11) and Eq.(12) to Eq.(13) yields

W̃n+1 = AnW̃n + ρg(Wn)W0 − µ[εf1(en) + ϕf2(en)]vnXn.
(14)

Taking the expectations on both sides of Eq.(14) and using the
independence Assumptions 1−4, we obtain

E
(
W̃n+1

)
= E (An)E

(
W̃n

)
+ ρE (g (Wn))W0, (15)

where An is a diagonal matrix and its elements are

aii = 1− µ[εf1(en) + ϕf2(en)]x
2
ni − ρg(ωni). (16)

Apparently, as long as the parameters for the CIM-MMCC
are set properly, every diagonal element of An satisfies the

condition that 0 < aii < 1, which guarantees the convergence
of the proposed algorithm.

When n approaches +∞, we have:

E(W̃∞) = ρE
(
(I −A∞)

−1
)
E (g (W∞))W0. (17)

Then with the diagonal property of An we can deduce that

E
(
W̃∞

)
=W0 − diag

 1

1 + ρ
σ2
x

E(g(ω∞i))
µ[εf1(e∞)+ϕf2(e∞)]

W0,

(18)
where σ2

x denotes the variance of Xn. By comparing Eq.(13)
with Eq.(18), it implies that

E (W∞) = diag

 1

1 + ρ
σ2
x

E(g(ωi∞))
µ[εf1(e∞)+ϕf2(e∞)]

W0. (19)

It’s obvious that E (g(W∞)) is bounded. As a result,
E (Wn) will converge to E(W∞) as shown in Eq.(19) under
Assumption 5.

IV. SIMULATION STUDIES

To validate the performance of the proposed CIM-MMCC
algorithm, we intend to compare it with the other five algo-
rithms, including the LMP (least mean p-power) [19], MCC
[13], ZAMCC [10], RZAMCC [10] and CIM-MCC [10]. In
this paper, all the results are averaged over 200 independent
Monte Carlo runs. The parameter vector of the unknown time-
varying channel is set as

ω0i =



{
0 i 6= 10
1 i = 10

}
n ≤ 2000{

0 i is even
1 i is odd

}
2000 < n ≤ 3000{

−1 i is even
1 i is odd

}
3000 < n ≤ 5000

. (20)

In Eq.(20), i = 1, 2, . . . ,M and M = 20 is the memory
size. The total samples are chosen as 5000 for a single
simulation test. We define the sparsity degree Ds as:

Ds = 1− Nnon−zero
M

(21)

where the Nnon−zero is the number of the non-zero tap in W0.
Thus, the channel model defined by Eq. (20) has a sparsity of
0.95 during 1000 to 2000 iterations, then Ds changes to 0.5
when the iterations are between 2000 and 3000, and it equals
0 (non-sparsity) after 3000 iterations.

To sufficiently manifest the performance of the CIM-
MMCC algorithm against non-Gaussian noises, two noise
models, including the Laplacian (finite variance) and the α-
stable (infinite variance), are considered in the following
Monto Carlo simulations.

Input signals {Xn} are generated randomly according to the
standard normal distribution (N(0, 1)).



A. Channel Estimation under Laplacian Noise
Given mean value ζ and the scale parameter θ, the proba-

bility density function (PDF) of the Laplacian noise is defined
by

fL (t) =
1

2θ
exp

(
−|t− ζ|

θ

)
. (22)

For our simulaitons, this noise model can be defined as
VLaplacian = V (ζ, θ).

The estimation performance is evaluated by mean square
deviation (MSD) standard which is defined as:

MSD(Wn) = ‖W̃n‖2 = ‖W0 −Wn‖2 (23)

1) Convergence behavior: We examine the convergence
of the proposed algorithm under noise which is modeled as
VLaplacian = V (0.0, 0.5). Parameters for all the associated
algorithms are set as in Table I. Such a selection of the
parameters can ensure that all the six algorithms have almost
the same initial convergence rate.

TABLE I
PARAMETERS FOR SIX ALGORITHMS

Parameter Parameters for Algorithms
category µ σ1 ρ σ2 σ3 ε, δ

LMP(p = 1) 0.02
MMC 0.02 2.5

ZAMCC 0.02 2.5 0.002
RZAMCC 0.02 2.5 0.002 10.0
CIM-MCC 0.018 2.5 0.0005 0.02

CIM-MMCC 0.02 2.5 0.0005 4.0 0.02 0.7
Remark: σ in algorithms is set as σ1 if σ2 and σ3 are unnecessary.

The average convergence curves in terms of MSD are
shown in Fig.1. One can find that the CIM-type adaptive
filtering algorithms, including CIM-MCC and CIM-MMCC,
track system changes quite well and achieve lower steady-
state MSDs in all the three phases of different sparse degree.
It is because the CIM term provides a better approximation
to l0-norm function than the ZA and RZA. Besides, the
proposed CIM-MMCC algorithm provides even lower steady-
state MSDs with almolst the same convergence speed than the
CIM-MCC. It means that the mixture correntropy provides us
a new approach to promote convergence performance.

2) Steady-state MSD performance: As shown in Fig.2, we
consider different θ from 0.1 to 1.1 to produce distinctive noise
distributions and study the steady-state MSDs of six algorithm-
s. It is clear that: a) The steady-state MSD performances of all
the six adaptive filtering algorithms deteriorate with increasing
θ. b) The CIM-MMCC dilivers the lowest steady-state MSDs
under all the noise distributions in this experiment.

B. Channel Estimation under α-Stable Noise
The α-stable model can provide heavy-tailed noises [20],

which occur frequently in communication as well as applica-
tions in other fields [21]. In this experiment, we will study the
performance of the new algorithm against the α-stable noise,
which is modeld by a characteristic function below.

fαS (t) = exp {jδt− γ|t|α [1 + jβsign (t)S (t, α)]} , (24)
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Fig. 1. Convergence behavior of six adaptive filters.
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Fig. 2. Steady-state MSDs of six adaptive filters under different θ (Ds =
0.95).

in which

S (t, α) =

{
tan

(
απ
2

)
if α 6= 1

2
π log |t| if α = 1

, (25)

where α ∈ (0, 2] is the characteristic factor, −∞ < δ <∞ is
the location parameter, β ∈ [−1, 1] is the symetric parameter,
and γ > 0 is the dispersion parameter. The characteristic factor
α measures the tail heaviness of the distribution. Smaller α
makes heavier tail in Eq.(24). In addition, γ measures the
dispersion of the distribution. The distribution is symmetric
about its location δ when β = 0. In our simulations, the noise
vn is modeled as VαS = V (α, β, γ, δ).

1) Convergence behavior: We consider the problem of
sparse channel estimation under impulsive noise model with



VαS = V (1.2, 0.0, 0.2, 0.0). Parameters for all the algorithms
are the same as described in Table I. The average convergence
curves in terms of MSD are depicted in Fig.3. Convergence
performance of the six algorithms are similar to that under the
Laplacian noise, and the proposed CIM-MMCC still outper-
forms other algorithms in all the three phases.
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Fig. 3. Convergence performance of six adaptive filters.

2) Steady-state MSD performance: To further evaluate the
performance of the proposed algorithm, we conduct the sim-
ulations with different values of α ∈ [0.5, 1.0, 1.2, 1.5, 1.8]
and γ ∈ [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]. As exhibited in Fig.4 and
Fig.5, all the six algorithms perform better with increasing
α (implies less heavy tail) and decreasing γ (implies smaller
dispersion), and the steady-state MSD curves of our proposed
CIM-MMCC are lower than other algorithms with all α and γ
alternatives. This suggests that the proposed algorithm shows
superior robustness against impulsive noises with different tail-
heaviness or dispersion.

C. Parameter sensitivity

The kernel bandwidth σ1, σ2 and the mixture coefficient ε in
MMCC play very important roles in the proposed algorithm.
It is necessary to study how the convengence performance
will be affected when these parameters are changed. All the
following simulations are conducted with the α-stable noise.

First, we investigate the influence of σ1 in terms of
the convergence performance under different distributions of
noise. Note that changing σ1 or σ2 gives a similar behavior
of convergency performance. Alternatives for σ1 are set as
σ1 ∈ [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0] and σ2 = 2.5 is set
as a constant. Steady-state MSD curves are dipicted in Fig.6,
from which it can be found that: a) The lowest MSDs of
the proposed algorithm are obtained when σ1=1.5 for all the
alternatives of α in this example. b) The MSD deteriorates as
the kernel size increasing from 1.5 to 4.0. c) The steady-state
MSD performance deteriorates significantly when kernel size
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Fig. 4. Steady-state MSDs of six adaptive filters under different α (Ds =
0.95).
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Fig. 5. Steady-state MSDs of six adaptive filters under different γ (Ds =
0.95).

σ1 decreases from 1.5 to 1.0, and then remains unchanged
while σ1 continues to decline. Hence, choosing the suitable
kernel size is very important for the CIM-MMCC to achieve
desirable MSD performance as well as robustness against
different distributions of impulsive noise.

Next, convergence performance of the proposed algorithm
is studied when mixture factor ε varies inside [0, 1] with
different σ2 ∈ [1.5, 2.5, 3.0] and constant σ1 = 2.5. We
adjust the step-size µ carefully in each simulation and ensure
that all simulations hold approximately the same convergence
speed (at the 300-th iteration). From Fig.7, we can conclude
that there is no monotonic trend for MSD performance of
the CIM-MMCC when ε is changing for each σ2. In this
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0.95).

experiment, the optimal steady-state MSD is approached when
the mixture factor ε is chosen between [0.6, 0.8] with σ2=1.5.
This confirms that the CIM-MMCC does have the ability to
provide desirable MSD performance with the help of mixture
correntropy.
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0.95).

V. CONCLUSION

In this paper, a new robust adaptive algorithm for sparse
channel estimation is proposed based on the maximum mixture
correntropy criterion (MMCC) combined with the correntropy
induced metric (CIM) sparsity penalty term. We theoretically
analyse the mean convergence of the proposed algorithm.
Simulation results confirm the desirable performance of the

new algorithm under both Laplacian (finite variance) and
alpha-stable (infinite variance) impulsive noises.
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