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Abstract—For the widely used multilayer perceptrons (MLPs),
the existed singularities in the parameter space have seriously
affected the learning dynamics of MLPs, which cause several
singular learning behaviors. Since the Fisher information matrix
(FIM) plays a significant role in analyzing the singular learning
dyanmics of MLPs, it is very worthy to obtain the analytical form
of FIM to do further investigation. In this paper, by choosing the
bipolar error function as the activation function, the analytical
form of FIM are obtained, where the validity of the obtained
results are verified by taking three experiments.

Index Terms—Fisher information matrix, multilayer percep-
trons, singularity, bipolar error function, feedforward neural
networks

I. INTRODUCTION

The multilayer perceptron (MLP) is a typical class of
feedforward neural networks, which has been widely used in
many fields, such as pattern recognition, intelligent control
and artificial intelligence, etc [1–3]. When using MLPs in
various applications, researchers found some different learning
dynamics during the learning process in comparison with the
regular learning machines, which are called singular learning
dynamics. For example, there are many local minima in the
parameter space, the learning process may suddenly become
very slow and plateau phenomenon can often be observed (an
example is shown in Fig. 1) [4–6].

Many researchers have investigated the singular learning
dynamics and obtain the analysis results that the existed
singularities in the parameter space mainly cause the singular
behaviors [7–9]. These singularities are the subspaces of
parameter space where the Fisher information matrix (FIM)
is singular [10]. As the FIM degenerates on the singularities,
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Fig. 1. Plateau phenomenon occurred in the learning process of MLPs

the classic paradigm of the Cramer-Rao theorem in the regular
models does not hold [11].

In view of the serious influence of singularities on the
learning dynamics of feedforward neural networks, many
researchers have investigated the learning dynamics near sin-
gularities in types of feedforward neural networks, such as
the multilayer perceptrons [12] radial basis function (RBF)
networks[13], and Gaussian mixture model[14] etc. For these
neural networks, different cases have been carefully analyzed,
including toy model case [15], regular case [16], and unreal-
izable case [17]. Further, researcher also investigate how to
overcome the influence of singularities in feedforward neural
networks. Due to the irreversibility of FIM on singularities,
instead of the gradient descent direction, Riemann gradient
(natural gradient) descent direction becomes the steepest de-
scent direction [18]. Thus natural gradient descent method
has been proposed to accelerate the learning process [19],
where the inverse of FIM is added to the modified formulation
of standard gradient descent algorithm. Then many modified
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natural gradient algorithms are designed to decrease the cost
of computation in obtaining the inverse of FIM [20–23].

Given that FIM plays a key role in investigating the sin-
gular learning dynamics, it is very meaningful to obtain the
analytical form of FIM. Based on the obtained analytical
form, we can design modified natural gradient descent algo-
rithms with more efficiency and better performances further.
For the bipolar-activation-function-based MLPs, hyperbolic

tangent function tanh(x) =
ex − e−x

ex + e−x
is the most used

activation function. However, as hyperbolic tangent function
is non-integrable, we can not obtain the analytical form of
FIM for hyperbolic-tangent-function-based case. In order to
overcome this problem, we choose the bipolar error function

φ(x) =

√
2

π

∫ x

0

exp

(
−1

2
t2
)
dt as the activation func-

tion [16], which is also of the sigmoid function and is integral,
then we can get the analytical form of FIM in this paper .

The rest of this paper is organized as follows. In section
2, we give the analytical form of FIM. The efficiency of the
obtained results are verified by taking simulation experiments
in section 3. Section 4 states conclusions and discussions.

II. ANALYTICAL FORM OF FISHER INFORMATION MATRIX

In this section, we first introduce the learning paradigm, and
then the analytical form of FIM can be obtained.

The multilayer perceptrons with k hidden nodes which
receive input x can be represented as follows:

f(x,θ) =

k∑
i=1

wiφ(x,J i), (1)

where J i is the weight from the input layer to the hid-
den node i and wi is the weight from the hidden node
i to the output layer. φ(·) is the activation function, and
φ(x,J i) = φ(JT

i x) is the output of the i-th hidden neu-
ron. Thus θ = {J1, · · · ,Jk, w1, · · · , wk} represents all the
parameters of the model. Here the bipolar error function
is chosen as the activation function, namely φ(x,J i) =√

2

π

∫ JT
i x

0

exp

(
−1

2
t2
)
dt.

For the regression problem, we have a number of observed
data (x1, y1), · · · , (xt, yt), which are generated by an un-
known teacher function:

y = f0(x) + ε, (2)

where the additive noise ε subjects to Gaussian distribution
with zero mean and variance σ2

0 , and the observed data are
used to training MLPs in order to approximate the teacher
function.

Without loss of generality, the training input is assumed to
be subject to a standard Gaussian distribution, i.e.:

q(x) = (
√
2π)−n exp

(
−1

2
xTx

)
. (3)

The loss function is defined as:

l(y,x,θ) =
1

2
(y − f(x,θ))2, (4)

and we use the gradient descent method to minimize the above
loss:

θt+1 = θt − η
∂l(yt,xt,θt)

∂θt
, (5)

where η represents the learning rate.
For the bipolar-activation-function-based MLPs (1), there

exist at least two types of singularities in the parameter space
as follows [16]:

(1) Opposite singularity: R1 = {θ|J i = −J j},
(2) Elimination singularity: R2 = {θ|wi = 0}.
The FIM can be defined in the following equation [7]:

F (θ) =

〈
∂f(x,θ)

∂θ

∂f(x,θ)

∂θT

〉
. (6)

〈·〉 denotes the expectation with respect to the teacher distri-
bution, which is given by:

p0(y,x) = q(x)
1√
2πσ0

exp

(
− (y − f0(x))2

2σ2
0

)
. (7)

Here we obtain the explicit expressions of〈
∂φ(x,J i)

∂J i

∂φ(x,J j)

∂JT
j

〉
,

〈
∂φ(x,J i)

∂J i
φ(x,J j)

〉
, and

〈φ(x,J i)φ(x,J j)〉 at first, which are the fundamental
to get the analytical form of FIM. For simplicity,

we denote: Q1(J i,J j) =

〈
∂φ(x,J i)

∂J i

∂φ(x,J j)

∂JT
j

〉
,

Q2(J i,J j) =

〈
∂φ(x,J i)

∂J i
φ(x,J j)

〉
, and Q3(J i,J j) =

〈φ(x,J i)φ(x,J j)〉.
In the following lemma, we give the explicit expressions of

Q1(J i,J j), Q2(J i,J j) and Q3(J i,J j).
Lemma 1: The analytical forms of Q1(J i,J j),

Q2(J i,J j) and Q3(J i,J j) are given as follows:

Q1(J i,J j) =
2

π

√
det(B−1(J i,J j))B

−1(Ji,Jj), (8)

Q2(J i,J j) =
2

π

√
det(B−1(J i,J j))A

−1(J i)J j , (9)

Q3(J i,J j) =
2

π
arcsin

JT
i J j√

1 + JT
i J i

√
1 + JT

j J j

, (10)

where:
A(J i) = In + J iJ

T
i , (11)

B(J i,J j) = A(J i) + J jJ
T
j = In + J iJ

T
i + J jJ

T
j , (12)

A−1(J i) =
(
In + J iJ

T
i

)−1
= In −

J iJ
T
i

1 + ‖J i‖2
, (13)

B−1(J i,J j) = A
−1(J i)−

A−1(J i)J jJ
T
j A
−1(J i)

1 + JT
j A
−1(J i)J j

, (14)

det(B−1(J i,J j)) =
1

(1 + ‖J i‖2)(1 + ‖J j‖2)− (JT
i J j)2

,

(15)
In is the compatible identity matrix.



Proof : The calculation process is shown in Appendix A.

Then we can obtain the analytical form of the FIM which
is shown in Theorem 1.

Theorem 1: The analytical form of the Fisher information
matrix F (θ) is given in equation (16).

Proof : By substituting f(x,θ) =
k∑

i=1

wiφ(x,J i) into

equation (6), we have:

F (θ) =

〈
∂f(x,θ)

∂θ

∂f(x,θ)

∂θT

〉

=



F11 · · · F1k F1(k+1) · · · F1(2k)

...
...

...
...

Fk1 · · · Fkk Fk(k+1) · · · Fk(2k)

F(k+1)1 · · · F(k+1)k F(k+1)(k+1) · · · F(k+1)(2k)

...
...

...
...

F(2k)1 · · · F(2k)k F(2k)(k+1) · · · F(2k)(2k)


,

(17)

where:

Fij =

〈
∂f(x,θ)

∂J i

∂f(x,θ)

∂JT
j

〉

= wiwj

〈
∂φ(x,J i)

∂J i

∂φ(x,J j)

∂JT
j

〉
= wiwjQ1(J i,J j), for 1 ≤ i ≤ k, 1 ≤ j ≤ k, (18)

Fij =

〈
∂f(x,θ)

∂J i

∂f(x,θ)

∂wj−k

〉
= wi

〈
∂φ(x,J i)

∂J i
φ(x,J j−k)

〉
= wiQ2(J i,J j−k), for 1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k, (19)

Fij =

〈
∂f(x,θ)

∂wi−k

∂f(x,θ)

∂JT
j

〉
= FT

ji , for k + 1 ≤ i ≤ 2k, 1 ≤ j ≤ k, (20)

Fij =

〈
∂f(x,θ)

∂wi−k

∂f(x,θ)

∂wj−k

〉
= 〈φ(x,J i−k)φ(x,J j−k)〉

= Q3(J i−k,J j−k), for k + 1 ≤ i ≤ 2k, k + 1 ≤ j ≤ 2k.
(21)

Here, we have obtained the analytical form of FIM for
MLPs.

III. SIMULATION EXPERIMENTS

In this section, we verify the correctness of above theoretical
analysis results by taking three experiments. Since calculating
the FIM only needs to know the student parameters, the teacher
parameters do not play key roles. For convenience and without
loss of generality, the teacher model is chosen to be described
by MLPs. [11] concluded that it is enough to capture the
essence of singular learning dynamics of feedforward neural
networks by investigating two hidden units case, thus we

choose the teacher model and student model that both have
two hidden units, namely the teacher model is:

f0(x) = f(x,θ0) = v1φ(x, t1) + v2φ(x, t2) + ε, (22)

where θ0 = {t1, t2, v1, v2} represents all the teacher parame-
ters.

The student model is:

f(x,θ) = w1φ(x,J1) + w2φ(x,J2), (23)

where θ = {J1,J2, w1, w2} represents all the student param-
eters.

As the FIM degenerates on the singularities, thus in order
to analyze the case that the learning process has been affected
by singularities, we need to choose an index to show whether
the FIM degenerates. Here, we choose the inverse of condition
value as the index, if the matrix is near singular, the condition
value will become very large, i.e. the inverse of condition value
will be near zero, otherwise, the inverse of condition value will
remain non zero value. For the opposite singularity, we choose

the index h(1, 2) =
1

2
‖J1 + J2‖2 to directly show whether

the student model has been affectd by the opposite singularity.
h(1, 2) = 0 is equivalent to J1 = −J2, namely the parameters
are on the opposite singularity.

Then we take three experiments to verify the correctness
of Theorem 1, which include three cases: opposite singularity
case, elimination singularity case, fast convergence case that
the learning process is not affected by singularities. For a given
teacher model, by choosing different initial values of student
model, we complete the experiments by using batch mode
learning.

The teacher model is chosen as: t1 = [−0.20, 0.50]T , v1 =
−0.50, t2 = [0.70, 0.40]T , v2 = 0.30. The additional noise
ε ∼ N(0, 0.05). We generate 200 training examples which are
subject to standard Gaussian distribution and the learning rate
η = 0.005.

The experiment results are shown as follows:
Case 1 (Opposite singularity): the learning process is

affected by the opposite singularity.
In this case, the learning dynamics are affected by the

opposite singularity and the two hidden units nearly oppo-
site during the training process. The initial student param-
eters are J (0)

1 = [0.40, 0.10]T , w(0)
1 = −0.22, J (0)

2 =

[−0.49, 0.35]T , w(0)
2 = −1.08. The final student parameters

are J1 = [0.2975, − 0.1528]T , w1 = −0.1247, J2 =
[−0.2886, 0.1480]T , w2 = −1.0306. The results are shown
in Fig. 2, which represent the trajectories of training error,
h(1, 2), and the log scale of the inverse of the condition
number, respectively.

As can be seen from Fig. 2(b) and the final values of J1

and J2, h(1, 2) decreases to nearly 0 after the training process
starts and then this state remains nearly unchanged till the end
of training, i.e. the two hidden units nearly opposite. Thus the
learning process has been influenced by opposite singularity.
In the meanwhile, it can be seen from Fig. 2(c) that the inverse
of condition value is smaller than 10E − 10 during the stage



F (θ) =

〈
∂f(x,θ)

∂θ

∂f(x,θ)

∂θT

〉

=



w2
1Q1(J1,J1) · · · w1wkQ1(J1,Jk) w1Q2(J1,J1) · · · w1Q2(J1,Jk)

...
...

...
...

w1wkQ1(Jk,J1) · · · w2
kQ1(Jk,Jk) wkQ2(Jk,J1) · · · wkQ2(Jk,Jk)

w1Q2(J1,J1)
T · · · wkQ2(Jk,J1)

T Q3(J1,J1) · · · Q3(J1,Jn)
...

...
...

...
w1Q2(Jk,J1)

T · · · wkQ2(Jk,Jk)
T Q3(J1,Jn) · · · Q3(Jn,Jn)


. (16)

that the two hidden units nearly opposite. This means that the
FIM remains nearly singular as the learning process has been
affected by the opposite singularity.
Case 2 (Elimination singularity): the learning process
is affected by the elimination singularity.

For this case, the learning dynamics of MLPs are affected
by the elimination singularity and during the learning process
we can observe that one output weights crosses 0. The initial
student parameters are J (0)

1 = [0.40, 0.10]T , w(0)
1 = −0.12,

J
(0)
2 = [−0.49, 0.35]T , w(0)

2 = −0.85. The final student
parameters are J1 = [0.6481, 0.4148]T , w1 = 0.3381,
J2 = [−0.1905, 0.5537]T , w2 = −0.5022. The simulation
results are shown in Fig. 3, which represent the trajectories of
training error, output weightw and the inverse of the condition
number, respectively.

From Fig. 3(c), we can see that w2 crosses 0 in the
learning process, i.e. the learning dynamics are affected by
the elimination singularity and a plateau phenomenon can be
obviously observed in Fig. 3(a). During the stage that the
learning process has been affected by elimination singularity,
as can be seen in Fig. 3(c), FIM becomes nearly singular
and finally becomes regular when the parameters escaped the
influence of elimination singularity.
Case 3 (Fast convergence): the learning process does not
suffer from the influence of the singularities

In this case, MLPs are not affected by singularities and the
learning dynamics converge to the global minimum fast. The
initial student parameters are J (0)

1 = [0.87, 0.75]T , w(0)
1 =

0.18, J (0)
2 = [−0.10, 0.24]T , w(0)

2 = −0.58. The final student
parameters are J1 = [0.7661, 0.3917]T , w1 = 0.2917, J2 =
[−0.1817, 0.4816]T , w2 = −0.4944. The simulation results
are shown in Fig. 4, which represent the trajectories of training
error, output weights w, h(1, 2) and inverse of the condition
number, respectively.

From Fig. 4(a)-(c), we can see that the learning process has
not been affected by singularities. Further as shown Fig. 4(d),
the condition value of FIM remains nonzero till the end of
training process, i.e. the FIM is always nonsingular.

To sum up, the above results of three cases indicate that:
when the learning process is affected by the singularities, the
FIM becomes singular, and in other cases, the FIM remains
regular. This is consistence with the theoretical analysis and
verifies the correctness of the analytical form of FIM which

we obtained in Theorem 1.

IV. CONCLUSIONS

There exist many singularities in the parameter space of
multilayer perceptrons, which seriously affect the performance
of MLPs. The singularities are the subspaces of parameter
space where the Fisher information matrix is singular, thus
FIM is an important fundamental to getting the mechanism
of the learning dynamics near singularities. In this paper, for
the bipolar-activation-function-based MLPs, by adopting the
bipolar error function as the activation function, we obtain
the analytical form of FIM, which facilitates us to take further
analysis of singular learning dynamics. Finally the correctness
of the obtained results are verified by taking three experiments
in the simulation part.

V. APPENDIX A
From euqation (2), we have:

y − f0(x) = ε ∼ N (0, σ2
0), (A-1)

then
1√
2πσ0

∫ +∞

−∞
exp

(
− (y − f0(x))2

2σ2
0

)
dy

=
1√
2πσ0

∫ +∞

−∞
exp(− ε2

2σ2
0

)dε = 1. (A-2)

Q3(J i,J j) and Q2(J i,J j) can be rewritten as:

Q3(J i,J j) =
(√

2π
)−n ∫ +∞

−∞

∫ +∞

−∞
φ(x,J i)φ(x,J j)

× exp

(
−1

2
xTx

)
1√
2π

exp

(
− (y − f0(x))2

2

)
dydx

=
(√

2π
)−n ∫ +∞

−∞
φ(x,J i)φ(x,J j) exp

(
−1

2
xTx

)
dx.

(A-3)

Q2(J i,J j) =
(√

2π
)−n ∫ +∞

−∞

∫ +∞

−∞

∂φ(x,J i)

∂J i
φ(x,J j)

× exp

(
−1

2
xTx

)
1√
2π

exp

(
−1

2
(y − f0(x))2

)
dydx

=
(√

2π
)−n ∫ +∞

−∞

∂φ(x,J i)

∂J i
φ(x,J j) exp

(
−1

2
xTx

)
dx.

(A-4)



(a) Trajectory of training error

(b) Trajectory of h(1, 2)

(c) Trajectory of inverse of condition value

Fig. 2. Case 1 (Opposite singularity) in error function based MLPs

(a) Trajectory of training error

(b) Trajectory of w

(c) Trajectory of inverse of condition value

Fig. 3. Case 2 (Elimination singularity) in error function based MLPs



(a) Trajectory of training error

(b) Trajectory of w (c) Trajectory of h(1, 2)

(d) Trajectory of inverse of condition value

Fig. 4. Case 3 (Fast convergence) in error function based MLPs

Then we have:

Q2(J i,J j) =
(√

2π
)−n ∫ +∞

−∞

∂φ(x,J i)

∂J i
φ(x,J j)

× exp

(
−1

2
xTx

)
dx

=

√
2

π

(√
2π
)−n ∫ +∞

−∞
x exp

(
−1

2
xTJ iJ

T
i x

)
× φ(x,J j) exp

(
−1

2
xTx

)
dx

=
(√

2π
)−n√ 2

π

∫ +∞

−∞
xφ(x,J j)

] × exp

(
−1

2
xTA(J i)x

)
dx

=

√
2

π

A−1(J i)(√
2π
)n ∫ +∞

−∞
φ(x,J j)d exp

(
−1

2
xTA(J i)x

)
=

2

π

A−1(J i)(√
2π
)n J j

×
∫ +∞

−∞
exp

(
−1

2
xT (A(J i) + J jJ

T
j )x

)
dx

=
2

π

A−1(J i)(√
2π
)n J j

∫ +∞

−∞
exp

(
−1

2
xTB(J i,J j)x

)
dx

=
2

π

√
det(B−1(J i,J j))A

−1(J i)J j , (A-5)

where
A(J i) = In + J iJ

T
i , (A-6)

B(J i,J j) = A(J i) + J jJ
T
j = In + J iJ

T
i + J jJ

T
j , (A-7)

In is the compatible identity matrix.
According to Sherman-Morrison formula, we have:

A−1(J i) =
(
In + J iJ

T
i

)−1
= In −

J iJ
T
i

1 + ‖J i‖2
, (A-8)

B−1(J i,J j) =
(
A(J i) + J jJ

T
j

)−1
= A−1(J i)−

A−1(J i)J jJ
T
j A
−1(J i)

1 + JT
j A
−1(J i)J j

. (A-9)

By using the matrix determinant lemma, we have:

det(A(J i)) = det(I + J iJ
T
i ) = 1 + JT

i J i, (A-10)

det(A−1(J i)) =
1

det(A(J i))
=

1

1 + JT
i J i

, (A-11)

det(B(J i,J j)) = det(A(J i) + J jJ
T
j )

= (1 + JT
j A(J i)J j) det(A(J i)), (A-12)

det(B−1(J i,J j)) =
1

det(B(J i,J j))

=
1

(1 + JT
j A
−1(J i)J j) det(A(J i))

=
1

(1 + JT
i J i)(1 + J

T
j J j)− (JT

i J j)2
. (A-13)

Here the analytical form of Q2(J i,J j) has been obtained.
According to the Leibniz integral rule, we can get:

Q2(J i,J j) =
∂Q3(J i,J j)

∂J i
. (A-14)



Q3(J i,J j) can be obtained by integrating Q2(J i,J j)
respective to J i, then we can get:

Q3(J i,J j) =

∫ Ji

−∞
Q2(J i,J j) dJ i

=

∫ Ji

−∞

2

π

√
det(B−1(J i,J

T
j ))A

−1(J i)J j dJ i

=
2

π

√
det(B−1(J i,J

T
j ))

∫ Ji

−∞

1√
1 + JT

i J i

√
1 + JT

j J j

× 1√
1− (JT

i Jj)2

(1+JT
i Ji)(1+JT

j Jj)

A−1(J i)J j dJ i

=
2

π

∫ Ji

−∞

1√
1− (JT

i Jj)2

(1+JT
i Ji)(1+JT

j Jj)

× A−1(J i)J j√
1 + JT

i J i

√
1 + JT

j J j

dJ i

=
2

π
×∫ Ji

−∞

1√
1− (JT

i Jj)2

(1+JT
i Ji)(1+JT

j Jj)

d
JT

i J j√
1 + JT

i J i

√
1 + JT

j J j

=
2

π

arcsin
JT

i J j√
1 + JT

i J i

√
1 + JT

j J j

+ C0

 , (A-15)

where C0 is a constant.
As Q3(0,0) = 0 , then we have C0 = 0. Finally we get

Q3(J i,J j) =
2

π
arcsin

JT
i J j√

1 + JT
i J i

√
1 + JT

j J j

. (A-16)

For Q1(J i,J j), we have:

Q1(J i,J j) =(√
2π
)−n ∫ +∞

−∞

∂φ(x,θ)

∂J i

∂φ(x,θ)

∂JT
j

exp

(
−1

2
xTx

)
dx

=
2

π

(√
2π
)−n ∫ +∞

−∞
xxT exp

(
−1

2
xTJ iJ

T
i x

)
× exp

(
−1

2
xTJ jJ

T
j x

)
exp

(
−1

2
xTx

)
dx

=
2

π

(√
2π
)−n ∫ +∞

−∞
xxT exp

(
−1

2
xTB(J i,J j)x

)
dx

=
2

π

√
det(B−1(J i,J j))

(√
2π
)−n√

det(B−1(J i,J j))

×
∫ +∞

−∞
x exp

(
−1

2

(
xT
(
B−1(Ji,Jj)

)−1
x
))
xTdx

=
2

π

√
det(B−1(J i,J j))B

−1(Ji,Jj). (A-17)
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