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Abstract—Maximum mean discrepancy (MMD) has been
widely adopted in domain adaptation to measure the discrepancy
between the source and target domain distributions. Many
existing domain adaptation approaches are based on the joint
MMD, which is computed as the (weighted) sum of the marginal
distribution discrepancy and the conditional distribution dis-
crepancy; however, a more natural metric may be their joint
probability distribution discrepancy. Additionally, most metrics
only aim to increase the transferability between domains, but
ignores the discriminability between different classes, which
may result in insufficient classification performance. To address
these issues, discriminative joint probability MMD (DJP-MMD)
is proposed in this paper to replace the frequently-used joint
MMD in domain adaptation. It has two desirable properties:
1) it provides a new theoretical basis for computing the distri-
bution discrepancy, which is simpler and more accurate; 2) it
increases the transferability and discriminability simultaneously.
We validate its performance by embedding it into a joint
probability domain adaptation framework. Experiments on six
image classification datasets demonstrated that the proposed
DJP-MMD can outperform traditional MMDs.

Index Terms—Domain adaptation, transfer learning, maximum
mean discrepancy, joint probability discrepancy

I. INTRODUCTION

A basic assumption in statistical machine learning is that

the training and the test data are from the same distribution.

However, this assumption does not hold in many real-world

applications. Additionally, annotating data for a new domain is

often expensive and/or time-consuming; thus, there often exists

a challenge that we have plenty of data, with very limited or

even no labels [1].

Domain adaptation (DA), or transfer learning, has shown

promising performance in handling these challenges [2]–[8],

by transferring knowledge from a labeled source domain to

a new unlabeled or partially labeled target domain. It has

been widely used in image classification [9], [10], emotion

recognition [11], brain-computer interfaces [12], [13], and so

on.

According to [1], DA can be applied when the source

and the target domains have different feature spaces, label

spaces, marginal probability distributions, and/or conditional

probability distributions. Conventional DA approaches follow

this assumption, and they mainly use some metrics to sep-

arately measure the marginal and/or conditional probability
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distribution discrepancies. However, the distribution discrep-

ancy of two domains may be better measured by the joint

probability distributions. This paper considers directly the case

that the source and the target domains have different joint

probability distributions, and proposes an approach to compute

the corresponding discrepancy.

The most popular DA is feature-based [1], [6], [10], which

projects different domains’ data into a shared subspace to min-

imize their discrepancy, usually measured by maximum mean

discrepancy (MMD) [14]. DA may minimize the marginal

MMD only [2], or both the marginal and the conditional

MMDs with equal weight [15] or different weights [16], and

has been used in statistical machine learning, deep learning

[17], [18], and adversarial learning [19].

Joint distribution adaptation (JDA) [10] is a popular DA

approach, which measures the distribution shift between do-

mains by a joint MMD, which includes both the marginal and

the conditional MMDs. For joint MMD based approaches, the

marginal and conditional distributions are often treated equally,

which may not be optimal. So, balanced DA and dynamic DA

(both are called BDA in this paper) were proposed to give

them different weights by grid search [20] or A-distance [16].

However, both the joint and the balanced MMDs compute the

discrepancy between two domains as the sum of the marginal

and the conditional distribution discrepancies, whereas the

joint probability distribution discrepancy may be a better

choice, from a Bayesian Theorem perspective.

Additionally, to facilitate DA, two measures need to be

considered during feature transformation [21]. The first is

transferability, which minimizes the discrepancy of the same

class between different domains. The other is discriminability,

which maximizes the discrepancy between different classes

of different domains, and hence different classes can be

more easily distinguished. Traditional distribution adaptation

approaches [10], [22] consider the transferability only but

ignore the discriminability.

In this paper, we propose discriminative joint probability

MMD (DJP-MMD) for DA, which simultaneously minimizes

the joint probability distribution discrepancy of the same class

between different domains for transferability, and maximizes

the joint probability distribution discrepancy between different

classes of different domains for discriminability. DJP-MMD

can also be easily kernelized to consider nonlinear shifts

between different domains. Fig. 1 illustrates the difference

between the traditional MMD and DJP-MMD.
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Fig. 1. Comparison between the traditional joint MMD and the proposed DJP-
MMD in DA. The solid lines mean minimizing the marginal (dm), conditional
(dc), or joint probability (djp) discrepancies for improved transferability. The
dash lines mean maximizing the joint probability discrepancies (djp) between
different classes for improved discriminability. When used in DA, DJP-MMD
makes the same class from different domains more consistent, and different
classes more separated, which facilitate classification.

We validated the performance of DJP-MMD by embedding

it into a joint probability domain adaptation (JPDA) framework

with simple regularization. Extensive experiments on six real-

world image classification datasets demonstrated its superior

performance over traditional MMDs.

In summary, our main contributions are:

• We provide a new theoretical basis for computing the

discrepancy between two domains, by considering the

joint probability distribution discrepancy directly, which

is more accurate and easier to compute.

• We propose a novel DJP-MMD, which simultaneously

maximizes the between-domain transferability and the

between-class discriminability for better DA perfor-

mance.

• We conduct extensive experiments to demonstrate the

advantage of the proposed DJP-MMD over traditional

MMDs.

II. RELATED WORK

Our work is mainly related to traditional MMD based DA,

e.g., JDA and BDA. This section briefly reviews them.

A. Joint Distribution Adaptation (JDA)

Long et al. [10] proposed joint MMD to measure the dis-

crepancy between two domains in a reproducing kernel Hilbert

space (RKHS), using both the marginal and the conditional

MMDs:

d(Ds,Dt) ≈d(P (Xs), P (Xt))

+ d(P (Ys|Xs), P (Yt|Xt)),
(1)

where Ds and Dt denote the source and the target domain

distribution, respectively, and d is an MMD metric. JDA

ignores the relationship between different conditional distri-

butions, and also the dependency between the marginal and

the conditional distributions.

B. Balanced Distribution Adaptation (BDA)

The balanced MMD, originally introduced in [20], uses grid

search to find the weights of the marginal and conditional

MMDs. However, this cannot be performed in DA applications

that do not have validation sets. Wang et al. [16] then proposed

to use the A-distance [23] to estimate the weights.

This paper considers only the A-distance based BDA, which

matches the marginal and the conditional distribution between

two domains with a trade-off parameter µ ∈ [0, 1]:

d(Ds,Dt) ≈(1− µ)d(P (Xs), P (Xt))

+ µ · d(P (Ys|Xs), P (Yt|Xt)).
(2)

For C-class classification, the weight µ is estimated by:

µ ≈ 1−
dm

dm +
∑C

c=1 dc
, (3)

where dm (or dc) equals 2(1− 2ǫ(f)), in which f is the error

of training a linear classier f discriminating all samples from

the two domains Ds and Dt (or samples in Class c of the two

domains).

Unfortunately, as shown later in our experiments, BDA

cannot guarantee performance improvements over JDA. Ad-

ditionally, BDA needs to train C+1 classifiers to calculate µ,

which may be computationally expensive for big data.

III. THE PROPOSED DJP-MMD

Given a source domain Ds with ns labeled samples

{Xs, Ys} = {(xs,i, ys,i)}
ns

i=1, and a target domain Dt with

nt unlabeled samples Xt = {xt,j}
nt

j=1, where x ∈ R
d×1 is

the feature vector, and y is its label, with y ∈ {1, · · · , C} for

C-class classification. Assume the feature spaces and label

spaces of the two domains are the same, i.e., Xs = Xt and

Ys = Yt, which is a common assumption in homogeneous

transfer learning. DA seeks to learn a mapping h that brings

h(Xs) and h(Xt) together, so that a classifier trained on

h(Xs) can also work well on h(Xt). Different from previ-

ous DA approaches, we do not assume P (Xs) 6= P (Xt)
or P (Ys|Xs) 6= P (Yt|Xt) separately; instead, we assume

P (Xs, Ys) 6= P (Xt, Yt) directly.

Consider a mapping h that maps x to a lower-dimensional

subspace. The general objective function of DA is:

min
h

dS,T + λR(h), (4)

where dS,T = d(P (Xs, Ys), P (Xt, Yt)) is a discrepancy

metric between the source and target domain distributions,

R(h) = ‖h‖2F controls the mapping complexity, and λ is a

regularization parameter.

A. Revisit the Traditional MMD Metric

In traditional feature-based DA, MMD is frequently adopted

to measure the distribution discrepancy between the source and

the target domains.

A distribution is completely described by its joint prob-

ability P (X,Y ), which can be equivalently computed by



P (Y |X)P (X) or P (X |Y )P (Y ). The traditional MMD, e.g.,

(1) and (2), can be summarized as

d(Ds,Dt) = d(P (Ys|Xs)P (Xs), P (Yt|Xt)P (Xt))

≈ µ1d(P (Xs), P (Xt))

+ µ2d(P (Xs|Ys), P (Xt|Yt)),

(5)

which is a two-step approximation of the joint probability

distribution discrepancy [10]. First, it uses P (Y |X)+P (X) to

estimate P (Y |X)P (X). This ignores the dependency between

P (Y |X) and P (X). Second, it uses the class-conditional

distribution P (X |Y ) to estimate the posterior probability

distribution P (Y |X), since the latter is difficult to compute.

Let h be the feature mapping function of x. Then,

we adopt the projected MMD [24] and compute the

marginal distribution discrepancy as d(P (Xs), P (Xt)) =
‖E[h(xs)] − E[h(xt)]‖

2, and the conditional distribution dis-

crepancy as d(P (Xs|Ys), P (Xt|Yt)) =
∑C

c=1 ‖E[h(xs)|y
c
s]−

E[h(xt)|y
c
t ]‖

2, where E[·] denotes the expectation of the

subspace samples.

More specifically, consider a linear mapping h(x) = A⊤x

for the source and the target domains, where A ∈ R
d×p. (5)

can then be re-expressed as

d(Ds,Dt) ≈ µ1

∥
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∥

∥

∥

∥
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(6)

where xc
s,i and xc

t,j are the feature vectors in the c-th class

of the source domain and the target domain, respectively, and

nc
s and nc

t are the number of examples in the c-th class of the

source domain and the target domain, respectively.

When µ1 = 1 and µ2 = 0, (6) becomes transfer component

analysis (TCA) [2]. When µ1 = 1 and µ2 = 1, (6) becomes

JDA. When µ1 = 1− µ2, (6) becomes BDA. Thus, these tra-

ditional DA approaches based on the marginal and conditional

MMDs with equal or different weights only approximate the

joint probability distribution shift.

B. DJP-MMD

As shown in the previous subsection, the traditional DA

approximates the domain discrepancy by a weighted or un-

weighted sum of the marginal and conditional MMDs. This

subsection proposes DJP-MMD, which computes the joint

probability discrepancy directly, and maximizes both the do-

main transferability and the class discriminability.

Definition 1. (The Joint Probability Discrepancy) Let c =
{1, ..., C} and ĉ = {1, ..., C} be the label sets of the source

and the target domains, respectively. Let P (X |Y ) be the class-

conditional probability, and P (Y ) the class prior probability.

Then, according to the Bayesian law, the joint probability

discrepancy is

d(Ds,Dt) = d (P (Xs|Ys)P (Ys), P (Xt|Yt)P (Yt))

=

C
∑

c=ĉ

C
∑

ĉ=1

d
(

P (Xs|Y
c
s )P (Y c

s ), P (Xt|Y
ĉ
t )P (Y ĉ

t )
)

+
∑

c 6=ĉ

C
∑

ĉ=1

d
(

P (Xs|Y
c
s )P (Y c

s ), P (Xt|Y
ĉ
t )P (Y ĉ

t )
)

=

C
∑

c=1

d (P (Xs|Y
c
s )P (Y c

s ), P (Xt|Y
c
t )P (Y c

t ))

+
∑

c 6=ĉ

C
∑

ĉ=1

d
(

P (Xs|Y
c
s )P (Y c

s ), P (Xt|Y
ĉ
t )P (Y ĉ

t )
)

≡ MT +MD (7)

MT (or MD) measures the joint probability discrepancy

on the same class (or between different classes) in the two

domains.

The difference between the first line of (5) and that of (7)

is that the former is based on the product of the marginal

probability and the posterior probability, whereas the latter

is based on the product of the class-conditional probability

and the class prior probability. Though theoretically they

are equivalent, (7) can be computed directly from the data

without approximation, and it enables us to incorporate class

discriminability into the discrepancy, as shown later in this

subsection.

Directly minimizing (7) can improve the transferability

between the source and the target domains, but it completely

ignores the discriminability between different classes, which

may not be good for classification. So, we define the discrim-

inative joint probability discrepancy as

d(Ds,Dt) = MT − µMD, (8)

where µ > 0 is a trade-off parameter. MT measures the

transferability of the same class between different domains,

and MD measures the discriminability between different

classes of different domains.

Next, we introduce specifically how to compute MT and

MD by MMD.

MMD for Transferability: From (7) we have

MT =
C
∑

c=1

d (P (Xs|Y
c
s )P (Y c

s ), P (Xt|Y
c
t )P (Y c

t ))

=
C
∑

c=1

‖E[f(xs)|y
c
s]P (ycs)− E[f(xt)|y

c
t )]P (yct )‖

2
,

(9)

where empirically

E[f(xs)|y
c
s] =

1

nc
s

nc

s
∑

i=1

A⊤xc
s,i, (10)

P (ycs) =
nc
s

ns

. (11)



Then,

E[f(xs)|y
c
s]P (ycs) =

1

ns

nc

s
∑

i=1

A⊤xc
s,i. (12)

Similarly, we have

E[f(xt)|y
c
t ]P (yct ) =

1

nt

nc

t
∑

i=1

A⊤xc
t,i, (13)

where yt is target-domain pseudo-label estimated from a

classifier trained in the source domain.

Substituting (12) and (13) into (9), we have

MT =

C
∑

c=1

∥
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Note that, the joint probability MMD in (14) is different

from the conditional MMD in (6), since nc
s and nc

t are used in

(6), whereas ns and nt are used in (14). nc
t in (6) is estimated,

whereas nt in (14) is known precisely and hence more accurate

than nc
t .

MMD for Discriminability: From (7) we have

MD =
∑

c 6=ĉ

C
∑

ĉ=1
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c
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ĉ
t )P (Y ĉ
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C
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Using the same derivation as before, it follows that

MD =
∑

c 6=ĉ

C
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t,j

∥

∥

∥

∥

∥

∥

2

2

. (16)

The DJP-MMD: Let the source domain one-hot coding

label matrix be Ys = [ys,1; · · · ;ys,ns
], and the predicted target

domain one-hot coding label matrix be Ŷt = [ŷt,1; · · · ; ŷt,nt
],

where ys,i ∈ R
1×C and ŷt,i ∈ R

1×C . Then, (14) can be re-

expressed as

MT =
∥

∥A⊤XsNs −A⊤XtNt

∥

∥

2

F
, (17)

where Ns and Nt are defined as

Ns =
Ys

ns

, Nt =
Ŷt

nt

. (18)

The c-th column of A⊤XsNs ∈ R
p×C (or A⊤XtNt) is the

mean mapped feature of Class c in the source (or target)

domain.

Define

Fs = [Ys(:, 1) ∗ (C − 1), ..., Ys(:, C) ∗ (C − 1)],

F̂t = [Ŷt(:, 1 : C)ĉ 6=1, ..., Ŷt(:, 1 : C)ĉ 6=C ], (19)

where Ys(:, c) denotes the c-th column of Ys, Ys(:, c)∗(C−1)
repeats Ys(:, c) C − 1 times to form a matrix in R

ns×(C−1),

and Ŷt(:, 1 : C)ĉ 6=1 is formed by the 1st to the C-th (except

the 1st) columns of Ŷt. Clearly, Fs ∈ R
ns×(C(C−1)) and F̂t ∈

R
nt×(C(C−1)). Fs is fixed, and F̂t is constructed from the

pseudo labels, which are updated iteratively.

Then, (16) can be re-expressed as

MD =
∥

∥A⊤XsMs −A⊤XtMt

∥

∥

2

F
, (20)

where

Ms =
Fs

ns

, Mt =
F̂t

nt

. (21)

To facilitate DA, we need to minimize d(Ds,Dt) in (8), i.e.,

we solve the optimal linear mapping A by

min
A

∥

∥A⊤XsNs −A⊤XtNt

∥

∥

2

F

− µ
∥

∥A⊤XsMs −A⊤XtMt

∥

∥

2

F

(22)

DJP-MMD in (22) has two appealing properties: 1) it

considers the joint probability MMD directly, which in theory

is more accurate than considering the marginal MMD and

conditional MMD separately; and, 2) it improves the domain

transferability and the class discriminability simultaneously.

C. Use DJP-MMD in DA

To verify the superiority of the proposed DJP-MMD over

the traditional MMDs, we embed it into an unsupervised

joint probability DA (JPDA) framework with a regularization

term and a principal component preservation constraint, which

have also been used in the classical TCA and JDA. More

specifically,

min
A

∥

∥A⊤XsNs − A⊤XtNt

∥

∥

2

F

− µ
∥

∥A⊤XsMs −A⊤XtMt

∥

∥

2

F
+ λ‖A‖2F

s.t. A⊤XHX⊤A = I,

(23)

where H = I − 1n is the centering matrix, in which n =
ns + nt and 1n ∈ R

n×n is a matrix with all elements being
1
n

.

D. Optimize the JPDA

Define X = [Xs, Xt]. We can write the Lagrange function

[25] of (23) as

J = tr
(

A⊤
(

X(Rmin − µRmax)X
⊤ + λI

)

A
)

+ tr
(

η(I − A⊤XHX⊤A)
)

,
(24)

where

Rmin =

[

NsN
⊤
s −NsN

⊤
t

−NtN
⊤
s NtN

⊤
t

]

, (25)

Rmax =

[

MsM
⊤
s −MsM

⊤
t

−MtM
⊤
s MtM

⊤
t

]

. (26)

Rmax has dimensionality n× n, which does not change with

the number of classes.

By setting the derivative ∇AJ = 0, (24) becomes a

generalized eigen-decomposition problem:
(

X(Rmin − µRmax)X
⊤ + λI

)

A = ηXHX⊤A. (27)



A is then formed by the p trailing eigen-vectors. A classifier

can then be trained on A⊤Xs and applied to A⊤Xt.

The pseudocode of JPDA for classification is summarised

in Algorithm 1.

Algorithm 1: Joint Probability Distribution Adaptation

(JPDA)

Input: Xs and Xt, source and target domain feature

matrices;

Ys, source domain one-hot coding label matrix;

p, subspace dimensionality;

µ, trade-off parameter;

λ, regularization parameter;

T , number of iterations.

Output: Ŷt, estimated target domain labels.

for n = 1, ..., T do
Construct the joint probability matrix Rmin and

Rmax by (25) and (26);

Solve the generalized eigen-decomposition problem

in (27) and select the p trailing eigenvectors to

construct the projection matrix A;

Train a classifier f on (A⊤Xs, Ys) and apply it to

A⊤Xt to obtain Ŷt.
end

E. Kernelization

To consider nonlinear DA, kernel function φ : x 7→ φ(x) in

an RKHS can be adopted. We then have Ks = Φ(X)⊤Φ(Xs),
Kt = Φ(X)⊤Φ(Xt), and K = [Ks,Kt], where Φ(X) =
[φ(x1), .., φ(xn)], and n = ns + nt.

Then, the objective function becomes

min
A

∥

∥A⊤KsNs −A⊤KtNt

∥

∥

2

F

− µ
∥

∥A⊤KsMs −A⊤KtMt

∥

∥

2

F
+ λ‖A‖2F

s.t. A⊤KHK⊤A = I,

(28)

(28) can be optimized in a similar way to (24).

F. Computational Complexity

The most computationally expensive operations in Algo-

rithm 1 are generalized eigen-decomposition and the MMD

matrices construction.

For most practical applications, both T (the number of

iterations) and p (the subspace dimensionality) are much

smaller than min(d, n). The computational cost of solving the

generalized eigen-decomposition problem for dense matrices

is O(Tpd2), of constructing the MMD matrices is O(Tn2),
and of all other steps is O(Tdn). Thus, the total theoretical

computational complexity is O(Tpd2+Tn2+Tdn). The em-

pirical computational complexity will be given in Section IV.

IV. EXPERIMENTS

Experiments are performed in this section to demon-

strate the performance of JPDA. The code is available at

https://github.com/chamwen/JPDA.

A. Datasets

Office, Caltech, COIL, Multi-PIE, MNIST and USPS are

six benchmark datasets widely used to evaluate visual DA

algorithms. They were also used in our experiments. Some

examples from these datasets are shown in Fig. 2.

Webcam DSLR CaltechAmazon

Multi-PIE MNISTUSPSCOIL20

Fig. 2. Sample images from the six datasets. Webcam, DSLR and Amazon
are all from the Office dataset.

Object Recognition: Office+Caltech [26] is a popular

benchmark for visual DA. It contains four real-world object

domains: Caltech (C), Amazon (A), Webcam (W), and DSLR

(D). Our experiments used the public Office+Caltech dataset

with SURF features released in [3]. By randomly selecting

one domain as the source domain and a different domain as

the target domain, we had 4× 3 = 12 different cross-domain

transfer tasks.

COIL contains 20 objects with 1,440 images. The images

of each object were taken 5 degrees apart as the object was

rotated on a turntable, and each object has 72 images of 32×
32 pixels. The dataset was partitioned into two equal subsets

(COIL1 and COIL2) with different distributions.

Face Recognition: Multi-PIE is a benchmark for face

recognition. The database has 68 individuals with 41,368

32× 32 face images. It has five subsets: C05 (left pose), C07

(upward pose), C09 (downward pose), C27 (frontal pose), and

C29 (right pose). In each subset (pose), all face images were

taken under different lighting, illumination, and expression

conditions. By randomly selecting one subset (pose) as the

source domain and a different one as the target domain, we

had 5× 4 = 20 different cross-domain transfer tasks.

Digit Recognition: USPS and MNIST are two public digit

recognition datasets with different resolutions. Our experi-

ments used the public USPS and MNIST datasets released

by Long et al. [10], which randomly sampled 1,800 images in

USPS and 2,000 images in MNIST. They both have 10 classes

of digits, with different distributions.

B. Algorithms

To validate the effectiveness of the proposed DJP-MMD,

we compared JPDA with three unsupervised DA approaches,

TCA [2], JDA [10] and BDA (which used the A-distance [16]

to compute the weight, instead of grid search in [20]). Because

they have different MMD metrics but the same regularization



term, we can attribute the performance differences solely to

the MMD metrics.

A 1-nearest neighbor classifier was applied after TCA, JDA,

BDA and JPDA. The parameter settings in [10] were used for

TCA, JDA and BDA. We fixed p = 100 and T = 10 in

all experiments, and the regularization parameter λ = 1 with

linear kernel for Office+Caltech dataset, λ = 0.1 with primal

kernel for other datasets. µ = 0.1 was used in JPDA.

C. Results

The target domain classification accuracy was used as the

performance measure.

The classification accuracies of the four algorithms are

given in Table I. JPDA outperformed the three baselines in

most tasks, and its average performance was also the best,

suggesting that JPDA can obtain a more transferrable and

also more discriminative feature mapping for cross-domain

visual adaptation. Although the A-distance based BDA was

proposed to improve JDA by adding a balance factor between

the marginal MMD and the conditional MMD, it did not

demonstrate better performance in our experiments.

TABLE I
CLASSIFICATION ACCURACY (%) OF THE FOUR ALGORITHMS.

Dataset Source Target TCA JDA BDA JPDA

Multi-PIE

C05

C07 40.76 58.81 58.20 59.36

C09 41.79 54.23 52.82 66.67
C27 59.63 84.50 83.03 83.99
C29 29.35 49.75 49.14 49.51

C07

C05 41.81 57.62 57.35 63.00

C09 51.47 62.93 62.75 60.85
C27 64.73 75.82 75.76 77.05

C29 33.70 39.89 39.71 47.67

C09

C05 34.69 50.96 51.35 59.78
C07 47.70 57.95 56.41 63.35

C27 56.23 68.46 67.86 74.47

C29 33.15 39.95 42.40 52.70

C27

C05 55.64 80.58 80.52 84.87
C07 67.83 82.63 83.06 83.24

C09 75.86 87.25 87.25 87.44

C29 40.26 54.66 54.53 65.38

C29

C05 26.98 46.46 47.99 53.63

C07 29.90 42.05 43.22 51.32

C09 29.90 53.31 47.92 55.76

C27 33.64 57.01 57.10 58.49

Office+Caltech

C

A 38.20 44.78 44.57 47.60
W 38.64 41.69 40.34 45.76

D 41.40 45.22 45.22 46.50

A

C 37.76 39.36 39.27 40.78

W 37.63 37.97 37.97 40.68
D 33.12 39.49 40.76 36.94

W

C 29.30 31.17 31.43 34.55

A 30.06 32.78 32.46 33.82
D 87.26 89.17 89.17 88.54

D

C 31.70 31.52 31.17 34.73

A 32.15 33.09 33.19 34.66

W 86.10 89.49 89.49 91.19

COIL
COIL1 COIL2 88.47 89.31 89.44 92.08
COIL2 COIL1 85.83 88.47 88.33 89.86

USPS+MNIST
USPS MNIST 51.05 59.65 59.90 59.20

MNIST USPS 56.28 67.28 67.39 68.94

Average 47.22 57.37 57.18 60.68
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Fig. 3. t-SNE visualization of the first three classes’ data distributions before
and after different DA approaches, when transferring Caltech (source) to
Amazon (target).

We also verified whether JPDA can increase both the

transferability and the discriminability. We used t-SNE [27] to

reduce the dimensionality of the feature to two, and visualize

the data distributions. Fig. 3 shows the results of the first three

classes’ data distributions when transferring Caltech (source)

to Amazon (target), before and after different distribution

adaptation approaches, where Raw denotes the raw data dis-

tribution. For the raw distribution, the samples from Class 1

and Class 3 (also some from Class 2) of the source and the

target domains are mixed together. After DA, JPDA brings data

distributions of the source and the target domains together, and

also keeps samples from different classes well-separated. JDA

and BDA do not have such good discriminability, especially

for samples from Classes 2 and 3.

D. Convergence and Time Complexity

We then empirically checked the convergence of different

DA approaches. Fig. 4 shows the average MMD distances

(the method to compute the distance can be found in [10])

and classification accuracies in the 20 transfer tasks on Multi-

PIE, as the number of iterations increased from 1 to 20.

JPDA converged quickly and achieved a much smaller MMD

distance, as well as a higher accuracy.
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Fig. 4. (a) Average MMD distances and (b) average classification accuracies
of different DA approaches w.r.t. the number of training iterations, in the 20
Multi-PIE tasks.

The computational costs of the four algorithms are shown

in Table II. JPDA was always faster than JDA and BDA.

Especially, when the dataset is large (Multi-PIE), JPDA can

save over 50% computing time. TCA was the fastest, since it

is not iterative. BDA was the most time-consuming approach,

because it needed to train C + 1 classifiers to compute the

balance factor.

TABLE II
COMPUTATIONAL COST (SECONDS) OF DIFFERENT APPROACHES.

TCA JDA BDA JPDA

C05→C07 2.58 94.46 107.47 46.12
C→A 2.93 31.61 34.73 30.65

MNIST→USPS 0.75 9.04 13.58 8.41

E. Parameters Sensitivity

We also analyzed the parameter sensitivity of JPDA on

different datasets to validate that a wide range of parameter

values can be used to obtain satisfactory performance. Two

main adjustable parameters, the trade-off parameter µ and

the regularization parameter λ, were studied. The results are

shown in Fig. 5. JPDA is robust to µ in [0.001, 0.2] and λ in

[0.01, 10].
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Fig. 5. Average classification accuracies of JPDA in six tasks w.r.t. (a) the
trade-off parameter µ, and, (b) the regularization parameter λ.

F. Ablation Study

Next, we conducted ablation study to check if the discrim-

inative MMD MD can indeed improve the discriminability

in the target domain, i.e., with MD (DJP-MMD) and without

MD (JP-MMD, which only considers the transferability). The

joint MMD was also used as a baseline. When embedded in

DA, the average classification accuracies of the three MMDs

are shown in Fig. 6. On average, JP-MMD outperformed

the joint MMD, and DJP-MMD, which further considers the

discriminability, achieved the best classification performance.
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Fig. 6. Average classification accuracies when different MMDs are used in
DA.



V. CONCLUSION

This paper has proposed simple yet effective DJP-MMD

for DA. We verified its performance by embedding it into a

JPDA framework. JPDA improves the transferability between

different domains and the discriminability between different

classes simultaneously, by minimizing the joint probability

MMD of the same class in the source and target domains (i.e.,

increase the domain transferability), and maximizing the joint

probability MMD of different classes (i.e., increase the class

discriminability). Compared with the traditional MMD based

approaches, JPDA is simpler, and more effective in measuring

the discrepancy between different domains. Experiments on

six image classification datasets verified the superiority of

JPDA.

Our future research will extend DJP-MMD to deep learning

and adversarial learning.
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