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Abstract—The compromise between recognition accuracy and
computational complexity is among the most difficult tasks in
the area of pattern recognition. In order to achieve better
performance in terms of both accuracy and speed, we present
an efficient method in this paper to exploit the advantages of
image entropy features and extreme learning machine (ELM)
for human gait recognition. The proposed method consists of two
phases: First, an image-entropy-based feature extraction strategy
is introduced, in which row-based entropy vectors of binary con-
tour are extracted for each walking sequence. Second, an ELM
network is trained by supervised learning. A bagging algorithm is
adopted to improve the stability and generalization performance
of the ELM network. Repetitive sampling is performed on the
training set, on which the ELM network is re-trained. The final
recognition result is then determined by a majority vote rule
on the multiple ELMs trained through the bagging algorithm.
The computational burden can therefore be reduced in this
work by using the simplified feature extraction process, effective
image entropy features and the fast learning ability of ELM.
This paper further constructs a unified multi-view training
set containing gait features of each individual observed across
different view angles, and discusses the extension of the proposed
method for multi-view gait recognition. Extensive experiments
on CASIA-A and CASIA-B gait databases demonstrate that the
proposed method can achieve encouraging recognition accuracy
in both single-view and multi-view situations with outstanding
computational efficiency.

Index Terms—Gait recognition, Image entropy, Extreme learn-
ing machine, Multi-view recognition

I. INTRODUCTION

Human gait recognition, which concerns recognizing in-
dividuals by the way they walk, has attracted considerable
attention in recent years. In contrast to traditional biometrics
based on face or fingerprint recognition, gait biometrics can be
detected without subjects’ cooperation at a longer distance and
doesn’t require high image resolution, making it very suitable
for long distance security and surveillance [1].

Pioneering works in [2], [3] have confirmed the feasibility of
gait as an identifier of individuals. After that, a vast literature
has accumulated in the area of gait recognition [4]. Despite
that much progress has been made recently, the compromise
between computational complexity and recognition accuracy
is still one of the most difficult and inevitable problems in
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gait recognition. In other words, it is highly challenging to
design a gait recognition algorithm that could achieve the best
performance in terms of both speed and accuracy. Most of the
existing works focus on the correct recognition rates by using
various complicated algorithms, but suffer from very high
computational complexity, which limits their applicability in
real-world scenarios [5], [6]. Attempts to resolve this dilemma
have leaded to the emergence of hybrid systems [6], which
combine various techniques and unify the advantages of these
different methods in a more efficient manner.

In view of the above considerations, we aim to develop
a hybrid and efficient gait recognition scheme in this paper,
which is a cascade of gait image entropy and ELM for gait
recognition. Gait cycles of walking sequences are firstly deter-
mined and an image entropy based feature extraction strategy
is introduced. Image entropy of each row in the gait contour
images is calculated and form a multi-dimensional entropy
vector for each frame. The mean value of the obtained image
entropy vectors for all frames of the walking sequences is
selected as the gait features for subsequent recognition task. A
single-layer neural network based on ELM is constructed and
repetitive sampling is performed on the training set, on which
the ELM network is re-trained. The final recognition result is
then determined by a majority vote rule on the multiple ELMs
trained through the bagging algorithm. Finally, we discuss the
multi-view recognition problem for the proposed method. The
overall flowchart of the proposed method is shown in Fig.1.

Compared with other methods on gait recognition, the
contributions of this paper lie in the following aspects: (1)
A new image entropy based feature extraction strategy for
individual identification is proposed. The gait entropy vectors
are used, for the first time, to capture the temporal and
spatial characteristics underlying the shallow gait silhouette.
The computational complexity can be reduced considerably
by using the the simplified feature extraction process in the
extraction of the entropy features. (2) We combine the image
entropy features and ELM algorithm to further improve the
recognition rate. The Bag-ELM algorithm is adopted to en-
hance the performance of ELM on stability and generalization.
The computational burden can be reduced in this work by
using the fast learning ability of ELM. Encouraging recogni-
tion accuracy can be achieved with outstanding computational
efficiency. (3) The proposed method constitutes a unified
framework for both single-view and multi-view situations. It
is easy to extend the proposed gait recognition technique, for
multi-view gait recognition using the image entropy and ELM
algorithm.
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Fig. 1. Overview of our gait recognition method.

II. RELATED WORK

Existing gait recognition methods can be roughly divid-
ed into two different categories: model-based methods and
silhouette-based methods.

Among these existing works, one of the crucial factors
for an efficient gait recognition system is the extraction of
salient features. The extracted gait features should effective-
ly capture the gait dynamics characteristics and yield good
discriminability across individuals. Lee et al. [7] divided the
human silhouette image into seven parts, each of which was
represented by an ellipse. A total of 29 parameters were
extracted from the human silhouette image for gait recognition.
Han et al. [8] averaged the walking silhouettes in one walking
period and formed the Gait Energy Image (GEI) for the
identification task. Lam et al. [9] proposed a gait flow image
(GFI) algorithm by calculating the optical watershed. Since the
time-varying dynamics characteristics is the essential attribute
of the gait motion [10], special emphasis is given in this
paper on image entropy, one of gait dynamics descriptors,
to improve the recognition rate with reduced computational
complexity using simplified feature extraction process. To the
best knowledge of the authors, there has been very little
work on extracting image entropy directly for gait recognition,
though the utility of entropy has been well recognized by the
pattern recognition community.

Another crucial factor for a successful gait recognition
algorithm is the classifier. In the past few years, artificial neural
networks techniques have already had tremendous influence
in the area of gait recognition. For instance, radial basis
function (RBF) networks were adopted in [11] for gait dynam-
ics extraction and the recognition task. Convolutional neural
network (CNN) was constructed in [12] for view-invariant gait
recognition. Wu et al. [13] designed a globally trainable deep
model by using deep features and hand-crafted representations.
Among these artificial neural networks methods, ELM is
of particular interest to the research community for its fast
learning speed as well as its real-time processing capability
[14]. It was first motivated by the single hidden layer feed-

Fig. 2. Silhouette contour extraction: (a) Standardized binary silhouette
image; (b) Silhouette contour.

forward neural networks and then found capabilities in face
recognition, image retrieval, image processing and computer
vision. It is shown that ELM can perform extremely quickly
due to its random selection of the hidden node parameters.

III. PROPOSED GAIT RECOGNITION METHOD

A. Image entropy feature extraction

Human walking is a form of continuous and dynamical
motion and the dynamics nature is its essential attribute.
Apparently, it is difficult to reflect the essential dynam-
ic characteristics for human walking by using conventional
time/frequency domain features. Therefore, we aim to address
this issue in the following.

1) Silhouette extraction: The first step of the proposed
algorithm is silhouette extraction and segmentation. Walking
silhouettes can be extracted using the method in [15] and a
preprocessing procedure is applied to the extracted silhouettes,
including filling in holes, removing noises, edge images ex-
traction, dilation and erosion procedure. The gait binary image
is further normalized into the same size of 160×80. Edge
images can then be obtained by applying a Canny operator
with hysteresis thresholding, as shown in Fig. 2.

Two important cues in gait sequence are the width and
height of the walking silhouette. By observing, the height and
width of the silhouette is changing periodically with the time-
lapse. The height of the silhouette reaches a maximum when
the legs overlap and drops to a minimum when the legs are



Fig. 3. The H-W ratio curve of a gait sequence.

farthest apart. At the same time, the width reaches a maximum
when the two legs are full stride stance and drop to a minimum
when the legs are heels together stance. Consequently, this
paper employs the aspect ratio of the walking silhouette
(height/width, H-W ratio) to get the estimation of the gait
cycle, as shown in Fig. 3.

2) Image entropy vector: The concept of entropy was
originated in 1803 revealing the energy exhaustion in thermo-
dynamics [16]. This thermodynamic concept was later brought
into the field of information theory with the name information
entropy introduced in 1948 by Shannon [17]. In this work,
we consider the improved image entropy vector based on
information entropy as features.

Gait image is composed of a number of pixels and the
probability distribution of the pixel gray values for each image
is unique. Let the set of gray values be f , the grayscale value
level be i, the probability of the occurrence of each grayscale
level pi can be defined by

pi =
f(i)∑k
i=1 f(i)

(1)

where k represents the number of grayscale levels in the
whole image. All the probability values satisfy the condition:∑k

i=1 pi = 1.
Then the image entropy H(f) of the gait image can be

defined as

H(f) =

k∑
i=1

pi log
1

pi
(2)

For each gait binary image, although its number of grayscale
level is much less than the ordinary gray image, it is con-
sidered as a kind of special grayscale image in this work.
The grayscale values of each pixel appear random, and the
probability of each pixel appearing is independent. We divide
the gait silhouette into 160 equal row subimage from top
to bottom, and calculate the image entropy for each row
subimage, as shown in Fig. 4. Image entropies for all 160
rows are integrated as the feature vector for each frame. Gait
entropy vector can be obtained by averaging the entropy values

Fig. 4. Image entropy calculation for each row subimage.

Fig. 5. The gait entropy vector. (a)-(f) represents the gait entropy vector of
different persons.

of corresponding row subimages respectively for all frame in
one walking cycle. Fig. 5 shows some examples of gait entropy
vectors. The pseudo-code of the proposed gait entropy vector
extraction algorithm is shown in Algorithm 1. Fig. 6 shows the
entropy feature curves of one person under different walking
views.

Algorithm 1 Extraction process of gait entropy vector
Require: A standardized gait binary sequence A(x, y)|(x ≤

160, y ≤ 80) of period T ,
Independent training number K = x = 160
Zero valued vector Bt

Ensure: The gait entropy vector, B∗;
1: Set k = 1 t = 1
2: while t < T do
3: while k < K do
4: Obtain all pixels of the kth line of the normalized

gait binary image
5: Calculate the image entropyBt(1, k) of the kth row

vector
6: k = k + 1
7: end while
8: end while
9: The gait entropy vector is B∗ =

∑T
t=1 Bt

T ;

B. ELM-based gait recognition scheme

ELM was originally proposed for the learning problem
of single hidden layer feedforward neural networks (SLFNs)
and then extended to generalized feedforward networks. ELM
takes the advantages of its fast learning speed and real time



Fig. 6. Gait entropy vectors for one person under different walking views.

processing capability, and these notable merits are attributed
to the random selection of the hidden node parameters (input
weights and bias) [18], [19].

A single hidden layer neural network through ELM mech-
anism with L hidden layer nodes is constructed in this paper.
Denote Xj = [Xj1, Xj2, . . . , Xjn]

T as the input vector,
oj = [oj1, oj2, . . . , ojm]T the network output vector, and
tj = [tj1, tj2, . . . , tjm]T as the target output vector, the
network model can be written in the following form:

L∑
i=1

βig(Wi ·Xj + bi) = oj , j = 1, · · · , n (3)

where g(·) is the activation function, Wi =
[wi1, wi2, · · · , win]

T is the input weight, βi is the output
weight, bi is the offset of the ith single hidden layer unit.
The goal of ELM is to minimize the error between tj and oj :

n∑
j=1

‖oj − tj‖ = 0 (4)

That is, we should find appropriate βi, Wi and bi such that:

L∑
i=1

βig(Wi ·Xj + bi) = tj , j = 1, · · · , n (5)

It can be represented by the following form:

Hβ = T (6)

Where

H(W1, · · · ,WL, b1, · · · , bL, X1, · · · , XL) = g(W1, ·, X1 + b1) · · · g(WL, ·, X1 + bL)
... · · ·

...
g(W1, ·, Xn + b1) · · · g(WL, ·, Xn + bL)

 (7)

β =

 βT
1
...
βT
L

, T =

 TT
1
...
TT
n


H is called the output matrix of the hidden layer, β is the

output weight, and T is the desired output. Once the input
weight Wi and the offset bi of the hidden layer are randomly
determined in the ELM, the output matrix H of the hidden
layer can be determined. Then, the training single hidden layer
neural network can be transformed into solving a linear system
Hβ = T . And the output weight β can be determined by:

β̂ = H+T (8)

where H+ is the Moore-Penrose generalized inverse of the
matrix.

ELM adopts a One-Against-All (OAA) method to transform
the multi-classification problem into a multi-output function
regression problem. The class label of the gait sample with the
largest output value is used to represent the class label of the
given sample. For a C-labels classification problem, the output
label ti of a sample xi is usually encoded to a C-dimensional
vector (ti1, ti2, · · · , tic)T with tic ∈ −1, 1, (c = 1, 2, · · · , C).
In the OAA approach, if the class label ti of the sample xi is
c, then tic will be set to be 1 and the others are set as -1 in
the new formed C-dimensional output vector. Therefore, the
class label ctest of a testing sample xtest predicted by the ELM
algorithm is the index of the largest entry in the corresponding
output vector [18].

In order to improve the classification performance of ELM,
we further introduce an improved ELM algorithm that com-
bines the bagging algorithm with ELM, namely Bagging-based
ELM (BagELM) [20] and makes decisions by a majority vot-
ing method. Specifically, we firstly construct an ELM classifier
and a training set. The Bagging algorithm performs repetitive
sampling on the training set in the training phase. That is, the
training set is re-sampled and a new training sample set is
obtained each time. The ELM uses the new training sample
set for training each time separately. The learning parameters
of the ELM are randomly and independently initialized for
each time. The final category label is then determined by a
majority vote on all results obtained for multiple ELMs.

Compared with the conventional ELM algorithm, the
BagELM algorithm takes the advantages of the bagging
method to select the majority of the prediction results as the
final integration decision, which can effectively reduce the
influence of the random interference of the single hypothesis
on the prediction result and improve the classification perfor-
mance as well as the generalization ability of ELM.

IV. EXPERIMENTS

In this section, the proposed algorithm is implemented on
the MATLAB platform and evaluated on two benchmark gait
databases: (a) CASIA-A database; (b) CASIA-B database.
These two databases directly support the study of gait recog-
nition. CASIA-B database contains a large number of subjects
and CASIA-A database has been widely used in the literature.



Fig. 7. Sample frames from 3 different views of one subject in CASIA-A
gait database.

A. Experiments on CASIA-A gait database
This paper first evaluates the proposed method on CASIA-

A database [21], which includes sequences from 20 different
subjects under 3 different views: 0◦, 45◦ and 90◦. Each subject
walks along the straight line 4 times for each view angle. Fig.7
shows some sample images in CASIA-A database.

1) Recognition accuracy on CASIA-A gait database with no
view variations: Two types of experiments are conducted in
this database. The first type is the gait recognition with no view
variations. That is, both of the training and test patterns used in
the evaluation are walking sequences in the lateral view (0◦).
We assign two sequences to the training set and the remaining
sequences to the test set. The recognition results are shown in
Table I.

The proposed gait entropy features can make full use of
dynamics characteristics to dispel influence caused by insuffi-
cient image information. By combining the gait entropy fea-
tures and Bag-ELM algorithm, we can achieve the recognition
rate of 95.0%, which outperforms other existing works.

TABLE I
RECOGNITION ACCURACY (%) ON CASIA-A GAIT DATABASE WITH NO

VIEW VARIATIONS. HERE, CCR=CORRECT CLASSIFICATION RATE.

Algorithms CCR (%)
Lee and Grimson [7] 87.5
Lu and Zhang [22] 92.5
Lee et al. [23] 91.3
Gait entropy vector+NN 83.3
Gait entropy vector+SVM (lin) 77.5
Gait entropy vector+ELM (radbas) 92.5
Gait entropy vector+BagELM (radbas) 95.0

2) Recognition accuracy on CASIA-A gait database with
view variations: The second type of experiment is the gait
recognition with view variations. We evaluate the proposed
method in the muliti-view environment. Detailed experimental
design is listed in Table II. The process of training and
recognition is shown in Section II and is omitted here for
clarity and conciseness.

TABLE II
THREE EXPERIMENTS ON CASIA-A GAIT DATABASE UNDER THE

CHANGES OF VIEW CONDITIONS.

Experiment Gallery set Probe set Gallery size Probe size
A1 0◦ 0◦ 20×2 20×2
B1 45◦ 45◦ 20×2 20×2
C1 90◦ 90◦ 20×2 20×2

The proposed gait entropy features can still work well
in different view conditions. Table III compares the best

and average results of proposed method between ELM and
BagELM algorithm. Three different activation function, name-
ly sin, tribas and radbas are used in the ELM and BagELM
algorithms. We can see that the recognition performance with
BagELM is better than the one with ELM. The recognition
rates with radbas are the best among the proposed three
activation function.

Table IV further compares the classification performance of
BagELM algorithm with the ones of conventional classifica-
tion algorithms, such as nearest neighbor algorithm (NN) and
support vector machine (SVM). From the experimental results
shown in Table IV, we can find that the BagELM algorithm
is superior to the mentioned NN and SVM algorithms in the
classification performance evaluation on the database.

TABLE III
RECOGNITION ACCURACY (%) ON CASIA-A GAIT DATABASE UNDER

CHANGES OF VIEW CONDITIONS. HERE, SIN (TRIBAS, RADBAS)
REPRESENTS THE ACTIVATION FUNCTION USED IN THE ELM ALGORITHM.

Experiment ELM BagELM
sin tribas radbas sin tribas radbas

A1 90.0 92.5 92.5 90.0 95.0 95.0
B1 70.0 67.5 67.5 70.0 67.5 70.0
C1 65.0 70.0 70.0 67.5 70.0 70.0

Average 75.0 76.7 76.7 75.8 77.5 78.3

TABLE IV
COMPARISONS WITH OTHER EXISTING CLASSIFICATION ALGORITHMS (%)

ON THE CASIA-A GAIT DATABASE.

Experiment NN SVM (lin) BagELM (radbas)
A1 83.3 77.5 95.0
B1 67.5 52.5 70.0
C1 70.0 58.8 70.0

Average 73.6 62.9 78.3

Secondly, we construct a unified training set consisting
of gait sequences from different view angles and investigate
the view-invariant problem in the proposed method. Three
experiments designed on this database are listed in Table V.
We assign sequences to training set for all the 3 view condi-
tions to construct a unified training set. Each view conditions
contains two sequences for all 20 subjects. That is, there are
20×2×3=120 sequences in the training set. The remaining two
sequences of all 20 subjects from single view angle were used
as test sets. That is, there are 20×2×1=20 sequences in each
test set. The recognition performance of the proposed methods
is reported in Table VI. When a test sequence with unknown
view angle appears, it can be rapidly recognized, making it
more applicable in the real-world environment.

TABLE V
THREE EXPERIMENTS ON CASIA-A GAIT DATABASE FOR

VIEW-INVARIANT GAIT RECOGNITION.

Experiment Gallery set Probe set Gallery size Probe size
A2 0◦,45◦,90◦ 0◦ 20×2×3 20×2×1
B2 0◦,45◦,90◦ 45◦ 20×2×3 20×2×1
C2 0◦,45◦,90◦ 90◦ 20×2×3 20×2×1



TABLE VI
VIEW-INVARIANT GAIT RECOGNITION PERFORMANCE ON CASIA-A GAIT
DATABASE. HERE, SIN (TRIBAS, RADBAS) REPRESENTS THE ACTIVATION

FUNCTION USED IN THE BAGELM ALGORITHM.

Experiment BagELM(%)
sin tribas radbas

A2 90.0 95.0 95.0
B2 72.5 67.5 72.5
C2 70.0 67.5 70.0

Average 77.5 76.7 79.2

3) Computational complexity analysis on CASIA-A gait
Database: As we know, the main computation in the whole
processing procedure is the computational load of feature
extraction and ELM training. In the entropy feature extraction
phase, the average time is about 1.4937 s for one walking
sequence (as shown in Table VII).

TABLE VII
FEATURE EXTRACTION TIME (/S) OF A SINGLE SEQUENCE ON CASIA-A

GAIT DATABASE

Experiments nm-01 nm-02 nm-03 nm-04
A1 1.3028 1.4229 1.3941 1.3760
B1 1.5951 1.6134 1.7064 1.6004
C1 1.4399 1.4562 1.5424 1.4746

Average 1.4459 1.4975 1.5476 1.4837

TABLE VIII
TRAINING TIME CONSUMPTION IN THE EXPERIMENTS ON CASIA-A GAIT

DATABASE

Experiments ELM (/s) BagELM (/s)
sin tribas radbas sin tribas radbas

A1 0.00030 0.00049 0.00026 0.00062 0.00057 0.00063
B1 0.00045 0.00059 0.00030 0.00061 0.00061 0.00059
C1 0.00068 0.00045 0.00038 0.00059 0.00061 0.00059

Average 0.00048 0.00051 0.00031 0.00060 0.00060 0.00060

TABLE IX
TESTING TIME CONSUMPTION IN THE EXPERIMENTS ON CASIA-A GAIT

DATABASE

Experiments ELM (/s) BagELM (/s)
sin tribas radbas sin tribas radbas

A1 0.00029 0.00031 0.00009 0.00053 0.00073 0.00059
B1 0.00029 0.00035 0.00035 0.00047 0.00072 0.00051
C1 0.00029 0.00029 0.00030 0.00058 0.00064 0.00057

Average 0.00029 0.00031 0.00025 0.00053 0.00070 0.00056

In the off-line training phase, it takes on average 0.0.00046s
for training one gait pattern (as shown in Table VIII). In the
on-line test phase, for recognizing one target gait pattern, it
takes on average 0.00028s in ELM method and it takes on
average 0.0.00060s in BagELM method (as shown in Table
IX).

B. Experiments on CASIA-B gait database

This paper further reports experimental results of proposed
method on CASIA-B database [24], which contains gait se-
quences of 124 subjects captured from 11 different view angles
(namely 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦

and 180◦). At each view angle, each subject is required to walk

Fig. 8. Sample frames from 11 different views of one subject in CASIA-B
gait database.

along a straight line in the common speed for 6 times, namely
nm-01, nm-02, . . . , nm-06, respectively. Fig. 8 shows sample
images of 11 different view angles in this gait database.

1) Recognition accuracy on CASIA-B gait database with
no view variations: In our experiments, as mentioned, human
silhouettes are extracted from the walking sequences and
image entropies are calculated. Similar to Section 3.1, two
types of experiments are carried out in this database. The first
type is the gait recognition with no view variations. We assign
four lateral-view sequences for each of 124 subjects to the
training set (124×4=496), and the remaining two lateral-view
sequences to the test set (124×2=248). Detailed recognition
results are shown in Table X.

TABLE X
RECOGNITION ACCURACY ON CASIA-B GAIT DATABASE WITH NO VIEW

VARIATIONS

Algorithms CCR (%)
L. Wang et al [21] 77.4
M. Goffredo et al [25] 86.5
W. Bian et al [26] 85.0
Gait entropy vector+NN 90.7
Gait entropy vector+SVM (lin) 90.9
Gait entropy vector+ELM (radbas) 90.9
Gait entropy vector+BagELM (radbas) 94.2

2) Recognition accuracy on CASIA-B gait database under
changes of view conditions: The second type of experiment
is the gait recognition with view variations. We construct a
unified training set consisting of gait sequences from different
view angles and investigate the view-invariant problem in
the proposed method. Eleven experiments designed for this
database are listed in Table XI. We assign three sequences to
training set for the 124 subjects in all eleven views to construct
a unified training database. That is, 124 × 3 × 11 = 4092
patterns in the training dataset. The recognition performance
of our method is presented in Table XII.

Since the recognition rates of a poor algorithm can still
be high if the amount of subjects is small, therefore, we
evaluate the proposed method by using different amounts
of subjects: 31 subjects, 62 subjects, 93 subjects, and 124
subjects. It is shown from Fig. 9 that the proposed method
is insensitive to the numbers of subjects. Fig. 10 further
reports the experimental results of the proposed method under
different gallery sizes. We select 124 × 2 sequences as the
test set, while the remaining sequences are divided into four
subsets randomly as the training sets, in which each subset



TABLE XI
11 EXPERIMENTS ON CASIA-B GAIT DATABASE FOR ROBUSTNESS TEST

Experiment Gallery view Probe view Gallery size Probe size
D2 0◦ · · · 180◦ 0◦ 124×3×11 124×3×1
E2 0◦ · · · 180◦ 18◦ 124×3×11 124×3×1
F2 0◦ · · · 180◦ 36◦ 124×3×11 124×3×1
G2 0◦ · · · 180◦ 54◦ 124×3×11 124×3×1
H2 0◦ · · · 180◦ 72◦ 124×3×11 124×3×1
I2 0◦ · · · 180◦ 90◦ 124×3×11 124×3×1
J2 0◦ · · · 180◦ 108◦ 124×3×11 124×3×1
K2 0◦ · · · 180◦ 126◦ 124×3×11 124×3×1
L2 0◦ · · · 180◦ 144◦ 124×3×11 124×3×1
M2 0◦ · · · 180◦ 162◦ 124×3×11 124×3×1
N2 0◦ · · · 180◦ 180◦ 124×3×11 124×3×1

TABLE XII
GAIT RECOGNITION PERFORMANCE ON CASIA-B GAIT DATABASE

Experiment BagELM(%) Refs. [27]sin tribas radbas
D2 73.4 70.6 65.9 55.4
E2 71.6 70.2 66.7 44.2
F2 51.6 50.3 49.8 66.7
G2 63.5 61.0 60.2 77.8
H2 83.4 73.0 85.2 77.8
I2 87.8 94.3 90.4 87.9
J2 88.6 95.0 91.1 66.7
K2 88.5 89.2 87.3 77
L2 91.6 93.6 90.5 75.8
M2 90.1 88.8 90.6 76.7
N2 91.0 91.1 91.7 57.9

Average 80.1 79.7 79.0 69.4

contains 124 × 1, 124 × 2, 124 × 3, and 124 × 4 sequences,
respectively. Experimental results reveal that the proposed
method is not sensitive to the change of gallery sizes.

3) Computational complexity analysis on CASIA-B Gait
Database: The lower complexity is the main advantage of
the proposed method in this paper. The average time of one
sequence feature extraction is 2.6135s. The average training
time of ELM and BagELM are 0.00395s and 0.00520s in the
off-line training phase. In the on-line test phase, for recog-
nizing one target gait pattern, it takes on average 0.00049s in
ELM method and it takes on average 0.00415s in BagELM
method.

Fig. 9. Recognition accuracy under different numbers of subjects.

Fig. 10. Recognition accuracy under different gallery sizes.

V. CONCLUSION

In this paper, a new gait recognition method based on
image entropy feature and ELM is proposed. For the first
time, the image entropy features are introduced in the field
of gait recognition. We extract the row vector image entropy
of the gait contour and obtain the gait entropy vector based
on the whole period, in which the data normalization and
data dimension reduction steps are avoided to reduce the
computational complexity. We further use the improved ELM
network to enhance the performance of ELM in terms of
stability and generalization. From the experimental results
in this paper, encouraging recognition accuracy in single-
view and multi-view situations can be achieved with excellent
computational efficiency. Future work will focus on low-
resolution gait recognition in the real-world environment.
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