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Abstract—Convolutional neural network (CNN) such as U-
Net has demonstrated excellent performance for medical image
segmentation. However, there are some limitations of its scala-
bility. Specifically, the memory would increase significantly when
embedding other functional modules into U-Net. Moreover, the
kernel size used in U-Net is unitary, which makes it difficult
to obtain the multi-level information and extract the target com-
pletely. In this paper, we only use 12 convolutional layers of U-Net
as a backbone and design a novel architecture named Inverted
Triangle (IT) Block embedded into it to address these problems.
The IT-Block consists of Dense Connection, Residual Connection,
and Inception, aiming to help the network obtain multi-level
features and reuse them comprehensively. Furthermore, we
optimize the dice loss to alleviate the butterfly effect, making
the training process more stable during the backpropagation.
The experimental results state that our framework is superior to
U-Net in running time and accuracy.

Index Terms—Convolutional Neural Networks, U-Net, Medical
Image Segmentation, Butterfly Effect

I. INTRODUCTION

Image segmentation is the first step of image analysis and
one of the most difficult problems in image processing. In
the field of medical imaging, medical image segmentation has
always been the key to supporting for subsequent processes
such as registration, cancer diagnosis, treat planning, surgery
simulation and reconstruction. However, organs and tissues
are varied in shape and size, which increases the difficulty on
segmentation.

Recently, many significant researches have shown that Con-
volutional Neural Networks (CNNs) achieve the state-of-the-
art in different medical image segmentation tasks [1], [2],
[3], [4], [5], [6]. One of the most well-known architectures
in the medial imaging is U-Net [7]. The reasons why U-Net
is widely used and modified are as following: (1) an elegant
architecture, it consists of downsampling path and correspond-
ing upsampling path. Almost the same number of layers on
both paths results in a symmetrical architecture approximately.
The two paths of U-Net are bridged through skip connections,
such a design fuses the feature maps from different layers,
recovering the spatial information lost during downsampling
[8], aiming to get a high-resolution and representative feature
map, which can generate mask precisely; (2) the adaptivity
for small datasets takes very little time for iterative inference.
It is the key point where real-time performance required.
Besides, massive amounts of annotated training data may not
be appropriate in the fields of medical imaging. That is because
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Fig. 1. A brief description of Dense Connection, Residual Connection, and
Inception. Please note that the ways to fuse features are different. Residual
Connection uses adding operation, but the other two make a fusion via
concatenation.

the process of labeling medical images is time-consuming and
must be done by domain experts [9].

However, the defects that spoil the perfection of U-Net can
be summarized in two aspects: (1) it is difficult to make some
subtle changes in the architecture to improve performance or
be compressed as a functional module integrated into other
backbones. More specifically, making the network deeper may
obtain better results, while the gradient vanishing is more
likely to occur during backpropagation [10], failing to update
the parameters; (2) the fixed kernels (3 × 3) used in U-
Net cannot make the network obtain large-structure and tiny-
structure information simultaneously. Therefore, extending U-
Net by increasing the number of layers directly is not suitable.
The target is to take advantage of U-Net and add new elements
to it, creating a robust network with low parameters.

In the improvement of U-Net, Dense Connection [11],
Residual Connection [12], and Inception [13] are most often
used [14], [15], [16] (Fig. 1). The strengths of them are
as following: (1) Dense Connection makes layers directly
connected with all of their previous layers. Such a design
allows the network to take the features from all layers into
account. Multi-level feature information is more helpful for
the classifier to extract targets than that of the single last-
level feature information that is always used in standard



CNNs. Furthermore, Dense Connection enables gradients to
flow smoothly during backpropagation, alleviating the gradient
vanishing so that the network can be trained easily; (2) The
more layers network equips, the more features of different
levels can be extracted. But the deeper network also brings two
problems (gradient vanishing and degradation [12]). Residual
Connection is equivalent to performing the identity mapping,
solving the degradation problem when the network goes
deeper. Besides, deepened residual networks can be easier to
optimize than deep networks produced by overlaying simply;
(3) Inception provides a wider network with Multi kernels
(1 × 1, 3 × 3, 5 × 5) on parallel levels, allowing the module
to freely choose better features. Even more importantly, the
1 × 1 kernels are implemented to compute reductions before
the expensive 3 × 3 and 5 × 5 convolutions, decreasing the
parameters. The question is how to integrate these three
operations into functional modules embedded in U-Net to
improve its performance on medical image segmentation and
simplify its structure.

Motivated by the drawback of U-Net and previous modi-
fication work on it, we test the performance of U-Net (e.g.
running time, accuracy) by changing its depth and determine
the depth interval of U-Net (the number of layers) that is
appropriate for doing segmentation (Fig. 2). Based on that,
we propose a block consisting of Dense Connection, Residual
Connection, and Inception, aiming to optimize U-Net through
embedding the block into shallower U-Net (lower depth).
We term this block Inverted Triangle (IT) Block due to its
style. In summary, the main contributions are as following:
(1) a discussion on the appropriate depth interval of U-Net;
(2) easy and flexible implementation of the IT-Block; (3) an
optimization of Dice loss; (4) an efficient embedded block that
can optimize the standard backbone to excel in challenging
medical image segmentation tasks.

II. RELATED WORK

A. CNNs in medical image segmentation

Within medical imaging, relevant researches have shown
the capabilities of Convolutional Neural Networks (CNNs)
to solve the challenging segmentation tasks in the past few
years. Fully Convolutional Network (FCN) [17], such an
elegant CNN architecture could obtain the probability of each
pixel rather than the scalar of the whole image, because the
fully connected layer is replaced with the convolutional layer.
Moreover, one different strategy in the training period is that
FCN has the ability to use the whole image (original image and
label image) as inputs, rather than feeding all possible separate
sub-images centered on each labelled pixel like the earlier
methods [18]. The breakthrough made by FCN promoted the
development of CNNs in medical image segmentation tasks.
Based on FCN, Zhou et al. [19] combined 2D FCN with
3D Majority voting algorithm, achieving great performance
in Three-Dimensional segmentation task of human torso. The
upsampling layer as an important part of FCN can restore
the feature maps to higher resolution, but this process would
lead to inaccurate positions of each pixel, resulting in bad
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Fig. 2. 23 convolutional layers of U-Net [7]. Please note that there are no
other operations such as max-pooling and skip connections in the diagram.
Convolutional layers also include up-convolutional layers. Increasing and
decreasing layers are only based on convolutional layers. Upper bound and
lower bound are the limits of layers that U-Net can achieve, making the
segmentation results acceptable.

segmentation. To solve this problem, some researchers used
MRF [20] to further optimize the segmentation results. FCN
has good scalability as a backbone. Olaf Ronneberger et al.
[7] extended FCN to a symmetrical architecture like letter U
and added the skip connections to fuse the feature between
upsampling path and downsampling path, achieving the great
performance on the cell tracking challenge. X. Li et al. [14]
proposed H-DenseUnet with mixed dense connections, reduc-
ing the memory consumption of GPU during the training step
and excelling in Liver MICCAI 2017. W. Chen et al. [21] used
the skip connections to bridge two U-Nets into a stacked U-
Net, which can deal with small datasets and be used in prostate
segmentation without a pre-train model. N. Ibtehaz et al. [22]
proposed some modifications to improve the performance of
standard U-Net. Specifically, they took advantage of Res-Net
[12] and Inception [13], adding them into standard U-Net.
Inspired by the idea of recurrent segmentation [23], W. Wang
et al. [24] created the Recurrent U-Net that can operate in
environments where computational power and the amount of
training data are limited.

Several deep learning techniques have recently focused on
3D segmentation. Cicek et al. [25] proposed a 3D version
of U-Net to implement 3D image segmentation by inputting
continuous 2D slices. F. Dubost et al. [26] trained a regres-
sion network with a fully convolutional architecture which
is combined with a global pooling layer to aggregate the
3D output into a scalar. C. Huang et al. [27] presented a
3D Universal U-Net for multi-organ segmentation problem,
filling the gap of flexible multi-domain learning in image
segmentation. The limit of 3D convolutional neural networks
is memory consumption, because 3D images often need more
parameters trained than that of 2D images. This problem was
addressed by R. Brügger et al. [28], they designed a partially
reversible U-Net architecture that reduces memory consump-
tion substantially. This excellent architecture can recover each
layer’s outputs from the subsequent layer, which eliminates the
requirement for storing activations during backpropagation.



B. Progress on receptive fields

In deep learning, it is sometimes necessary to increase the
receptive filed for segmentation tasks to improve performance.
Specifically, Large receptive fields can be achieved in three
ways but with negative costs: (1) increasing pooling layers
but losing some spatial information due to reducing the size of
images; (2) enlarging the size of convolutional kernel directly
but resulting in parameters growing; (3) making the network
deeper but leading to gradient vanishing. Dilate convolution
[29] is widely used to increase the receptive fields without
losing information like the pooling operation. Furthermore, it
has the capability to capture the contextual information from
multiple scales. However, the fixed rate of dilation used in [29]
makes the convolutional kernel too sparse, which causes local
information cannot be completely covered. The first attempt to
solve this problem made by P. Wang et al. [30]. They proposed
a simple hybrid dilation convolution (HDC) framework, using
a range of dilation rates to substitute the fixed rate of dilation,
which avoids the gridding problem. To increase the receptive
field, larger kernel is not necessarily needed. It is because
larger kernel can be replaced by multiple smaller kernel, which
can be seen as imposing a regularization on the larger kernel
and keep the parameter low [31].

III. BREAKING DOWN THE PROBLEM

A. Rethinking the capability of U-Net

In general, the depth of the network can affect its parameters
and ability to extract features. Our target is that the Inverted
Triangle (IT) Block can be embedded in the backbone to im-
prove its performance and keeps parameters low. Technically,
embedding the IT-Block into the original backbone directly
is inappropriate, which would cause a significant increase in
parameters. Hence, the key point that we focus on is how
to keep the parameters low by decreasing the number of
convolutional layers without sacrificing the performance of the
original architecture as much as possible. This leads to the
exploration of determining the appropriate depth interval of
U-Net. To be more specific, there are 23 convolutional layers
in U-Net [7]. We need to test the lower bound of appropriate
depth interval (the lower number of convolutional layers in
U-Net), which can make sure the results segmented by U-
Net with lower depth are acceptable. After depth interval is
determined, we choose a model with a lower depth from it as
the backbone.

We use four datasets including cells [7], Skin, Lung, and
Nuclei [16] as our training-validation dataset and run a 5-fold
cross-validation due to the small size of each dataset. The
dice coefficient (1) is used to compare the similarity of two
sets (segmented mask and its corresponding ground truth). We
calculate its mean and std (standard deviation) via (11) (12) on
each datasets. For the training period, the loss function used
in this part has not been optimized (6). The more details about

source of each dataset and implementation can be achieved in
section IV (Experiments and Results) of this paper.

Dice =
2 |Sij

⋂
Gij |

|Sij |+ |Gij |
(1)

Where Sij is the segmented image. Gij is the ground truth
corresponding to Sij . The medical segmentation tasks in our
experiments are binary classification problem, so the ground
truth Gij is the 0-1 matrix.

⋂
makes matrix Sij multiply

matrix Gij point by point, which means multiplying points
at the same position in these two matrices. Please note that
this operation is different from the multiply in Linear algebra.
|∗| represents the scalar that is summed up every point in the
matrix.

The kernels of U-Net are not consistent (e.g. 3×3×64 in 1st

convolutional layer and 3×3×128 in 3rd convolutional layer).
That means decreasing one layer from different levels would
lead to different changes in parameters. Hence, we change
the number of layers and parameters to shape a backbone
(Fig. 3). To start with, we reduce the layer of U-Net from
top to bottom to find the lower bound of the appropriate
depth interval. For the convolutional layer attached to skip
connections, we remove them together. Secondly, we also
test the highest bound of the appropriate depth interval by
increasing the convolutional layer based on U-Net. Fig. 3
shows the results evaluating the effects of layers and pa-
rameters. From 12 convolutional layers to 30 convolutional
layers, there is no obvious difference in performance on each
dataset. Specifically, 27 convolutional layers do the best and
26 convolutional layers do the worst on cells dataset, but the
difference is only about MD 0.87368 − 0.86377 = 0.0099
and SD 0.0121− 0.0392 = −0.0271. The same phenomenon
also appears on the other three dataset. (e.g. Lung: best 17
layers - worst 12 layers = MD 0.74102 − 0.73004 = 0.011
and SD 0.0731 − 0.0259 = 0.0472. Skin: best 22 layers -
worst 12 layers = MD 0.52361 − 0.50892 = 0.0147 and
SD 0.0429 − 0.0418 = 0.0011. Nuclei: best 26 layers -
worst 15 layers = MD 0.90842 − 0.88192 = 0.0264 and
SD 0.1365 − 0.1784 = −0.0419. ). Theoretically, we cannot
test all datasets but the experimental results reflect that 23
convolutional layers are not the best choice of U-Net. Finally,
26 convolutional layers are set to the upper limit of depth
interval. This is because compared to the classical U-Net
(23 convolutional layers), the parameter growth rate of 26
convolutional layers is only 31.81×106−31.03×106

31.03×106 × 100% =
2.51% but that of 27 convolutional layers have reached
34.17×106−31.03×106

31.03×106 × 100% = 10.12%. 12 convolutional
layers (U-Net-12) marked by an arrow in Fig. 3 are set to the
lower limit of depth interval, which is appropriate for being the
backbone. Its advantages are as following: (1) the parameters
are only about 1/20 of U-Net ( 1.75×106

31.03×106 × 100% = 5.64%),
which can support more parameters space for IT-Block or other
functional modules; (2) The segmentation performance of U-
Net-12 is very close to that of classical U-Net, which makes
it possible to exceed classical U-Net with minor changes. The
details about U-Net-12 are shown in Fig 4.
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Fig. 3. SD (12) and MD (11) of variant U-Net (different depth) on four datasets including Cells, Skin, Lung, and Nuclei. The calculated dice in this part
is standard dice coefficient (1). The color bar on the right side of each graph represents the value of SD and MD. We use an arrow to highlight the well
performed backbone with only 12 convolutional layers. The layers we discussed only includes convolutional layers and up-convolutional layers in U-Net.

Upsampling(2,2)

Conv(3,3,64)

Maxpooling(2,2)
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Conv(3,3,256)

Conv(1,1,2)

Fig. 4. The details about parameters of each convolutional layer in U-Net-
12. Number 12 means that there are 12 convolutional layers including the
convolutional layer and the upsampling layer (Transposed Convolution). The
last convolutional layer is not counted because its parameters only occupy a
small part of the entire network.

B. Optimized Dice Loss

In medical image segmentation, Dice loss [32] is one of the
most popular loss functions, generated by the dice coefficient
(6). However, such an extreme case where annotated target
and segmented target are both small would lead to unstable
training, which makes the final results not precise enough. The

root of this problem is the use of division operation in the
dice coefficient (1). The Division is an operation that needs to
be handled carefully when the denominator is small, because
the butterfly effect may occur. For example, formula 2.6812

0.001 =
2618.2, if the denominator turns into 0.0011, formula 2.6812

0.0011 =
2380.2. That is to say, when the denominator changes slightly
(only changed by 0.0001), the quotient of the formula changes
dramatically. Even more badly, the butterfly effect would make
the network difficult to find the optimal solution because of the
great changing gradient during backpropagation. To detail this,
we try to write the dice coefficient in a differentiable form (2)
in terms of its calculation and give its partial derivative form
(3).

d =
2ab

a+ b
(2)

∂d

∂a
=

2b2

(a+ b)2
(3)

Where d represents a differentiable form of dice coefficient.
a is a predicted image and b is the ground truth. It could
be seen that the denominator in (3) is squared, resulting
in generating a smaller scalar (e.g. 0.12 = 0.01), which
increases the probability of the butterfly effect. During the
backpropagation, updating parameters cannot avoid calculating
partial dervatives. To illustrate that, we formally assume netl
is the last layer of the network and wij is the jth parameter



of the ith layer. According to the chain rule of derivation, we
can obtain

∂DiceLoss

∂wij
=
∂DiceLoss

∂netl
. . .

∂neti+1

∂wij
(4)

Thus, ∂DiceLoss
∂wij

can be seen as proportional to ∂DiceLoss
∂netl

.

∂DiceLoss

∂wij
∝ ∂DiceLoss

∂netl
(5)

Again according to (2) and (3), parameter wij would also be
affected by the butterfly effect through ∂DiceLoss

∂netl
.

To address that, we propose LDice loss function (7) that is
similar to Dice loss (6).

DiceLoss = 1−Dice (6)

LDiceLoss = −log(Dice) (7)

Dice is the dice coefficient (1). The benefit of log(·) is to
restrict the denominator by decreasing the power of numerator
when calculating partial derivatives of Dice (2), so that the
butterfly effect caused by small changes in the denominator is
alleviated.

∂log(d)

∂a
=

b

a(a+ b)
(8)

According to (3) and (8), now we assume a1 = 0.1, b1 =
0.2, a2 = 0.1, b2 = 0.21 to calculate the rate of changing
gradient (9), obtaining r(3) is 3.149% and r(8) is 1.613%. This
shows a certain compression on the butterfly effect.

r =

∣∣∣∣g2 − g1g1

∣∣∣∣× 100% (9)

Where gi represents the gradient calculated by (3) or (8).We
compare Dice loss and LDice loss as the loss function of U-
Net [7] on four datasets including cells [7], Skin, Lung, and
Nuclei [16]. In Fig. 5, it can be observed that the curve of
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Fig. 5. The train-validation loss comparison of Dice (6) and LDice (7) on
Cells, Skin, Lung, and Nuclei.

LDice loss is smoother than that of Dice loss, which makes the
training stable. Much more importantly, stable training could
help the network find the optimal solution easily, obtaining a
lower loss. The experimental results verify that our proposed
LDice loss is effective to alleviate the butterfly effect induced
by Dice loss. The more implementation details can be achieved
in section IV (Experiments and Results).

C. IT-Block

It is undeniable that U-Net excels in medical image seg-
mentation, but also has some limitations. To sum up, the
shortcomings of U-Net are mainly reflected in two aspects:
(1) the fixed kernel size used in U-Net cannot capture multi-
level information; (2) the way of feature fusion is only using
concatenation. Furthermore, we discover that 12 convolutional
layers are appropriate for this U-shape architecture after a
discussion on the depth of U-Net. Specifically, the perfor-
mance of U-Net-12 is not much different from U-Net but its
parameters are only about 1/20 of U-Net. Our target is to add
some new elements to U-Net-12 to form a better architecture.
Such a design outperforms U-Net in segmentation accuracy,
parameters, and running time for training.

Motivated by the shortcomings of U-Net and our target, we
present a novel block, named Inverted Triangle (IT) Block
because of its shape (see in Fig. 6). It consists of Dense
Connection [11], Residual Connection [12], and Inception
[13]. The major advantage of the proposed IT-Block is to
take advantage of those three operations, aiming to help the
network obtain multi-level features and reuse them compre-
hensively. Formally, the xl is the output of IT-Block, and the
xl−1 is the input of IT-Block. The relation between xl and
xl−1 is defined in (10).

xl = D(C(I(xl−1) +R(C(I(xl−1))))) + xl−1 (10)

Where I(·), R(·), and D(·) denote the non-linear calculation
including Conv, ReLU [34], and BN [10] in the inception
block, the residual block (Fig. 6(c)), and the dense block
(Fig. 6(b)). (e.g. Inception block is at the top of Fig. 6(a).).
C(·) represents the concatenation operation that fuses feature
maps by channel. + is the residual connection, adding feature
maps point by point without increasing the channel. For the
block we used in the experiment, 1× 1 convolutional layer is
attached to the end of IT-Block to reduce parameters. D(·) in
the dense block actually includes BN-ReLU-Conv(1× 1)-BN-
ReLU-Conv(3×3). In general, the number of IT-Blocks could
be chosen alternatively. However, guided by the target of low
parameters, two IT-Blocks are a more reasonable choice. The
more details about the position of the two IT-Blocks would be
discussed in section IV (Experiments and Results).

IV. EXPERIMENTS AND RESULTS

A. Datasets and Evaluation Metrics

There are many types of medical images such as CT, MRI,
microscopy and so on. In order to test as many types of
medical images as possible, we select four public medical
image datasets including cells [7], Skin, Lung, and Nuclei
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TABLE I
DETAILED INFORMATION OF DATASETS

Data name Source Image Size Modality

Cells ISBI 2012 512× 512 microscopy
Nuclei Data Science bowl 2018 360× 360 microscopy
Lung Kaggle 512× 512 CT

Skin Lesion ISIC 2017 512×512×3 dermoscopy

[16]. The size, modality, and source of them are shown in
Table I.

In the experiments, three metrics are used, including the
number of parameters, the dice coefficient, and the running
time for training. Due to the small size of each dataset like the
cells dataset used in U-Net [7], we divide these small datasets
into five equal parts respectively and apply a 5-fold cross-
validation used in [33]. For the dice coefficient, we calculate
its mean and std (standard deviation) of each dataset. The MD
(Mean Dice coefficient) and SD (Std of Dice coefficient) are
defined in (11) (12).

MD =
1

n× k

n∑
i=1

k∑
j=1

Dice (11)

SD =

√∑n
i=1(

1
k

∑k
j=1Dice−MD)2

n− 1
(12)

where k is the number of images in one subset. n is the fold
used in cross-validation. Dice is classical dice coefficient (1).

B. Implementation Details

Preprocessing: To test the adaptability of the network to
small datasets, we randomly screened 30 samples from the
other three datasets, keeping the same number of samples like
cells (only 30 samples) [7]. For saving the memory, we simply

resize each image to 256×256 as the input. Before using data
augmentation, we divide each dataset into five equal parts (e.g.
four parts for training and one part for validation) to prepare
for running a 5-fold cross-validation. The datasets (training
image and its corresponding labels) are augmented by rotating
counterclockwise 90 degrees, 180 degrees, and 270 degrees.

Hyperparameters: In all experiments, the use of hyperpa-
rameters is basically the same. Each convolution layer with
one stride is followed by BN [10] and ReLU [34] except
the last convolutional layer, using 5 batch size and Adam
optimizer [35] with the following parameters: β1 = 0.9, β2 =
0.999, ε = 1e− 8. The initial learning rate of 1e− 4 is settled
and the sigmoid classifier is used in the last layer. We use
he-normal [36] to initialize the weights of the network. The
differences are as following: (1) cross-entropy [7] is used as a
loss function in rethinking the capability of U-Net and LDice
loss is used in experiments about IT-Block; (2) the epochs are
different (e.g. 30 epochs in rethinking the capability of U-Net
and experiments about IT-Block, 20 epochs in comparison of
Dice loss and LDice loss).

Experimental platform and environment: The experi-
ments are conducted on a computer with Intel(R) Core (TM)
i7-7700 CPU @ 3.60GHz, Nvidia GeForce GTX 1080 Ti,
16GB RAM, and Samsung SSD 850 EVO 500GB. The
operating system is Windows 10(1801). All experiments were
run under the Keras framework.

C. Results

The position of IT-Block: There are 14 optional spaces in
the structure of U-Net-12 (Fig. 4). Formally, we use i and j
to denote the position of two IT-Blocks (e.g. IT-Block (1,14)
represents one of the IT-Blocks is located in the first space
of U-Net-12 and the other one is located in the 14th space of
U-Net-12). To maintain the symmetry of U-Net-12 like U-Net
[7], we place the two IT-Blocks symmetrically on the up-down
sampling path. Consequently, a total of 7 combinations were
obtained. According to the results (seen in Table II), although
the running time and parameters of IT-Block (3,12) are not the
best among these combinations, there are not much different
from the best scores (e.g. IT-Block (1,14) and IT-Block (2,13)).
Furthermore, it almost provides better MD (11) and SD (12)
than the other six combinations in segmenting cells, lung, skin,
and nuclei. In the case of keeping symmetry of the network,
this experiment verifies the 3rd space and the 12th space of
U-Net-12 is the best choice for two IT-Blocks. Additionally,
we discover that when the parameters of two combinations are
the same (e.g. IT-Block (1,14) and IT-Block (2,13), IT-Block
(4,11) and IT-Block (5,10)), their running time, MD (11), and
SD (12) are similar. That is to say, it is possible that the
position of IT-Block is not the key to affect the performance
of U-Net-12. The changing parameters caused by inserting IT-
Blocks at different positions is the main factor.

Comparison with U-Net: In this part, we use the same loss
function (LDice loss (7)) for training, aiming to state that our
framework (U-Net-12+IT-Block (3,12)) achieves significantly
better results than that of U-Net. This is not only because of



TABLE II
THE COMPARISON OF RUNNING TIME, AVERAGE DICE COEFFICIENT AND ITS STANDARD DEVIATION FOR 5-FOLD CROSS-VALIDATION IMPLEMENTED BY

U-NET AND U-NET-12 WITH IT-BLOCK.

Models Parameters Time Cells Skin Lung Nuclei

arrow: normal arrow: excellent mean std mean std mean std mean std

U-Net [7] 31.0317× 106 156s 0.8829 0.0201 0.6894 0.0361 0.7452 0.0824 0.8935 0.1352
U-Net-12 + IT-Block(1,14) 2.3845× 106 132s 0.8887 0.0241 0.6987 0.0342 0.7527 0.0903 0.9124 0.1361
U-Net-12 + IT-Block(2,13) 2.3845× 106 132s 0.8892 0.0237 0.6993 0.0346 0.7522 0.0895 0.9129 0.1357
U-Net-12 + IT-Block(3,12) 2.4052× 106↑ 134s↑ 0.9086↑ 0.0172↓ 0.7485↑ 0.0364↑ 0.7861↑ 0.0692↓ 0.9317↑ 0.1238↓
U-Net-12 + IT-Block(4,11) 2.4259× 106 136s 0.8873 0.0309 0.6915 0.0389 0.7481 0.0831 0.8949 0.1423
U-Net-12 + IT-Block(5,10) 2.4259× 106 136s 0.8878 0.0295 0.6921 0.0381 0.7484 0.0827 0.8946 0.1427
U-Net-12 + IT-Block(6,9) 2.4675× 106 140s 0.8923 0.0454 0.7295 0.0435 0.7671 0.0736 0.9089 0.1358
U-Net-12 + IT-Block(7,8) 2.5089× 106 142s 0.8979 0.0231 0.7341 0.0292 0.7725 0.0783 0.9147 0.1821

(a) Cells (b) Lung

(c) Skin (d) Nuclei

Raw Label               U-Net               Ours Raw Label               U-Net               Ours

Raw Label               U-Net               Ours Raw Label               U-Net               Ours

Fig. 7. Some results processed by U-Net and U-Net-12 with IT-Block (3,12) (ours). We use the green rectangle to mark a slight part of each image and
magnify the part inside the green rectangle to the same size as its corresponding image.

the optimized Dice loss. In terms of Table II, it could be seen
that there is obvious improvement in MD (11), parameters,
and running time when compared to U-Net. Although U-Net-
12+IT-Block (3,12) gets a worse Skin SD (12), it is close
to the Skin SD of U-Net, and this is acceptable in view of
its comprehensive promotion on running time, accuracy, and
parameters. As the slight region magnified in Fig. 7, it is
clearly seen that the tissues of cells, lung, skin, and nuclei are
more likely to be misclassified by U-Net. More specifically,
there is much different from the mask generated by U-Net and
its corresponding label in the slight part of tissues, whereas the
mask generated by U-Net-12+IT-Block (3,12) is closer to the
label. This result indicates that the fixed kernel (3×3) used in
U-Net cannot capture multi-level information. It is easy to lose

smaller information, resulting in poor segmentation of slight
tissues. This result also proves that the proposed IT-Block
could indeed help the network obtain multi-level features and
reuse them comprehensively, which makes the network have
better capabilities for processing slight objects in the medical
image.

V. CONCLUSION

In this paper, we propose a new and simple block (IT-
Block) that can be embedded in U-Net, namely the use of
Dense Connection, Residual Connection, and Inception to help
the network obtain multi-level features and enhance the reuse
of them significantly. Furthermore, we introduce a novel loss
function (LDice loss) that could alleviate the butterfly effect



caused by Dice loss during backpropagation. Even more in-
terestingly, we discover that U-Net with only 12 convolutional
layers (U-Net-12) is not much different from classical U-
Net (23 convolutional layers) in segmentation accuracy but
keeps parameters low. Based on that, we use U-Net-12 as a
backbone, assembling IT-Block and LDice loss to it. Such
a new framework outperforms U-Net in four different image
segmentation tasks. Future works will aim at how to extend
the IT-Block into a whole network that can further optimize
its performance on medical image segmentation.
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