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Abstract—Heart rate estimation from electrocardiogram sig-
nals is very important for the early detection of cardiovascular
diseases. However, due to large individual differences and varying

electrocardiogram signal quality, there does not exist a single
reliable estimation algorithm that works well on all subjects.
Every algorithm may break down on certain subjects, resulting
in a significant estimation error. Ensemble regression, which
aggregates the outputs of multiple base estimators for more
reliable and stable estimates, can be used to remedy this problem.
Moreover, active learning can be used to optimally select a few
trials from a new subject to label, based on which a stacking
ensemble regression model can be trained to aggregate the base
estimators. This paper proposes four active stacking approaches,
and demonstrates that they all significantly outperform three
common unsupervised ensemble regression approaches, and a
supervised stacking approach which randomly selects some trials
to label. Remarkably, our active stacking approaches only need
three or four labeled trials from each subject to achieve an
average root mean squared estimation error below three beats per
minute, making them very convenient for real-world applications.
To our knowledge, this is the first research on active stacking,
and its application to heart rate estimation.

Index Terms—Active learning, ensemble regression, stacking,
heart rate estimation

I. INTRODUCTION

Cardiovascular diseases are the leading cause of human

death. According to the World Health Organization [1], cardio-

vascular diseases take 17.9 million lives every year, accounting

for 31% of all global deaths.

Electrocardiogram (ECG) is very useful in early detection

of cardiovascular diseases. Recent years have witnessed rapid

developments of wearable ECG systems for continuous ECG

monitoring [2]. In such systems, real-time accurate heart rate

estimation is critical to cardiovascular disease detection and

treatment [3].

Unfortunately, ECG from wearable systems generally has

poor quality due to bad electrode contact, wrong electrode

positioning, body movements, and various noise [4]. As a re-

sult, traditional heart rate estimation algorithms, which mainly

considered clinic quality ECG signals, may have difficulty

on these wearable ECG systems. For example, Liu et al.

[5] systematically evaluated ten widely used QRS detection

algorithms in different application scenarios in six internation-

ally recognized databases. Results showed that for the clinical
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ECG, whether it was normal or arrhythmic, the F1 measure of

all algorithms was higher than 95%. However, the highest F1

score for wearable ECG was only 80.43%. A possible remedy

is to perform ECG signal quality assessment [3] before further

analysis, i.e., divide the ECG signal into acceptable and unac-

ceptable parts, and discard the unacceptable portion. However,

the discarded part may also contain valuable cardiovascular

disease information.

Additionally, even when the ECG signal quality is satisfac-

tory, due to large individual differences, there may not exist a

single heart rate estimation algorithm that works well on all

subjects. This paper considers how to use advanced machine

learning approaches to cope with these problems.

Ensemble regression [6] has been frequently used to im-

prove the estimation performance, by integrating multiple

base estimators. In heart rate estimation, different QRS de-

tectors can be viewed as base estimators. They are developed

based on different ECG characteristics (e.g., power, amplitude,

slope, curve length, etc [7]) and different detection methods

(e.g., filtering, threshold setting, feature extraction, and post-

processing [8]), and hence satisfy the basic requirement on the

base learners in ensemble learning: diversity.

More specifically, we assume M base estimators are used to

estimate the heart rates of N ECG trials from a particular sub-

ject. According to whether labeled training data are available

or not, there are two types of ensemble regression approaches:

1) Unsupervised ensemble regression, where no labeled

ECG trials are available. The simplest, maybe also the

most frequently used, unsupervised ensemble regression

approaches are to take the average or median of the

M base estimators. However, as it will be shown later

in this paper, because of individual differences, these

approaches do not work well on heart rate estimation.

2) Supervised ensemble regression, where some labeled

ECG trials are available. Some sophisticated super-

vised ensemble regression approaches [9], e.g., bagging

[10], boosting [11], random forests [12], etc, require a

relatively large number of labeled data. The simplest

supervised ensemble regression approach, which also

does not require too many labeled data, may be stacking

[13], i.e., the final estimator is a weighted average of the

base estimators, where the weights are computed from

the labeled training data. Again, as it will be shown later

in this paper, because of individual differences, it is very
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challenging to find a set of weights that fits all subjects.

Usually some subject-specific labeled ECG trials must

be obtained, based on which a subject-specific ensemble

regression approach can then be designed to achieve a

high estimation accuracy.

Intuitively, supervised ensemble regression would out-

perform unsupervised ensemble regression, if high-quality

subject-specific labeled ECG trials can be acquired. Generally,

the more such trials there are, the higher the estimation

accuracy will be. However, for practical considerations, we’d

like to minimize the number of subject-specific labeled ECG

trials, as labeling each such trial requires an expert to visually

examine and count the number of QRS waves in the ECG trial,

which is both tedious and labor-intensive. So, it is desirable

to reduce the number of subject-specific labeled ECG trials.

Active learning [14] is a popular and effective approach

for this purpose. It deliberately selects a small number of

most beneficial trials from the N unlabeled trials to label,

so that a model trained from these labeled trials can achieve

the best possible performance. Our previous research has

demonstrated the outstanding performance of active learning in

both classification [15], [16] and regression [17]–[19] tasks, in

a variety of application domains. However, to our knowledge,

no one has integrated stacking and active learning for heart

rate estimation.

This paper proposes four active stacking approaches for

estimator aggregation, which integrate active learning for

regression (ALR) [17]–[19] and stacking. The idea is to use

ALR to select a small number of most beneficial unlabeled

trials, query an expert for their outputs, and then train a

stacking model on them. We demonstrate their outstanding

performances on heart rate estimation from ECG signals on

95 subjects: our active stacking approaches only need three

or four labeled ECG trials from each subject to achieve an

average root mean squared error below three beats per minute

(bpm), making them very practical for real-world applications.

The remainder of this paper is organized as follows: Sec-

tion II proposes four ALR approaches. Section III proposes

four active stacking approaches. Section IV compares their

performances on heart rate estimation from ECG signals.

Finally, Section V draws conclusion.

II. ACTIVE LEARNING FOR REGRESSION (ALR)

This section introduces four ALR approaches. The first two

are unsupervised, whereas the last two are supervised.

Assume a subject has N ECG trials, each with its heart rate

estimates xn = [xn,1, ..., xn,M ] from M base estimators, but

initially none of these trials has a reference heart rate label.

The goal of ALR is to optimally select K trials to label, so that

an accurate regression model can be constructed from them to

estimate the heart rate for the remaining N −K trials.

A. GSx

Yu and Kim [20] proposed a greedy sampling (GS) ALR

approach, which selects the trials to label based entirely on

their locations in the input space. Thus, it does not need any

label information at all. However, the original GS approach did

not explain how the first trial was selected. We [19] recently

introduced GSx to accommodate this. GSx is essentially the

same as GS, except that it also includes a strategy to select

the first trial for labeling.

GSx selects the first trial as the one whose xn is the closest

to the centroid of all N xn (i.e., the one with the shortest

mean distance to the remaining N − 1 xn), and the remaining

K − 1 trials incrementally. In this way, the first selected trial

is the most representative one in the N trials.

Without loss of generality, assume the first k trials {xl}
k
l=1

have already been selected. For each of the remaining N − k

unlabeled trials {xn}Nn=k+1
, GSx computes first its distance

to each of the k labeled trials:

dxnl = ||xn − xl||, l = 1, ..., k; n = k + 1, ..., N (1)

then dxn, the shortest distance from xn to all k labeled trials:

dxn = min
l

dxnl, n = k + 1, ..., N (2)

and finally selects the trial with the maximum dxn to label.

In summary, GSx selects the first trial as the one closest

to the centroid of the pool, and each subsequent trial farthest

away from all previously selected ones in the input space, to

achieve the maximum diversity among the selected trials.

B. RD

We [17] recently proposed a representativeness-diversity

(RD) approach for ALR. As its name suggests, it considers

both representativeness and diversity in all trial selections. In

contrast, GSx considers only representativeness in selecting

the first trial, and only diversity in subsequent selections.

RD selects all K trials simultaneously. It performs k-means

(k = K) clustering on the N unlabeled trials, and then selects

from each cluster the trial closest to the cluster centroid for

labeling. This selection strategy ensures representativeness,

because each trial is a good representation of the cluster it

belongs to. It also ensures diversity, because these K clusters

cover the full input space of xn, and they do not overlap.

As GSx, RD does not need any reference label information

at all, so it is a completely unsupervised ALR approach.

C. RD-EMCM

RD only considers representativeness and diversity. How-

ever, as pointed out in [17], informativeness is also an essential

criterion in ALR. An RD-EMCM ALR approach was proposed

in [17], which considers also the informativeness through

expected model change maximization (EMCM) [21].

RD-EMCM first uses RD to select K0 = 2 trials, and

queries for their reference labels. To select the next trial to

label, it performs k-means (k = K0 + 1) clustering on the N

trials, and identifies the largest cluster that does not already

contain any labeled trial. It will then select the (K0 + 1)th

trial from this cluster. However, instead of selecting the one

closest to its centroid, as in RD, now it uses EMCM to select

the most informative trial to label. The details of EMCM are

given next.



EMCM first uses all labeled trials to build a linear regression

model (e.g., ridge regression, or linear SVR). Let its estimated

heart rate for the nth trial be ŷn. EMCM then uses bootstrap to

construct another P linear regression models from the labeled

trials. Let the pth model’s estimated heart rate for the nth trial

be ŷpn. Then, for each unlabeled trials, EMCM computes [21]

g(xn) =
1

P

P∑

p=1

‖(ŷpn − ŷn)xn‖ , (3)

and selects the trial with the maximum g(xn) to label.

RD-EMCM is a supervised ALR approach, because it needs

the reference labels to train the regression models in EMCM.

D. iGS

Improved greedy sampling (iGS) is a supervised ALR

approach proposed in [19], which is supposed to improve GSx

by considering also feature selection/weighting.

iGS first uses GSx to select the initial K0 = 2 trials to label.

Assume the first k trials {xl}kl=1
have already been labeled

with true heart rates {yl}kl=1
. For each of the remaining N−k

unlabeled trials {xn}
N
n=k+1

, iGS computes:

dxnl = ||xn − xl|| (4)

d
y
nl = |f(xn)− yl| (5)

dxyn = min
l

dxnld
y
nl (6)

and then selects the trial with the maximum dxyn , i.e., the trial

located farthest away from all previously selected trials in both

input and output spaces, to label.

III. ACTIVE STACKING

Stacking requires some labeled trials, whereas ALR can

optimally select a small number of trials to label. So, it’s

natural to integrate them for better performance. Four active

stacking approaches are proposed next.

A. AS-GSx

AS-GSx integrates stacking and GSx. It uses GSx to select

K trials to query for their reference heart rates, and then

checks if any base estimator has the same heart rate estimates

as the reference for all K selected trials. If yes, then for each of

the remaining N−K trials, the median of these base estimators

is taken as its final estimate. Otherwise, it trains a linear SVR

model from the K labeled trials as the final stacking model.

The pseudo-code of AS-GSx is given in Algorithm 1.

B. AS-RD

AS-RD integrates stacking and RD. It’s almost identical

to AS-GSx, except that GSx is replaced by RD as the ALR

approach. Its pseudo-code is given in Algorithm 2.

Algorithm 1: The AS-GSx active stacking approach.

Input: N unlabeled trials, {xn}Nn=1;

K , the maximum number of labels to query.

Output: The stacking regression model f(x).
Set Z = {xn}Nn=1, and S = ∅;

Identify x
′, the trial closest to the centroid of Z;

Move x
′ from Z to S;

Re-index the trial in S as x1, and the trials in Z as

{xn}Nn=2;

for k = 1, ...,K − 1 do

for n = k + 1, ..., N do

Compute dxn in (2);

end

Identify the x
′ that has the largest dxn;

Move x
′ from Z to S;

Re-index the trials in S as {xl}
k+1

l=1
, and the trials

in Z as {xn}Nn=k+2
;

end

Query to label all K trials in S;

if There exist some base estimators which give

identical estimates to the true labels in S then

f(x) is the median of these base estimator outputs;

else
Construct a linear SVR model f(x) from S.

end

Algorithm 2: The AS-RD active stacking approach.

Input: N unlabeled trials, {xn}Nn=1;

K , the maximum number of labels to query.

Output: The stacking regression model f(x).
Perform k-means clustering on {xn}

N
n=1, where

k = K;

Select from each cluster the trial closest to its centroid,

and query for its label;

if There exist some base estimators which give

identical estimates to the true labels for all K trials

then

f(x) is the median of these base estimator outputs;

else
Construct a linear SVR model f(x) from the K

labeled trials.
end

C. AS-RD-EMCM

AS-RD-EMCM integrates stacking and RD-EMCM. It first

uses RD-EMCM to select K0 = 2 trials to query for their

reference heart rates, and trains a linear SVR stacking model

from them. This model can then be used in RD-EMCM to

select the next trial to label, and the linear SVR stacking model

is then updated. This process iterates until K trials have been

selected and labeled. Finally, we check if any base estimator

has the same heart rate estimates as the reference for all K

selected trials. If yes, then for each of the remaining N −K



trials, the median of these base estimators is taken as the final

estimate. Otherwise, we train a linear SVR model from the K

labeled trials as the final stacking model.

The pseudo-code of AS-RD-EMCM is given in Algo-

rithm 3.

Algorithm 3: The AS-RD-EMCM active stacking ap-

proach.

Input: N unlabeled trials, {xn}Nn=1;

K , the maximum number of labels to query.

Output: The stacking regression model f(x).
Perform k-means clustering on {xn}Nn=1, where k = 2;

Select from each cluster the trial closest to its centroid,

and query for its label;

Construct a linear SVR model f(x) from the two

labeled trials;

for k = 3, ...,K do

Perform k-means clustering on {xn}
N
n=1;

Identify the largest cluster that does not already

contain any labeled trial;

Compute g(xn) in (3) for each trial in the above

cluster;

Select the trial with the maximum g(xn) to label;

Construct a linear SVR model f(x) from the k

labeled trials;

end

if There exist some base estimators which give

identical estimates to the true labels for all K trials

then

f(x) is the median of these base estimator outputs;

else
Construct a linear SVR model f(x) from the K

labeled trials.
end

D. AS-iGS

AS-iGS integrates stacking and iGS. It’s almost identical to

AS-RD-EMCM, except that RD-EMCM is replaced by iGS as

the ALR approach. Its pseudo-code is given in Algorithm 4.

IV. EXPERIMENTS AND RESULTS

A. Datasets

One hundred ECG recordings in the augmented training set

of the 2014 PhysioNet/CinC Challenge [22], available freely

on the PhysioNet platform, were used in this study. They

were from patients with a wide range of problems as well as

healthy volunteers. Each recording was 10 minutes or shorter,

sampled at 360 Hz with 16-bit resolution. Four recordings

(2041, 2728, 41024, 41778) shorter than 2 minutes, and one

consisting of pure Gaussian noise (42878), were excluded. The

remaining 95 ECG recordings had manually annotated QRS

complex locations. Heart rates calculated from these locations

were used as the references for algorithm evaluations. Most

subjects had close to 120 trials, but a few had less than 40.

On average each subject had 108.5 trials.

Algorithm 4: The AS-iGS active stacking approach.

Input: N unlabeled trials, {xn}Nn=1;

K , the maximum number of labels to query.

Output: The stacking regression model f(x).
Set Z = {xn}Nn=1, and S = ∅;

Identify x
′, the trial closest to the centroid of Z;

Move x
′ from Z to S;

Re-index the trial in S as x1, and the trials in Z as

{xn}Nn=2;

for n = 2, ..., N do

Compute dxn in (2);

end

Identify the x
′ that has the largest dxn;

Move x
′ from Z to S;

Re-index the trials in S as {xl}2l=1
, and the trials in Z

as {xn}Nn=3;

Query to label the two trials in S;

Construct a linear SVR model f(x) from S;

for k = 3, ...,K do

for n = k, ..., N do

Compute dxyn in (6);

end

Identify the x
′ that has the largest dxyn ;

Move x
′ from Z to S;

Query to label x′ in S;

Re-index the trials in S as {xl}kl=1
, and the trials

in Z as {xn}Nn=k+1
;

Update the linear SVR model f(x) using S.
end

if There exist some base estimators which give

identical estimates to the true labels in S then

f(x) is the median of these base estimator outputs;

else
Construct a linear SVR model f(x) from S.

end

B. Base Estimators

The following 12 QRS detection algorithms were used as

our base estimators [5]:

1) Pan-Tompkins [23], which has been widely used as a

baseline QRS detection algorithm.

2) Hamilton-Tompkins-mean [24], which is an improve-

ment to the Pan-Tompkins algorithm.

3) Hamilton-Tompkins-median [24], which is another im-

provement to the Pan-Tompkins algorithm.

4) RS-slope [25], which uses the RS slope to detect the

QRS complexes.

5) Sixth-power [26], which relies on the sixth power of the

ECG signal to identify the QRS complexes.

6) Finite state machine (FSM) [27], which uses a dynamic

finite state machine based threshold to detect the R

peaks.

7) Improved FSM (iFSM) [5], which improves parameter

selection and threshold estimation in FSM.



8) U3 [28], which uses the U3 transform (a non-linear time-

domain transform) for QRS detection.

9) Difference operation algorithm (DOM) [29], which uses

the positive and negative extremes of the low-pass

filtered differential ECG signal to detect the R peaks.

10) jqrs [30], which fuses R peaks detected from the ECG

using an energy detector with those from the arterial

blood pressure waveform using the length transform.

11) Optimized knowledge-based method (OKM) [31], which

detects QRS complexes in ECG signals based on two

event-related moving-average filters.

12) UNSW [3], which generates a feature signal containing

information of ECG amplitude and derivative, and then

performs filtering and adaptive thresholding.

Boxplots of the root mean squared errors (RMSEs) of the

12 base estimators on the 95 subjects are shown in Fig. 1.

Due to large individual differences, every base estimator broke

down on certain subjects, giving heart rate estimates zero or

over 1000 bpm, and hence very large RMSEs. The mean and

standard deviation of the RMSEs of the 12 base estimators

are shown in the first part of Table I. Among the 12 base

estimators, sixth-power achieved the smallest average RMSE

(10.55 bpm), and RS-slope the largest (29.57 bpm). Given

that the average reference heart rate across the 95 subjects

was 87.99 bpm, these RMSEs represented 11.99-33.61% rel-

ative error. According to ANSI/AAMI1 EC13:2002, which

establishes minimum safety and performance requirements for

cardiac monitors, heart rate meters, and alarms: “the minimum

allowable heart rate meter range shall be 30 bpm to 200 bpm,

with an allowable readout error of no greater than 10 percent

of the input rate or 5 bpm, whichever is greater.” Clearly, all

12 base estimators have errors exceeding the 10 percent or 5

bpm threshold, and hence may not be suitable for real-world

applications.
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Fig. 1. Boxplots of the RMSEs of the 12 base estimators on the 95 subjects.

In summary, we have shown that the base estimators were

very unstable, and none of them may be used for heart rate

estimation alone in practice.

1https://webstore.ansi.org/standards/aami/ansiaamiec132002.

TABLE I
THE MEAN AND STANDARD DEVIATION (STD) OF THE RMSES OF

DIFFERENT APPROACHES.

Category Approach RMSE mean RMSE std

Pan-Tompkins 15.49 18.06
Hamilton-Tompkins-mean 14.69 15.78

Hamilton-Tompkins-median 14.87 15.73
RS-slope 29.57 26.92

Sixth-power 10.55 10.95

Base FSM 12.14 16.16
Estimator iFSM 15.26 16.54

U3 15.68 20.47
DOM 15.67 19.03
jqrs 16.33 20.83

OKM 17.09 25.30
UNSW 14.22 21.88

Unsupervised LOSO-CV 11.37 11.65

Ensemble Average 11.97 12.14
Regression Median 12.10 16.86

RS 5.55 4.45
AS-GSx 3.18 3.07

K = 2 AS-RD 3.76 4.02
AS-RD-EMCM 3.76 4.02

AS-iGS 3.18 3.07

RS 4.96 4.15
AS-GSx 2.97 2.68

K = 3 AS-RD 2.98 2.65
AS-RD-EMCM 3.12 2.67

Supervised AS-iGS 2.99 2.66
Stacking RS 4.64 3.97

AS-GSx 2.81 2.45

K = 4 AS-RD 2.98 2.95
AS-RD-EMCM 3.02 2.75

AS-iGS 2.92 2.78
RS 4.48 3.89

AS-GSx 2.76 2.70
K = 5 AS-RD 2.64 2.48

AS-RD-EMCM 2.90 2.58
AS-iGS 2.99 3.05

C. Performances of the Unsupervised Ensemble Regression

Approaches

Before testing our proposed active stacking algorithms, we

would like to check first if unsupervised ensemble regression

can work well. If so, then one should prefer unsupervised

ensemble regression, since it does not require manually label-

ing some ECG trials for each new subject, and hence is very

convenient to use.

In addition to average and median, leave-one-subject-out

cross-validation (LOSO-CV) was also considered. From the

95 subjects, each time we selected one as the test subject,

and the remaining 94 as training subjects. We combined trials

from all 94 training subjects to train a stacking model (we

tried both ridge regression with λ = 0.01 and linear SVR;

however, the latter was too slow to converge, so we only report

the ridge regression results), and computed its RMSE on the

test subject. This process was repeated 95 times so that each

subject acted as the test subject once. Note that this approach

is unsupervised for the new subject, because we do not need

any reference heart rates from him/her; however, it assumes

that we know the reference heart rates of other subjects, so

that the stacking model can be built. From this perspective, it

is supervised on the existing subjects.



The mean and standard deviation of the RMSEs of the three

algorithms on the 95 subjects are shown in the second part of

Table I. Given that the mean heart rate across the 95 subjects

was 87.99 bpm, these RMSEs represented 12.92 − 13.75%
relative error, which should not be acceptable in practice.

Boxplots of the RMSEs of the three unsupervised ensemble

regression approaches on the 95 subjects are shown in Fig. 2.

They were better than most base estimators, but still worse

than the best base estimator.
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Fig. 2. Boxplots of the RMSEs of the three unsupervised ensemble regression
approaches on the 95 subjects.

In summary, we have shown that, due to large individual

differences, unsupervised ensemble regression approaches may

not be accurate enough to be used for practical heart rate

estimation.

D. Performances of the Supervised Stacking Approaches

Next we compare the performances of five supervised

stacking algorithms: Random sampling (RS), AS-GSx, AS-

RD, AS-RD-EMCM, and AS-iGS. The latter four have been

introduced in Algorithms 1-4 in Section III. RS is similar to

AS-GSx, except that GSx is replaced by random sampling.

Boxplots of the RMSEs of the five supervised stacking

approaches on the 95 subjects are shown in Fig. 3, for different

K . Clearly, these RMSEs were much smaller than those of the

12 base estimators (Fig. 1), and also much smaller than those

of the three unsupervised ensemble regression approaches

(Fig. 2).

Fig. 3 also shows that generally the RMSEs of all five

supervised stacking approaches decreased with the increase of

K . To visualize this more clearly, we plot the mean RMSEs of

the five supervised stacking approaches across the 95 subjects

in the left panel of Fig. 4, and also show them in the third

part of Table I. Generally there was a decreasing trend for

each approach, which is intuitive: the more labeled trials we

have, the better a stacking model can be trained. Remarkably,

the RMSEs of the four proposed active stacking approaches

converged at K = 3 or K = 4, i.e., only three or four

labeled trials were needed for these active stacking approaches

to achieve a low RMSE, which is very favorable in practice.

The left subfigure of Fig. 4 also shows that the RMSEs of

the four active stacking approaches were much smaller than

those of RS. The right subfigure of Fig. 4 shows their ratios to

the mean RMSE of RS. Compared with RS, each active stack-

ing approach can reduce the RMSE by 35− 40%, suggesting
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Fig. 3. Boxplots of the RMSEs of the five supervised stacking approaches,
for different K .

the effectiveness of using ALR in heart rate estimation. The

four active stacking approaches had similar performances.
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Fig. 4. Mean RMSEs (left) of the five supervised stacking approaches across
the 95 subjects, and the ratio (right) to the mean RMSE of RS.

To find out if there were statistically significant differ-

ences between the five supervised stacking approaches, non-

parametric multiple pairwise comparison tests using Dunn’s

procedure [32], with a p-value correction using the False Dis-

covery Rate method [33], were performed on the 95×5 mean

RMSEs (for each algorithm on each subject, we computed the

mean RMSE for K ∈ [2, 7]). The results are shown in Table II,

where the statistically significant ones are marked in bold. All

four active stacking approaches significantly outperformed RS,

but there were no statistically significant differences among the

four active stacking approaches.

In summary, we have shown that all five supervised stacking

approaches significantly outperformed the 12 base estimators,

and the three unsupervised ensemble regression approaches.

The four active stacking approaches further significantly out-

performed supervised stacking by random sampling. So, active

stacking is indeed effective in heart rate estimation.



TABLE II
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS ON THE FIVE

SUPERVISED STACKING APPROACHES (p = 0.05).

RS AS-GSx AS-RD AS-RD-EMCM

AS-GSx .0019

AS-RD .0034 .5333
AS-RD-EMCM .0043 .5296 .4361
AS-iGS .0019 .4740 .4858 .4690

E. Discussions

In all four active stacking approaches (Algorithms 1-4),

when there exist some base estimators whose outputs are

identical to the reference heart rates on all selected trials, we

take the median of these base estimators as the final output,

instead of performing a linear SVR. This is because: 1) taking

the median is intuitive, as the selected base estimators have

identical performance on the reference trials, and hence they

cannot be distinguished; 2) taking the median is much simpler

than performing a linear SVR; and, 3) empirically taking

the median2 gave smaller RMSEs. Fig. 5 shows the average

RMSEs of three variants of the algorithm:

1) Median, which takes the median of the selected base

estimators.

2) Subset, which performs a linear SVR on the selected

base estimators.

3) All, which performs a linear SVR on all 12 base esti-

mators.

Taking the median had the smallest RMSEs for AS-GSx

and AS-iGS, and comparable RMSEs with the two SVR

approaches for AS-RD and AS-RD-EMCM (when K ≥ 3).

So, we used the median in our algorithms.
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Fig. 5. Average RMSEs of three variants of the algorithm, when there exist
some base estimators whose outputs are identical to the reference heart rates
on all selected trials.

Intuitively, if there exist some base estimators whose outputs

are identical to the reference heart rates on all selected trials,

then these subjects may be easier to handle than others, i.e.,

they may have smaller RMSEs. To verify this, we show the

RMSEs from these subjects (red dots, sorted in ascending

order for easy visualization) versus those from the remain-

ing subjects (black dots, sorted in ascending order for easy

visualization) in Fig. 6. In each subfigure the vertical red

(black) dashed line indicates the number of red (black) dots,

and the horizontal red (black) dashed line indicates the mean

2We could also take the mean of the selected base estimators; however,
it gave a larger RMSE than taking the median, because the mean is more
sensitive to outliers than the median.

RMSE of the red (black) dots. Each horizontal red line was

always lower than the corresponding horizontal black line,

confirming our hypothesis. As K increased, the number of

red dots decreased (the corresponding vertical red line moved

left), which is intuitive, because fewer base estimators were

able to completely match the reference heart rates. However,

as K increased, the horizontal red line also became lower

(the RMSE was smaller), which is reasonable, as the survived

subjects were easier to handle.

V. CONCLUSION

Heart rate estimation from ECG signals is very important for

the early detection of cardiovascular diseases. However, due

to large individual differences and varying ECG signal quality,

there does not exist a single reliable estimation algorithm that

works well on all subjects. Every algorithm may break down

on certain subjects, resulting in a significant estimation error.

Ensemble regression, which aggregates the outputs of multiple

base estimators for more reliable and stable estimates, is a

remedy to this problem. Additionally, active learning can be

used to optimally select a few trials from a new subject to

label, based on which a stacking ensemble regression model

can be trained to properly aggregate the base estimators.

This paper has proposed four active stacking approaches, and

demonstrated that they all significantly outperformed three

common unsupervised ensemble regression approaches, and

a supervised stacking approach which randomly selects some

trials to label. Remarkably, our active stacking approaches only

need three or four labeled trials from each subject to achieve an

average root mean squared estimation error below three bpm,

making them very convenient for real-world applications. To

our knowledge, this is the first research on active stacking, and

its application to heart rate estimation.
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