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Abstract—Nowadays, deep learning techniques show dramatic
performance in computer vision areas, and they even outperform
humans on complex tasks such as ImageNet classification. But
it turns out a deep learning based model is vulnerable to some
small perturbation called an adversarial attack. This is a problem
in the view of the safety and security of artificial intelligence,
which has recently been studied a lot. These attacks have shown
that they can easily fool models of image classification, semantic
segmentation, and object detection. We focus on the adversarial
attack in semantic segmentation tasks since there is little work
in this task. We point out this attack can be protected by
denoise autoencoder, which is used for denoising the perturbation
and restoring the original images. We build a deep denoise
autoencoder model for removing the adversarial perturbation
and restoring the clean image. We experiment with various noise
distributions and verify the effect of denoise autoencoder against
adversarial attack in semantic segmentation task.

Index Terms—Adversarial Attack, Robustness, Computer Vi-
sion

I. INTRODUCTION

A deep neural network has shown remarkable performance
in vision-related tasks such as image classification, object
detection, and semantic segmentation. With this performance,
deep learning technology has started to be applied to various
practice areas such as a self-driving car, health care artifi-
cial intelligence. However, according to a recent study, deep
learning models are vulnerable to well-designed perturbation
of input. These perturbations are hard to detect via human
eyes, so humans can still understand objects correctly. But a
deep neural network can produce completely different results
than we expect. The adversary can even make perturbation in
the way they want. For instance, they can change the image so
that a deep neural network misclassifies it as a wrong target
set by them. This phenomenon is an important issue in terms
of security and safety of artificial intelligence [8], [10], [23].

This perturbed image is called an adversarial example or
adversarial attack. It is generated by using the parameters and
loss function of the victim model. And it is called white box
attack since it requires the information of the model. But in
case of no access to the model, it is still possible to create
an adversarial example because of the property called the
transferability. It allows the attack on this situation, which is
called black box attack. i.e., an adversarial example generated
from a specific model works with other models as well.

(a) Clean image (b) Prediction of (a)

(c) Adversarial example (d) Prediction of (c)

Fig. 1: Adversarial attack in semantic segmentation

It is known that an adversarial attack works better with a
similar task. For instance, an adversarial attack on a particular
neural network can fool other neural networks with different
architectures [18]. With this transferable feature, an adversary
can more easily fool diverse models.

Many research has tried to generate stronger adversarial ex-
amples to attack the state-of-the-art models [2], [17], [20]. And
in response to this, there has been some research approaches
to make robust models against adversarial attack [15], [21].
There were also competitions involving adversarial attacks
and defense in the field of image classification [14]. Several
methods for attack and defense are proposed. However, many
of the attacks and defense involved in adversarial examples
have been limited to the problem of image classification.
Although there are related works which deal with the semantic
segmentation and object detection [16], [26], [29], only attack
scenarios are addressed and studies of defense scenarios for
complex tasks such as semantic segmentation are insufficient.
Also, for the defense model of the classification task, they
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often use simple datasets like MNIST, CIFAR 10, that have a
small resolution. Therefore, it is needed to experiment with
images that have large resolution since more complicated
images are used in the real world. In addition, we need to
study the defense scenario of semantic segmentation since it is
more practical. For instance, in autonomous driving vehicles
or medical intelligence, most of the scene understanding is
performed through semantic segmentation rather than classifi-
cation.

In this paper, we aim to provide robust mechanisms to
secure semantic segmentation model from adversarial attack
To achieve that, we propose DAPAS, a denoise autoencoder
to prevent an adversarial attack in semantic segmentation that
effectively removes adversarial perturbation. Since semantic
segmentation involves the classification of pixels, it is impor-
tant to restore the original image at the pixel level so that the
restored image gives the correct semantic segmentation result.
We use random noise that follows a particular distribution.
We use the Gaussian distribution, Uniform distribution, and
Bimodal distribution. The adversarial attack would change
the pixel value of input X slightly, the random noise could
cover a variety of attack methods. For the dataset, we use
the PASCAL VOC 2012 [7] and test it on the DeepLab
V3 Plus [4] which has one of the state-of-the-art models in
the field of semantic segmentation task. We first generate
an adversarial example of DeepLab V3 Plus, and we verify
that our approach is effective against adversarial attacks on
semantic segmentation. As a result, the performance of our
proposed model was around 97 % compared to the original
model DeepLab V3 Plus on clean images. In the case of
an adversarial attack, the performance of DeepLab V3 Plus
dropped to about 13 % of the original performance, but when
it passed our denoise autoencoder, it covered up to 68 %
compared to the original performance. Therefore, the method
we proposed confirmed that the attack is effectively defended
while minimizing performance degradation. In addition, we
don’t have to retrain the segmentation model. We leave the
model we want to defend as it is, and we defend the model
by putting a DAPAS in front of it.

The content of the remaining parts is as follows. We show
an overall review of related work in Section 2. And we
explain our method and show our architecture in Section 3. In
Section 4, We evaluate our defense method with an adversarial
example. And the conclusion and discussion are provided in
Section 5.

II. RELATED WORK

Szegedy et al. found the existence of perturbation that
breaks the classifier [25]. This paper presents a simple and ef-
fective attack called Fast Gradient Sign Method (FGSM) [11].
It shows small perturbation is enough to fool the classifier.
[17] measures the minimum size required for the attack. They
give better intuition of the existence of an adversarial example
by calculating the sufficient magnitude of the perturbation.
[24] set more extremely limited scenario. They show that
the modification of just one pixel of an image would be

dropping the performance. [19] study the scenario where the
adversary does not know about the deep learning model, which
is called in the black box scenario. This research implies
that adversaries can attack even though they have no detail
information about the deep learning model. In addition to
classification problems, [16], [29] shows the adversarial attack
on the task of the segmentation model and object detection.
And [1] experiments and analyzes the effect of the adversarial
attack on the various semantic segmentation models such as
DeepLab V2 [3] and PSPNet [30]. In addition to the theoretical
aspect, some papers [9], [23] show that the existence of
adversarial examples in the real world.

To counter adversarial attacks, some works trained the
model with a clean example and adversarial example, which
is called adversarial training [11], [13], [25], [27]. During the
process of training, they generate adversarial for the training.
Although it works, it depends on the particular adversarial
data used in the training process. For instance, [13] shows
their approach is robust in the simple attack, but not in a
more sophisticated attack. In addition, it has an engineering
penalty since it requires retraining the model. If it takes longer
to create an adversarial example, it will take more time to
retrain the model. So it is a burden to use a more complicate
algorithm for generating adversarial examples. Instead of using
the data augmentation, methods to change the model itself
were also proposed [5], [6]. They change the objective function
of the problem for obtaining the robustness. However, this
approach also requires retraining the model so it costs time.
[15], [22] preprocess the image before putting it into the
model. These approaches are similar to our work, but they
experiment with the image which has a small resolution like
MNIST and CIFAR series. Also, theses work only focus on
the classification problem.

Currently, there is no general defense method of adversarial
attacks. In addition, to the best of our knowledge, there is no
defense scenario of the semantic segmentation in the context
of the adversarial attack. We verify our approach is effective
against an adversarial attack in semantic segmentation.

III. ADVERSARIAL ATTACK

Basically, all of the attacks use the gradient of data with
respect to the loss function of the victim model. In this section,
we briefly review the basic method of adversarial attack.

A. Fast Gradient Sign Method (FGSM)

The FGSM is proposed by [11]. It is a simple and effective
attack method. The image X is perturbed as follows.

X = X + ε · |sign(OX l(X, ytrue))|

Where ε is a magnitude of noise and l(X, ytrue) is a loss with
respect to the true label of the image. It adjusts input X by
adding a sign of the gradient of X. It increases the loss function
of the victim model so that the model misjudges the adjusted
input. In other words, it uses a gradient ascent algorithm for
increasing the loss value. Since it updates input X once, it is
also called single-step method. In addition, Adversaries can
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Fig. 2: The architecture of the denoise autoencoder

update the input in the direction they want. It decreases the
loss of the victim model with respect to the target label set by
the adversary.

X = X − ε · |sign(OX l(X, ytarget))|

If the input is modified enough, the model predicts the target
which the adversary wants. In both cases, the ε have the role
of the scale of the perturbation. We call the first method as
untargeted FGSM and second method as targeted FGSM.

B. Iterative FGSM (I-FGSM)

The iterative FGSM is a repetitive version of FGSM. it is a
more powerful attack method compared to the FGSM. It uses
the following equations:

Xt+1 = clipX,ε(Xt + α · |sign(OX l(Xt, ytrue))|)

Where X0 = X , α is a step size for adjusting Xt , and clip
function ensures that Xt ∈ (X − ε,X + ε) for all t. And we
choose step number as min(ε+2, 4ε) if ε ≤ 0.008, otherwise
min(ε+4, 1.24ε). It is also called multi-step method. Here α
is the 1 on the scale of 0 to 255 in the original paper. We use
0.25 for the α. As the case of targeted FGSM, the adversary
can modify the data in the way they want.

Xt+1 = clipX,ε(Xt − α · |sign(OX l(X, ytarget))|)

We denote this algorithm I-FGSM in this paper. Although
theses attack methods were introduced in the context of image
classification, the same method can be applied in the context
of semantic segmentation tasks. We call the first method
as an untargeted I-FGSM and second method as targeted I-
FGSM. We use untargeted FGSM and untargeted I-FGSM in
this paper. i.e., the pixel in the image will be misclassified
randomly by an adversarial attack.

IV. METHOD

Our mechanism does not modify the semantic segmentation
model. We use denoise autoencoder as a preprocessor. And we
place it in front of the semantic segmentation model. Whether
the input is an adversarial example or not, it will pass the
denoise autoencoder before passing the original model. Thus
denoise autoencoder should restore the clean image well, in
addition to remove the perturbation. In this section, we show
the architecture of denoise autoencoder, detail of training setup
and demonstrate how the denoise autoencoder is deployed in
constructing a robust semantic segmentation model.

A. Architecture of Denoise Autoencoder

The overall structure of the model is shown in Fig. 2. The
denoise autoencoder is divided into two parts, orange-colored
encoder part, and blue-colored decoder part. While the encoder
extracts the feature of the input image, the decoder restores
the input image from the extracted feature. The encoder
consists of five convolutional layers and the resolution of
each feature map gradually reduces by half. We did not use
max pooling or average pooling for decreasing the resolution
of the feature map. We adjust the stride of the kernel for
decreasing the resolution. In the decoder, it also consists of
five deconvolutional layers and the resolution of each feature
map expands twice. And we use skip connection to restore the
details of the spatial information of the feature maps. In other
words, the features used in the encoder were symmetrically
linked to the features of the decoder. We add features that have
the same resolution. Here we did not connect the first feature
through the skip connection, i.e. input image. Since the input
image has noisy information. For the activation function, we
use ELU instead of RELU for each layer. And we use sigmoid
as the last activation function.
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Fig. 3: Overall flow of DAPAS

B. Training

We trained with PASCAL VOC 2012 data which is widely
used for the task of semantic segmentation. There are a total
of 1464 training images and 1449 validation data. The pixel
value with a value from 0 to 255 was re-scaled to change from
0 to 1. And the resolution of the image was fixed to 553 ×
553. We use Adam optimizer for gradient descent algorithm,
and use 5× 10−4 for the learning rate. We add random noise
to the train set. And we use either clean or noisy input. It is
a little bit different from the original framework of denoise
autoencoder [28]. Since our purpose is to also maintain the
original performance in case of no adversarial attack, we
also put clean input. For random noise, we use Gaussian
distribution, Uniform distribution, and Bimodal distribution.
For the Gaussian distribution, we set a mean of zero and
the standard deviation of 0.004. For the Uniform distribution,
we set the range from -0.035 to 0.035. For the Bimodal
distribution, we use a mixture of two Gaussian distributions.
For each Gaussian distribution, we set a mean of -0.024 and
0.024. And we use the standard deviation of 0.004.

C. Combining with semantic segmentation model

The created denoise autoencoder is connected to the general
model that performs semantic segmentation like Fig. 3. The
denoise autoencoder has the role of preprocessing before the
image entering the segmentation model. Since the denoise
autoencoder is independent of the segmentation model, it can
be located in front of any model. Therefore it serves as a
general defense mechanism. Hence, we do not have to re-
train the model we want to defend. Besides, the random noise
used in training the denoise autoencoder is independent of any
adversarial attack, it can defend against a variety of attacks.

V. EXPERIMENT

In this section, we look at the ability of the denoise
autoencoder to restore and then measure how the restored
image performs in the segmentation model DeepLab V3 Plus.

We test the results of segmentation in DeepLab V3 Plus using
test data from the Pascal VOC with additional annotation from
SBD [12]. In an adversarial attack, we assumed that noise
is not large. Since the purpose of the adversarial attack is
not to deceive people but to deceive models. So we limit
the magnitude of the noise to 0.032 of pixel level. i.e., it
changes 3.2 % of the original pixel value. We properly adjust
the standard deviation of Gaussian distribution and Bimodal
distribution and the range of Uniform distribution. The details
of the distribution, the evaluation metric, and the result of the
experiment are summarized below.

A. Dataset

We use the PASCAL VOC validation set which is not used
in the process of training the denoise autoencoder. And we
resize the image as 513 × 513. Since we use a pre-trained
model, which uses the normalized data so we did the same
for testing. In other words, the average was subtracted and
divided by the standard deviation.

B. Denoise Autoencoder as a restoration

We visualize the output of denoise autoencoder before
measuring the robustness against adversarial attacks. Although
we use three different distribution for noise, we show the case
of Gaussian noise for simplicity. Since the noise level is not
much different, the results of other distributions are similar. We
make sure that the clean image is well restored after denoise
autoencoder as well as in case of the noisy image since the
performance on a clean image should not be compromised.
Fig. 4-(a) shows the original image, Fig. 4-(b) shows the
noisy image, Fig. 4-(c) shows the original image after denoise
autoencoder and Fig. 11 shows the noisy image after denoise
autoencoder. It is easy to see that Fig. 4-(c) is more clear
than Fig. 4-(d). Therefore we can intuitively expect that the
reduction ratio will be not that much.
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(a) Clean image (b) After (a) passing the denoise
autoencoder

(c) Noisy image (d) After noisy image passing the
denoise autoencoder

Fig. 4: Effects of denoise autoencoder

C. Evaluation metric

The mean Intersection over Union (mIoU) is widely used
for evaluating the performance of semantic segmentation [7].
And we adapt relative metric IoU Ratio for measuring the
robustness [1]. The IoU ratio on the attack is defined as
follows.

• mIoUCO : mIoU of a clean image on the original
model

• mIoUAO : mIoU of an adversarial image on the
original model

• mIoUCP : mIoU of a clean image on the proposed
model

• mIoUAP : mIoU of an adversarial image on the
proposed model

IoU ratio of attack (RatioATT ) =
mIoUAO
mIoUCO

IoU ratio of robust (RatioROB) =
mIoUAP
mIoUCO

This is a metric that shows the performance is compared to
the original model performance. And we measure the mIoU
ratio of the original model to the proposed model to calculate
the reduction on a clean image as the following.

IoU ratio of reduction (RatioRED) =
mIoUCP
mIoUCO

D. Analysis of results

Table I shows that the performance reduction due to the
denoise autoencoder was as low as around 3% for all three dis-
tributions. And we verify that denoise autoencoder is effective
to remove an adversarial attack. Fig. 6 show the results. We
can see that the segmentation output is weird when the FGSM
and the I-FGSM are applied. In addition, We can check that the
I-FGSM is less noisy than the FGSM, but the segmentation
results show that the attack was more effective in I-FGSM.
However, after passing the denoise autoencoder, the images are
successfully purified in both cases. Table II shows IoU ratio
of attack. When the ε is 0.008, 0.0016 and 0.0032, IoU ratio
of attack on FGSM are similar. But in the case of I-FGSM,
IoU ratio of attack significantly drops to 24.2%, 21.9%, and
12.0%. Table III and Table IV show IoU ratio of robust on

FGSM and I-FGSM. Comparing the two tables, IoU ratio of
robust on I-FGSM is larger than IoU ratio of robust on FGSM
although the attack is more effective on I-FGSM. Fig. 7 and
Fig. 8 summarized the contents of the tables.

Gaussian distribution We use the small standard deviation
of Gaussian distribution since we want to check the perfor-
mance depends on the noise distribution, so we use the mean
of 0 and the standard deviation of 0.004. Although it is also
effective, the performance is middle among the three denoise
autoencoders.

Uniform distribution We give the range from -0.035 to
0.035 of Uniform distribution since the maximum magnitude
of adversarial perturbation is 0.032. Among the three distribu-
tion, denoise autoencoder using the Uniform distribution has
the best performance in terms of reduction. It shows a 97.4%
IoU ratio of reduction. Therefore, it only decreased by 3.1 %
compared to the original performance. In the case of the attack
scenario, it shows the worst performance compared to other
distributions.

Bimodal distribution In most cases, denoise autoencoder
trained with Bimodal distribution noise shows the best per-
formance among the three distribution. Since the adversarial
attack would add or subtract noise of fixed size, we use
the noise following the Bimodal distribution using the two
Gaussian distributions like Fig. 5. Each Gaussian distribution
has a mean of -0.24 and 0.24, the standard deviation of 0.004.
The IoU reduction is 97.2 %, which is the worst among the
three distributions, but the difference is small. And in case of
an attack, the performance was the best.

Fig. 5: Bimodal distribution using two Gaussian distributions
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(a) Clean image (b) Prediction of (a) (c) Ground truth

(d) adversarial example us-
ing FGSM

(e) Prediction of the FGSM (f) After pass the DAPAS (g) Prediction of the (f)

(h) adversarial example us-
ing I-FGSM

(i) Prediction of the I-FGSM (j) After pass the DAPAS (k) Prediction of the (j)

Fig. 6: Images from adversarial attack by using FGSM and I-FGSM, images after DAPAS , and outputs for each.

Fig. 7: IoU ratio of attack on FGSM Fig. 8: IoU ratio of attack on I-FGSM
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TABLE I: IoU ratio of reduction

Noise
Clean image After DAPAS

mIoU mIoU RatioRED(%)

Gaussian
78.4

76.4 97.4
Uniform 76.4 97.4
Bimodal 76.3 97.2

TABLE II: IoU ratio of attack

ε

FGSM I-FGSM

mIoU RatioATT (%) mIoU RatioATT (%)

0.001 50.9 64.8 50.9 64.8
0.002 44.6 56.9 34.5 44.0
0.004 40.2 51.2 24.9 31.8
0.008 37.6 48.0 19.0 24.2
0.016 37.1 47.3 15.3 19.6
0.032 38.0 48.5 10.3 13.1

TABLE III: IoU ratio of robust on FGSM

ε

Gaussian Uniform Bimodal

mIoU RatioROB (%) mIoU RatioROB (%) mIoU RatioROB (%)

0.001 69.7 88.9 69.2 88.2 69.8 89.1
0.002 64.8 82.6 63.9 81.5 64.9 82.8
0.004 58.3 74.3 57.2 72.9 58.6 74.7
0.008 51.8 66.0 50.8 64.8 52.0 66.4
0.016 46.5 59.2 45.7 58.2 46.7 59.6
0.032 43.3 55.2 42.7 54.5 43.4 55.3

TABLE IV: IoU ratio of robust on I-FGSM

ε

Gaussian Uniform Bimodal

mIoU RatioROB (%) mIoU RatioROB (%) mIoU RatioROB (%)

0.001 69.7 88.9 69.2 88.2 69.8 89.1
0.002 64.5 82.2 63.3 80.8 64.8 82.6
0.004 61.4 78.3 59.7 76.1 61.7 78.7
0.008 59.1 75.4 57.1 72.9 59.7 76.1
0.016 57.7 73.6 55.5 70.8 58.3 74.3
0.032 53.3 68.0 50.2 64. 53.9 68.7

VI. CONCLUSION

We verify the denoise autoencoder is effective in defending
against the adversarial attack in the context of the semantic
segmentation task. We also confirm that the performance varies
slightly depending on what kind of noise distribution the
denoise autoencoder produces in the input. We also believe that
since our denoise autoencoder is independent of a particular
attack when designing the denoise autoencoder, this approach
is available not only in the semantic segmentation task but also
in the areas of classification and object detection. The design
of a more detailed and careful denoise autoencoder against the
adversarial attack remains a future study.
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cameras: adversarial patches to attack person detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 0–0, 2019.
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